JPH0785895A - Photochemical secondary battery - Google Patents

Photochemical secondary battery

Info

Publication number
JPH0785895A
JPH0785895A JP5230556A JP23055693A JPH0785895A JP H0785895 A JPH0785895 A JP H0785895A JP 5230556 A JP5230556 A JP 5230556A JP 23055693 A JP23055693 A JP 23055693A JP H0785895 A JPH0785895 A JP H0785895A
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte
secondary battery
type semiconductor
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5230556A
Other languages
Japanese (ja)
Inventor
Masaya Takahashi
雅也 高橋
Takaharu Akuto
敬治 阿久戸
Tsutomu Ogata
努 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5230556A priority Critical patent/JPH0785895A/en
Publication of JPH0785895A publication Critical patent/JPH0785895A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To enable a charge with light energy, and to improve electron conductivity from a semi-conductor to metal by providing a barrier reducing metal layer, of which one part is formed with a metal negative electrode member, at a part of a n-type semi/-conductor, and including oxidant in the electrolyte. CONSTITUTION:At the time of discharge, a negative electrode member 11a and the oxidant in the electrolyte 12 react to generate the oxide of the member 11a, and electron is supplied to an external load through a negative electrode terminal 15. In a positive electrode 10, the emitted electron and the electrolyte 12 react to generate [Fe(CN)6]<4-> ion. At the time of charge, when a n-type semiconductor 11c is irradiated with light energy, holes are generated in a valence band thereof, and the light energy reacts with the described ion at a side close the electrolyte 12 to regenerate [Fe(CN)6]<3-> ion. Electron excited in a conductive band is moved to the member 11a to deoxidize the generated oxide, but the electron is effectively transmitted to the member 11a by a barrier reducing metal layer 11b formed between the member 11a and the semi-conductor 11c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充電と放電の双方が可
能な2次電池に係わり、酸化反応により放電し、光エネ
ルギーにより充電する光化学2次電池に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery which can be charged and discharged, and relates to a photochemical secondary battery which is discharged by an oxidation reaction and charged by light energy.

【0002】[0002]

【従来の技術】太陽光等の光エネルギーで2次電池を充
電する試みは以前からなされており、この種の光2次電
池として、アモルファスシリコン太陽電池と、ニッケル
−カドミウム蓄電池や鉛蓄電池等の2次電池を組み合わ
せた太陽光蓄電池が知られている。この太陽光蓄電池を
図4を参照して説明する。図4は太陽光蓄電池の等価回
路図を示しており、この太陽光蓄電池は、太陽電池1
と、この太陽電池1で得られた電力を貯蔵する蓄電池2
と、太陽電池1において生じた電圧を蓄電池の充電に適
した電圧に調整する電圧調整回路3と、蓄電池2から太
陽電池1に電流が逆流することを防止する逆流防止ダイ
オード4とから構成されている。この太陽光蓄電池は、
太陽電池1で発電し、この太陽電池1で得られた電力を
蓄電池2に貯蔵させる二段階(間接)方式で構成された
光2次電池である。
2. Description of the Related Art Attempts have been made to charge a secondary battery with light energy such as sunlight, and amorphous silicon solar cells, nickel-cadmium storage batteries, lead storage batteries, etc. have been used as this type of optical secondary battery. A solar battery that combines a secondary battery is known. This solar battery will be described with reference to FIG. FIG. 4 shows an equivalent circuit diagram of the solar battery, which is the solar battery 1.
And a storage battery 2 for storing the electric power obtained by this solar cell 1.
A voltage adjusting circuit 3 that adjusts the voltage generated in the solar cell 1 to a voltage suitable for charging the storage battery, and a backflow prevention diode 4 that prevents reverse current from flowing from the storage battery 2 to the solar cell 1. There is. This solar battery is
It is an optical secondary battery configured by a two-stage (indirect) system in which power is generated by the solar cell 1 and the electric power obtained by the solar cell 1 is stored in the storage battery 2.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
太陽光蓄電池においては、電圧調整回路3や逆流防止ダ
イオード4等の構成部品が必須であるため、電池の構造
が複雑で大きなものになるという欠点を有している。ま
た、従来の太陽光蓄電池を適正に機能させるためには、
太陽電池1で発電した電力を、蓄電池2へ充電するのに
適した電圧に調整する必要があり、この調整のために消
費されるエネルギー損失が大きいという問題があった。
さらに、上記太陽光蓄電池は、光→電気→電気化学の3
段階のエネルギー変換ステップを経て光エネルギーを電
気化学エネルギーとして蓄積するため、必要となる構成
部品数の増加や、エネルギー変換ステップに起因するエ
ネルギーロスの増大といった問題もあった。さらに、従
来の太陽光蓄電池の太陽電池1を製造するには、p−n
接合作製等の比較的高度な製造技術が必要となるなど、
太陽電池1の製造上の困難性もあった。
However, in the conventional solar battery, the components such as the voltage adjusting circuit 3 and the backflow preventing diode 4 are indispensable, so that the structure of the battery becomes complicated and large. have. In addition, in order for the conventional solar battery to function properly,
It is necessary to adjust the electric power generated by the solar cell 1 to a voltage suitable for charging the storage battery 2, and there is a problem that the energy loss consumed for this adjustment is large.
Furthermore, the above-mentioned solar battery has three functions: light → electricity → electrochemistry.
Since light energy is stored as electrochemical energy through a step energy conversion step, there are problems such as an increase in the number of necessary constituent parts and an increase in energy loss due to the energy conversion step. Furthermore, in order to manufacture the solar cell 1 of the conventional solar storage battery, pn
Relatively advanced manufacturing technology such as bonding production is required,
There was also a difficulty in manufacturing the solar cell 1.

【0004】一方、上述した太陽光蓄電池とは異なり、
p−n接合作製等の比較的高度な製造技術を必要としな
い光2次電池として、光化学2次電池が知られている。
図5は従来の光化学2次電池の概略構成図を示したもの
であり、図5中符号5は電池容器、5aはこの電池容器
5を密閉するための蓋、6はセパレーター、7はn型半
導体よりなる光電極、8aは充電用の電極、8bは放電
用の電極、9は電解質である。このような光化学2次電
池は半導体−電解質界面の電気化学的な特性を利用した
電池であり、即ち、半導体電極を電解質と接触させた際
に生じるエネルギーバンドの曲がりを利用して光エネル
ギーにより励起された電子を半導体光電極の外部に取り
出し、該電子の電気エネルギーを充電用電極において電
気化学的に貯蔵するものである。図5に示す光化学2次
電池の光電変換部は、半導体よりなる光電極7を電解質
9に浸漬されるだけで構成されており、p−n接合作製
技術等の比較的高度な製造技術を必要としない点におい
て、アモルファスシリコン太陽電池等が必要な図4に示
したような等価回路を有する従来の太陽光蓄電池に比べ
て優れている。しかし、従来の光化学2次電池では、通
常の2次電池における正極と負極の他に光充電を行うた
めの電極がさらに1〜2極必要であり、電池構造が複雑
になるという欠点があった。
On the other hand, unlike the above-mentioned solar battery,
A photochemical secondary battery is known as a photo secondary battery that does not require a relatively high-level manufacturing technique such as pn junction production.
FIG. 5 shows a schematic configuration diagram of a conventional photochemical secondary battery. In FIG. 5, reference numeral 5 is a battery container, 5a is a lid for sealing the battery container 5, 6 is a separator, and 7 is an n-type. A photoelectrode made of a semiconductor, 8a is an electrode for charging, 8b is an electrode for discharging, and 9 is an electrolyte. Such a photochemical secondary battery is a battery that utilizes the electrochemical characteristics of the semiconductor-electrolyte interface, that is, it is excited by light energy by utilizing the bending of the energy band that occurs when the semiconductor electrode is brought into contact with the electrolyte. The generated electrons are taken out of the semiconductor photoelectrode and the electric energy of the electrons is electrochemically stored in the charging electrode. The photoelectric conversion part of the photochemical secondary battery shown in FIG. 5 is configured only by immersing the photoelectrode 7 made of a semiconductor in the electrolyte 9, and requires a relatively advanced manufacturing technology such as a pn junction manufacturing technology. This is superior to the conventional solar storage battery having the equivalent circuit shown in FIG. 4, which requires an amorphous silicon solar cell or the like. However, the conventional photochemical secondary battery has a drawback that the structure of the battery is complicated because one or more electrodes for photocharging are required in addition to the positive electrode and the negative electrode in the normal secondary battery. .

【0005】これに対して、金属製の負極部材とn型半
導体とを一体に形成し、n型半導体上で光エネルギーに
より励起された電子を、電極外部に取り出すことなく負
極部材における還元反応に用いることができれば、n型
半導体と金属製負極部材とを複合形成した負極と、正極
との二極のみにより光化学2次電池を構成することが可
能となり、電池構造の単純化を図ることができると考え
られている。しかしながら、通常、金属と半導体との接
触界面には、電子の通路であるエネルギーバンドに障壁
が形成されることが多く、単純に金属とn型半導体とを
接触させただけでは、半導体上で光エネルギーにより励
起された電子を効率よく金属製負極部材に伝達すること
ができないという問題があった。
On the other hand, a metal negative electrode member and an n-type semiconductor are integrally formed, and electrons excited by light energy on the n-type semiconductor are subjected to a reduction reaction in the negative electrode member without being taken out of the electrode. If it can be used, it becomes possible to construct a photochemical secondary battery with only two electrodes, a negative electrode in which an n-type semiconductor and a metal negative electrode member are compositely formed, and a positive electrode, and the battery structure can be simplified. It is believed that. However, usually, a barrier is often formed at the contact interface between a metal and a semiconductor in an energy band that is a passage of electrons. Therefore, if the metal and the n-type semiconductor are simply contacted with each other, a light beam is generated on the semiconductor. There has been a problem that electrons excited by energy cannot be efficiently transmitted to the metal negative electrode member.

【0006】本発明は上記事情に鑑みてなされたもの
で、光エネルギーによる充電が可能であり、充電器を必
要とせず省エネルギー性に優れ、負極を半導体と金属と
で複合形成することにより、負極と正極との2電極より
なる単純な電池構成とすることができ、半導体から金属
への電子の伝達性を向上させた光化学2次電池を提供す
ることを目的としている。
The present invention has been made in view of the above circumstances, and is capable of charging by light energy, has excellent energy saving without the need for a charger, and forms a negative electrode by forming a composite of a semiconductor and a metal. It is an object of the present invention to provide a photochemical secondary battery which can have a simple battery configuration including two electrodes, a positive electrode and a positive electrode, and which has improved electron transfer from a semiconductor to a metal.

【0007】[0007]

【課題を解決するための手段】本発明の光化学2次電池
は、光透過用窓が設けられた電池ケース内に正極、負極
および電解質を有し、光で充電ができる2次電池におい
て、上記負極は、n型半導体の一部に金属−半導体界面
におけるエネルギー障壁を低減する障壁低減用金属層が
設けられ、かつ該障壁低減用金属層の少なくとも一部に
金属製負極部材が設けられてなる構造を有し、かつ上記
電解質には酸化剤が含有されてなること特徴とするもの
である。
The photochemical secondary battery of the present invention is a secondary battery which has a positive electrode, a negative electrode and an electrolyte in a battery case provided with a light transmitting window, and which can be charged by light. The negative electrode comprises a barrier-reducing metal layer for reducing an energy barrier at a metal-semiconductor interface on a part of an n-type semiconductor, and a metal negative electrode member provided on at least a part of the barrier-reducing metal layer. The electrolyte has a structure, and the electrolyte contains an oxidant.

【0008】[0008]

【作用】本発明の光化学2次電池においては、金属製の
負極部材の酸化反応により放電され、一方、電解質中に
n型半導体を浸漬することで形成されるエネルギーバン
ドの曲がりを利用して光エネルギー→電気化学エネルギ
ーの変換を行い、光エネルギーにより充電される。そし
て、n型半導体上に、金属−半導体界面におけるエネル
ギーバンド上の障壁を低減させる働きを有する障壁低減
用金属層を形成し、該金属層上に金属製負極部材を張り
合わせるとともに、n型半導体、障壁低減用金属層、負
極部材がそれぞれ電気的に接続されている構造を有して
いるため、従来の光化学2次電池における負極と光電極
との機能を一つの電極に併せ持たせることが可能とな
る。
In the photochemical secondary battery of the present invention, the metal negative electrode member is discharged by the oxidation reaction, while the energy band bending formed by immersing the n-type semiconductor in the electrolyte is used to generate light. It converts from energy to electrochemical energy and is charged by light energy. Then, a barrier-reducing metal layer having a function of reducing a barrier on the energy band at the metal-semiconductor interface is formed on the n-type semiconductor, and a metal negative electrode member is bonded onto the metal layer, and the n-type semiconductor is formed. Since the metal layer for barrier reduction and the negative electrode member are electrically connected to each other, one electrode can have the functions of the negative electrode and the photoelectrode in the conventional photochemical secondary battery. It will be possible.

【0009】また、充電時に、負極のn型半導体に光エ
ネルギーを作用させることにより電力を生じさせ、この
電力を金属−半導体界面の障壁の影響を受けずにn型半
導体から負極部材に、電極外部へ取り出すことなく伝達
することができるため、この負極部材における還元反応
に用いられる光エネルギーの利用効率の向上が可能とな
る。さらに、放電時に、充電時に還元された負極部材が
電解質中に含まれる水酸イオンや水分子等の酸化剤によ
り酸化されることにより、放電反応が行われ、放電電流
として取り出すことができる。また、金属製の負極部材
とn型半導体とを一体として複合形成した負極を用いる
ことにより、従来の光電極において必要であった、n型
半導体部の表面に接触させ、該n型半導体部から電流を
効率よく取り出すための集電体の役割を、本発明におい
ては、負極部材が兼ねるため、集電体等が不要になる。
従って、充電時のエネルギー効率を低下させることな
く、正極と負極のみの単純な2極構成が可能になった。
During charging, electric power is generated by applying light energy to the n-type semiconductor of the negative electrode, and this electric power is not affected by the barrier of the metal-semiconductor interface, and the power is generated from the n-type semiconductor to the negative electrode member. Since it can be transmitted without being taken out, it is possible to improve the utilization efficiency of the light energy used for the reduction reaction in the negative electrode member. Further, during discharging, the negative electrode member reduced during charging is oxidized by an oxidizing agent such as hydroxide ion or water molecule contained in the electrolyte, so that a discharging reaction is performed and can be taken out as a discharging current. Further, by using a negative electrode in which a metal negative electrode member and an n-type semiconductor are integrally formed, the negative electrode is brought into contact with the surface of the n-type semiconductor portion, which is required in a conventional photoelectrode, and In the present invention, since the negative electrode member also serves as the collector for efficiently extracting the current, the collector and the like are unnecessary.
Therefore, a simple two-pole configuration having only the positive electrode and the negative electrode has become possible without lowering the energy efficiency during charging.

【0010】[0010]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。なお、本発明は以下の実施例のみに限定さ
れるものではない。 (実施例1)図1は、本発明に係る光化学2次電池の第
一の実施例の概略構成を示す断面図である。図1中符号
10は正極、11は負極、12は正極10と負極11と
に接触する電解質、13はセパレータ、14は正極10
に電気的に接続された正極端子、15は負極11に電気
的に接続された負極端子、16は電池ケースである。こ
の第一の実施例の光化学2次電池の外観を示した斜視図
を図2に示す。
Embodiments of the present invention will now be described in detail with reference to the drawings. The present invention is not limited to the following examples. (Embodiment 1) FIG. 1 is a sectional view showing a schematic configuration of a first embodiment of a photochemical secondary battery according to the present invention. In FIG. 1, reference numeral 10 is a positive electrode, 11 is a negative electrode, 12 is an electrolyte that contacts the positive electrode 10 and the negative electrode 11, 13 is a separator, and 14 is a positive electrode 10.
Is a positive electrode terminal electrically connected to the negative electrode, 15 is a negative electrode terminal electrically connected to the negative electrode 11, and 16 is a battery case. A perspective view showing the appearance of the photochemical secondary battery of the first embodiment is shown in FIG.

【0011】正極10と負極11とは、ともに方形状に
形成され、例えば、一辺が1cmで他辺が3cmに形成
されている。ここで正極10と負極11との形状を方形
状に限定するものではなく、電池ケース16の形状や大
きさ等を考慮して、方形以外の多角形状、円盤状あるい
は円筒形状等の形状に形成されていてもよい。
Both the positive electrode 10 and the negative electrode 11 are formed in a rectangular shape, for example, one side is 1 cm and the other side is 3 cm. Here, the shapes of the positive electrode 10 and the negative electrode 11 are not limited to the rectangular shape, and in consideration of the shape and size of the battery case 16, the positive electrode 10 and the negative electrode 11 are formed into a polygonal shape other than a rectangular shape, a disk shape, a cylindrical shape, or the like. It may have been done.

【0012】正極10は厚さ1mmの多孔性炭素板から
なる。一方、負極11は、光エネルギーを電気エネルギ
ーに変換するためのn型半導体11cと、このn型半導
体11cの一方の表面に電気的に接続されるように一体
に形成され、金属−半導体界面におけるエネルギー障壁
を低減する障壁低減用金属層11bと、この障壁低減用
金属層11bの表面に電気的に接続されるように張り合
わされ、負極端子15に接続された厚さ1mmのコバル
ト製負極部材11aとから構成される。障壁低減用金属
層11bは、厚さ0.3μmの合金層であり、この合金
は、重量比で、金が84%、ゲルマニウムが12%、ニ
ッケルが4%で構成されている。n型半導体11cは、
厚さ0.2mmのn型ガリウムリン単結晶半導体からな
る。ここで、これら負極部材11a、障壁低減用金属層
11b、n型半導体11cは、電池ケース16の形状、
大きさ、要求される電池の容量等を考慮し、適切な厚
み、形状に形成される。
The positive electrode 10 is made of a porous carbon plate having a thickness of 1 mm. On the other hand, the negative electrode 11 is integrally formed with an n-type semiconductor 11c for converting light energy into electric energy so as to be electrically connected to one surface of the n-type semiconductor 11c, and at the metal-semiconductor interface. A barrier-reducing metal layer 11b for reducing an energy barrier, and a cobalt-made negative electrode member 11a having a thickness of 1 mm, which is bonded to the surface of the barrier-reducing metal layer 11b so as to be electrically connected and is connected to the negative electrode terminal 15. Composed of and. The barrier-reducing metal layer 11b is an alloy layer having a thickness of 0.3 μm, and this alloy is composed of 84% gold, 12% germanium, and 4% nickel in weight ratio. The n-type semiconductor 11c is
It is made of an n-type gallium phosphorus single crystal semiconductor having a thickness of 0.2 mm. Here, the negative electrode member 11a, the barrier-reducing metal layer 11b, and the n-type semiconductor 11c are the shape of the battery case 16,
It is formed into an appropriate thickness and shape in consideration of size, required battery capacity and the like.

【0013】電解質12は、濃度1mol/1の水酸化
カリウム水溶液中に[Fe(CN)63-/[Fe(C
N)64-のレドックスイオン対が含まれているもので
あり、後述する電池ケース16内に充満されている。セ
パレータ13はガラス繊維製不織布からなり、正極10
と負極11との間に設置され、電解質12中のレドック
スイオン対が透過できる構造に形成されている。電池ケ
ース16はアクリル樹脂製で直方体状に形成され、表面
を兼ねる透明アクリル板の光透過素材からなる受光部
(光透過用窓)16aを有している。電池ケース16の
大きさは、例えば、幅が3.5cm、奥行き1.5c
m、高さ0.7cmに作製されている。
The electrolyte 12 is [Fe (CN) 6 ] 3- / [Fe (C
N) 6 ] 4− , which contains the redox ion pair and is filled in the battery case 16 described later. The separator 13 is made of glass fiber non-woven fabric, and has a positive electrode 10
It is installed between the negative electrode 11 and the negative electrode 11 and has a structure that allows the redox ion pair in the electrolyte 12 to pass therethrough. The battery case 16 is made of acrylic resin and has a rectangular parallelepiped shape, and has a light receiving portion (light transmitting window) 16a made of a light transmitting material of a transparent acrylic plate which also serves as a surface. The size of the battery case 16 is, for example, 3.5 cm in width and 1.5 c in depth.
The height is 0.7 cm.

【0014】また、このような電池ケース16内には、
受光部16aと相対する側に配設された正極10と、該
正極10と受光部16aとの間に配置された負極11
と、これら正極10と負極11との間、正極10と電池
ケース16との間、および受光部16aと負極11との
間に充満された電解質12と、上記正極10と負極11
との間に設けられ、電解質12中のレドックスイオン対
が透過可能なセパレータ13とが収納されており、ま
た、負極11のn型半導体11cは受光部16aに面す
る向きで収納されている。
Further, in such a battery case 16,
A positive electrode 10 arranged on the side opposite to the light receiving portion 16a, and a negative electrode 11 arranged between the positive electrode 10 and the light receiving portion 16a.
An electrolyte 12 filled between the positive electrode 10 and the negative electrode 11, between the positive electrode 10 and the battery case 16, and between the light receiving portion 16a and the negative electrode 11, and the positive electrode 10 and the negative electrode 11.
And a separator 13 that is provided between the electrolyte 12 and the redox ion pair in the electrolyte 12 and is permeable, and the n-type semiconductor 11c of the negative electrode 11 is housed so as to face the light receiving portion 16a.

【0015】つぎに、上述した第一の実施例の光化学2
次電池の充放電時の動作を簡単に説明する。放電時は、
負極11上で、負極11を構成する金属製の負極部材1
1aと電解質12中の水酸イオンや水分子などの酸化剤
が反応し、最終的に負極部材11aの酸化物が生成する
とともに、負極端子15を通じて電子を外部負荷に供給
する。一方、正極10上では、負極11から外部負荷を
通して供給(放出)された電子と電解質12中の[Fe
(CN)63-イオンとが反応して[Fe(CN)64-
イオンが生成する。
Next, the photochemistry 2 of the first embodiment described above.
The operation of charging and discharging the next battery will be briefly described. When discharging,
On the negative electrode 11, a negative electrode member 1 made of metal and forming the negative electrode 11.
1a reacts with an oxidizing agent such as hydroxide ion or water molecule in the electrolyte 12 to finally generate an oxide of the negative electrode member 11a, and also supplies electrons to the external load through the negative electrode terminal 15. On the other hand, on the positive electrode 10, the electrons supplied (released) from the negative electrode 11 through the external load and [Fe in the electrolyte 12 are
(CN) 6 ] 3− ion reacts with [Fe (CN) 6 ] 4−
Ions are generated.

【0016】充電時には、負極11のn型半導体11c
と電解質12の接触界面において、エネルギーバンドが
電解質12側へ向かって上方曲がりとなっているn型半
導体11cの表面に太陽や蛍光灯等の光エネルギーを照
射し、n型半導体11cの伝導帯に電子を励起して価電
子帯にホールを生成させる。このホールは、上記エネル
ギーバンドの曲がりに沿って電解質12側へ運ばれ、n
型半導体11cの表面で、放電時に正極10上において
生成した[Fe(CN)64-イオンと反応して[Fe
(CN)63-イオンを再び生成する。
During charging, the n-type semiconductor 11c of the negative electrode 11
At the contact interface between the electrolyte 12 and the electrolyte 12, the surface of the n-type semiconductor 11c whose energy band is bent upward toward the electrolyte 12 is irradiated with light energy of the sun, a fluorescent lamp, or the like, and the conduction band of the n-type semiconductor 11c is changed. The electrons are excited to generate holes in the valence band. This hole is carried to the electrolyte 12 side along the bend of the energy band, and n
On the surface of the type semiconductor 11c, by reacting with [Fe (CN) 6 ] 4− ions generated on the positive electrode 10 during discharge, [Fe
(CN) 6 ] 3- Ions are generated again.

【0017】一方、n型半導体11cの伝導帯に励起さ
れた電子は、エネルギーバンドの曲がりに沿って、負極
11の負極部材11a側へ移動し、やがて、電解質12
と接触する負極部材11aの表面に達する。ここで、上
記電子が、電解質12中の水と反応して水酸イオンを生
成するとともに、負極部材11aの放電生成物である金
属酸化物を還元する。このような経過を経て、光充電反
応が進行する。ここで負極部材11aとn型半導体11
cとの間に形成された障壁低減用金属層11bは、金属
−半導体界面近傍における半導体中のドナー濃度を高め
る。その結果、金属−半導体界面のエネルギーバンドに
おける障壁の幅が非常に薄くなり、この障壁の影響を受
けずに、n型半導体11cにおいて光エネルギーにより
励起された電子が金属製の負極部材11aに効率よく伝
達される。
On the other hand, the electrons excited in the conduction band of the n-type semiconductor 11c move to the negative electrode member 11a side of the negative electrode 11 along the bending of the energy band, and eventually the electrolyte 12 is formed.
Reaches the surface of the negative electrode member 11a that comes into contact with. Here, the electrons react with water in the electrolyte 12 to generate hydroxide ions and reduce the metal oxide which is a discharge product of the negative electrode member 11a. Through such a process, the photocharge reaction proceeds. Here, the negative electrode member 11a and the n-type semiconductor 11
The barrier-reducing metal layer 11b formed between c and c increases the donor concentration in the semiconductor in the vicinity of the metal-semiconductor interface. As a result, the width of the barrier in the energy band of the metal-semiconductor interface becomes very thin, and the electrons excited by the light energy in the n-type semiconductor 11c are not affected by the barrier and are efficiently transferred to the metal negative electrode member 11a. Well communicated.

【0018】この第一の実施例の光化学2次電池につい
て、充放電時の正極端子14と負極端子15との間の電
圧の変化を調べた。その結果を図3に実線で示した。光
充電を行なうための光源には、キセノンランプを使用
し、照射した光の強度を50mWとした。また、放電時
には1mAの定電流放電を行なった。
With respect to the photochemical secondary battery of the first embodiment, the change in voltage between the positive electrode terminal 14 and the negative electrode terminal 15 during charge / discharge was examined. The result is shown by the solid line in FIG. A xenon lamp was used as a light source for light charging, and the intensity of the irradiated light was set to 50 mW. Further, at the time of discharge, constant current discharge of 1 mA was performed.

【0019】上記正極10をなす材料としては、炭素板
の他に、ニッケルや、カーボンやニッケルにPtやPd
を触媒として担持したもの(Pd−C、Pt−Ni、P
d−Ni)、さらにPt、Pd、Ir、Rh、Os、R
u、Pt−Co、Pt−Au、Pt−Sn、Pd−A
u、Ru−Ta、Pt−Pd−Au、Pt−酸化物、A
u、Ag、Ag−C、Ni−P、Ag−Ni−P、ラネ
ーニッケル、Ni−Mn、Ni−酸化コバルト、Cu−
Ag、Cu−Au、ラネー銀等の金属及び合金、ホウ化
ニッケル、ホウ化コバルト、炭化タングステン、水酸化
チタン、リン化タングステン、リン化ニオブ、遷移金属
の炭化物、スピネル化合物、酸化銀、酸化タングステ
ン、遷移金属のペロブスカイト型イオン結晶等の無機化
合物、およびフタロシアニン、金属フタロシアニン、活
性炭、キノン類等の有機化合物などが挙げられる。ま
た、第一の実施例の光化学2次電池においては多孔性の
板状電極を用いたが、特に正極の形状を多孔性に限定す
るものではなく、平板状、溝付き平板状、メッシュ状、
波板状等でもよい。
As the material for the positive electrode 10, besides carbon plate, nickel, carbon, nickel, or Pt or Pd may be used.
Supported as a catalyst (Pd-C, Pt-Ni, P
d-Ni), and further Pt, Pd, Ir, Rh, Os, R
u, Pt-Co, Pt-Au, Pt-Sn, Pd-A
u, Ru-Ta, Pt-Pd-Au, Pt-oxide, A
u, Ag, Ag-C, Ni-P, Ag-Ni-P, Raney nickel, Ni-Mn, Ni-cobalt oxide, Cu-
Metals and alloys such as Ag, Cu-Au and Raney silver, nickel boride, cobalt boride, tungsten carbide, titanium hydroxide, tungsten phosphide, niobium phosphide, transition metal carbides, spinel compounds, silver oxide, tungsten oxide. Inorganic compounds such as perovskite type ionic crystals of transition metal, and organic compounds such as phthalocyanine, metal phthalocyanine, activated carbon, and quinones. Further, although the porous plate-shaped electrode was used in the photochemical secondary battery of the first embodiment, the shape of the positive electrode is not particularly limited to porous, and the plate-shaped, grooved plate-shaped, mesh-shaped,
It may be corrugated or the like.

【0020】一方、負極11の負極部材11aをなす材
料としては、Ti、Zn、Fe、Pb、Al、Co、H
f、V、Nb、Ni、Pd、Pt、Cu、Ag、Cd、
In、Ge、Sn、Bi、Th、Ta、Cr、Mo、
W、Pr、U等の金属、または該金属の少なくとも一部
が該金属の酸化物、および、これらの複合成分系金属、
合金等が挙げられる。
On the other hand, as the material forming the negative electrode member 11a of the negative electrode 11, Ti, Zn, Fe, Pb, Al, Co, H
f, V, Nb, Ni, Pd, Pt, Cu, Ag, Cd,
In, Ge, Sn, Bi, Th, Ta, Cr, Mo,
A metal such as W, Pr, or U, or an oxide of at least a part of the metal, and a composite component metal of these;
Examples include alloys.

【0021】負極11のn型半導体11cをなす材料と
しては、ガリウムリン(GaP)の他に、GaAs、A
lAs、ZnS、AlSb、InP、CdS、GaS
b、InAs等の化合物半導体、Si、Ge、Se等の
無機半導体、アントラセン、ピレン、ペリレン、フタロ
シアニン、銅フタロシアニン等の縮合多環芳香族化合
物、ポリアセチレン、ポリアニリン、ポリパラフェニレ
ン、ポリピロール等の高分子などを用いるのが好まし
い。負極11の負極部材11aとn型半導体11cとの
組合せは、該n型半導体11cと電解質12との接触界
面におけるn型半導体11cの伝導帯下端の電位レベル
が、負極部材11aの電解質12中での酸化還元電位よ
りも卑な電位となる組合せであればよく、特に部材の種
類に限定されない。
As the material forming the n-type semiconductor 11c of the negative electrode 11, in addition to gallium phosphide (GaP), GaAs, A
lAs, ZnS, AlSb, InP, CdS, GaS
b, compound semiconductors such as InAs, inorganic semiconductors such as Si, Ge and Se, condensed polycyclic aromatic compounds such as anthracene, pyrene, perylene, phthalocyanine and copper phthalocyanine, polymers such as polyacetylene, polyaniline, polyparaphenylene and polypyrrole And the like are preferably used. The combination of the negative electrode member 11a of the negative electrode 11 and the n-type semiconductor 11c is such that the potential level at the bottom of the conduction band of the n-type semiconductor 11c at the contact interface between the n-type semiconductor 11c and the electrolyte 12 is in the electrolyte 12 of the negative electrode member 11a. As long as it is a combination having a base potential lower than the oxidation-reduction potential, the type of member is not particularly limited.

【0022】障壁低減用金属層11bは、重量比で、金
が84%、ゲルマニウムが12%、ニッケルが4%に設
定することが、金属−半導体界面におけるエネルギー障
壁を低減させる効果が高い点で望ましいが、これ以外の
組成比でも障壁低減の効果が得られる。かかる障壁低減
用金属層11bの材料としては、金−ゲルマニウム−ニ
ッケル(Au−Ge−Ni)の他に、Au、In等の金
属、Au−Ge、Au−Si、Au−Zn、Au−Ge
−Pt、Au−Ge−In、Au−Pt−Ti、Ag−
Ge−Ni、Ag−Ge−Pt、Ag−Ge−Inなど
の合金が望ましい。
When the weight ratio of the barrier-reducing metal layer 11b is set to 84% for gold, 12% for germanium, and 4% for nickel, the effect of reducing the energy barrier at the metal-semiconductor interface is high. Although desirable, a composition ratio other than this can also obtain the effect of reducing the barrier. As a material for the barrier reducing metal layer 11b, in addition to gold-germanium-nickel (Au-Ge-Ni), a metal such as Au or In, Au-Ge, Au-Si, Au-Zn, Au-Ge.
-Pt, Au-Ge-In, Au-Pt-Ti, Ag-
Alloys such as Ge-Ni, Ag-Ge-Pt, and Ag-Ge-In are desirable.

【0023】また、電解質12としては、水酸化カリウ
ムの他に、水酸化ナトリウム、塩化アンモニウム等の塩
基や、その他弱酸等の溶液が用いられる。また、充電性
能は低下するが、硫酸、塩酸等の強酸やそれら強酸の塩
の溶液を使うこともできる。これらの溶液中に含まれる
レドックスイオン対としては、[Fe(CN)63-
[Fe(CN)64-の他に、Fe3+/Fe2+、Mn3+
/Mn2+、Ce4+/Ce3+、Eu3+/Eu2+、V3+/V
2+、Co3+/Co2+、Cu2+/Cu+ 、Mn3+/M
2+、Cr3+/Cr2+、[Cr(CN)63-/[Cr
(CN)64-、Ti3+/Ti2+、Ag2+/Ag+、[C
oedta]-/[Coedta]2-、[Co(NH3
63+/[Co(NH362+、[Co(dpy)33+
/[Co(dyp)32+等が挙げられる。負極11の
n型半導体11cと電解質12中のレドックスイオン対
との組合せは、レドックスイオン対の酸化還元電位が、
電解質12中に浸漬された負極11を構成する負極部材
11aの酸化還元電位より貴であり、なおかつn型半導
体11cと電解質12との接触界面における、n型半導
体11cの価電子帯上端の電位レベルより卑である組合
せであればよく、特に部材の種類には限定されない。
As the electrolyte 12, in addition to potassium hydroxide, a base such as sodium hydroxide or ammonium chloride, or a solution of a weak acid or the like is used. A solution of a strong acid such as sulfuric acid or hydrochloric acid or a salt of these strong acids can be used, although the charging performance is lowered. The redox ion pair contained in these solutions is [Fe (CN) 6 ] 3- /
In addition to [Fe (CN) 6 ] 4- , Fe 3+ / Fe 2+ , Mn 3+
/ Mn 2+ , Ce 4+ / Ce 3+ , Eu 3+ / Eu 2+ , V 3+ / V
2+ , Co 3+ / Co 2+ , Cu 2+ / Cu + , Mn 3+ / M
n 2+ , Cr 3+ / Cr 2+ , [Cr (CN) 6 ] 3- / [Cr
(CN) 6 ] 4- , Ti 3+ / Ti 2+ , Ag 2+ / Ag + , [C
oedta] - / [Coedta] 2- , [Co (NH 3 )
6 ] 3+ / [Co (NH 3 ) 6 ] 2+ , [Co (dpy) 3 ] 3+
/ [Co (dyp) 3 ] 2+ and the like. In the combination of the n-type semiconductor 11c of the negative electrode 11 and the redox ion pair in the electrolyte 12, the redox potential of the redox ion pair is
The potential level that is nobler than the redox potential of the negative electrode member 11a that constitutes the negative electrode 11 immersed in the electrolyte 12 and is at the upper end of the valence band of the n-type semiconductor 11c at the contact interface between the n-type semiconductor 11c and the electrolyte 12. Any combination that is more base may be used, and the type of member is not particularly limited.

【0024】なお、上記第一の実施例の光化学2次電池
においては、上述したように液状の電解質12を用いて
いるが、電解質は、液体に限定されるものではなく、こ
の電解質12を介する正極10と負極11との間での電
荷移動が妨げられないものであれば、固体状やペースト
状等どのような形態の電解質でも用いることができる。
セパレータ13をなす材料としては、本第一の実施例で
はガラス繊維不織布を用いたが、ポリイミド系繊維不織
布、ポリオレフィン系繊維不織布、セルロース、合成樹
脂等の電解質12に対する耐久性を有するものであれば
特に限定されない。電池ケース16をなす材料として
は、ABS樹脂やフッ素樹脂等の、電解質12に侵され
ない材質であれば特に限定されない。ただし、電池ケー
ス16の負極11側に位置する受光部16aは、少なく
とも可視光の一部や紫外光の一部を透過する部材、例え
ば、ガラス、石英ガラス、アクリル、スチロール等から
なる透明板や透明フィルム等で構成される。もちろん電
池ケース16全体をこれら透明板や透明フィルム等の部
材で構成してもよい。なお、本第一の実施例では電池ケ
ース16を箱状に形成したが、多面体状、円盤状、円筒
状等の形状に形成してもよい。上記受光部16aを光が
透過する構成としたのは、光充電反応を進行させるため
に負極11を構成するn型半導体11cの表面に照射光
を到達させる際、この照射光が電池ケースによって吸収
あるいは反射されることにより、n型半導体部11cの
表面に到達する光エネルギーが極端に低下するのを防止
するためである。
In the photochemical secondary battery of the first embodiment, the liquid electrolyte 12 is used as described above, but the electrolyte is not limited to the liquid, and the electrolyte 12 is used. As long as the charge transfer between the positive electrode 10 and the negative electrode 11 is not hindered, any form of electrolyte such as solid or paste can be used.
As the material forming the separator 13, a glass fiber nonwoven fabric is used in the first embodiment, but any material having durability to the electrolyte 12 such as a polyimide fiber nonwoven fabric, a polyolefin fiber nonwoven fabric, cellulose, or a synthetic resin can be used. There is no particular limitation. The material forming the battery case 16 is not particularly limited as long as it is a material that is not attacked by the electrolyte 12, such as ABS resin or fluororesin. However, the light receiving portion 16a located on the negative electrode 11 side of the battery case 16 is a member that transmits at least a part of visible light or a part of ultraviolet light, for example, a transparent plate made of glass, quartz glass, acrylic, styrene, or the like. It is composed of a transparent film. Of course, the battery case 16 as a whole may be configured by members such as these transparent plates and transparent films. Although the battery case 16 is formed in a box shape in the first embodiment, it may be formed in a polyhedral shape, a disk shape, a cylindrical shape, or the like. The light-receiving portion 16a is configured to transmit light because when the irradiation light reaches the surface of the n-type semiconductor 11c forming the negative electrode 11 in order to promote the photocharge reaction, the irradiation light is absorbed by the battery case. This is to prevent the light energy reaching the surface of the n-type semiconductor portion 11c from being extremely reduced by being reflected.

【0025】(実施例2)正極10を厚さ1mmの多孔
性炭素板に酸素触媒として白金微粒子を担持した構成と
し、かつ電解質12としてレドックスイオン対を含まな
い1mol/1の水酸化カリウム水溶液を用いた以外は
上記実施例1と同様にして光化学2次電池を作製し、こ
れを第二の光化学2次電池とした。本第二の実施例の光
化学2次電池においては、正極10として酸素反応に対
して触媒活性を有する電極を用いたことにより、第一の
実施例の光化学2次電池において電解質12中のレドッ
クスイオン対が果たしていた役割を電解質12中の溶存
酸素等に行なわせる構成とした。本第二の実施例の光化
学2次電池においても、第一の実施例の光化学2次電池
と同様に光により充電が行え、光化学2次電池の動作を
確認できた。
(Embodiment 2) The positive electrode 10 is made of a porous carbon plate having a thickness of 1 mm in which fine platinum particles are supported as an oxygen catalyst, and the electrolyte 12 is a 1 mol / 1 aqueous potassium hydroxide solution containing no redox ion pair. A photochemical secondary battery was produced in the same manner as in Example 1 except that the above was used, and this was used as a second photochemical secondary battery. In the photochemical secondary battery of the second embodiment, the redox ion in the electrolyte 12 in the photochemical secondary battery of the first embodiment is used because the electrode having catalytic activity for oxygen reaction is used as the positive electrode 10. The role of the pair was made to be caused by dissolved oxygen or the like in the electrolyte 12. Also in the photochemical secondary battery of the second embodiment, charging was performed by light as in the photochemical secondary battery of the first embodiment, and the operation of the photochemical secondary battery could be confirmed.

【0026】正極10をなす材料としては、酸素反応に
対する触媒活性が高い点で白金を担持した炭素電極を用
いることが望ましいが、上記実施例1に示した他の正極
材料を用いることもできる。また、電解質12として
は、水酸化カリウムの他に、水酸化ナトリウム、塩化ア
ンモニウム等の塩基や、その他弱酸等の溶液を用いても
よい。また、充電性能は低下するが、硫酸、塩酸等の強
酸やそれら強酸の塩の溶液を電解質として使用すること
もできる。
As the material forming the positive electrode 10, it is desirable to use a carbon electrode supporting platinum because of its high catalytic activity for oxygen reaction, but other positive electrode materials shown in the above Example 1 can also be used. Further, as the electrolyte 12, in addition to potassium hydroxide, a base such as sodium hydroxide or ammonium chloride, or a solution of other weak acid or the like may be used. Although the charging performance is lowered, a solution of a strong acid such as sulfuric acid or hydrochloric acid or a salt of these strong acids can be used as the electrolyte.

【0027】(比較例)負極として、障壁低減用金属層
を設けられておらず、ガリウムリン上に直接コバルトを
接触させた構造の電極を用いた以外は上記第一の実施例
の光化学2次電池と同様の光化学2次電池を作製し、こ
れを比較例の光化学2次電池とした。そして、この比較
例の光化学2次電池の充放電時の正極端子と負極端子と
の間の電圧変化を上記実施例1と同様にして調べた。そ
の結果を図3中に破線で示した。図3中の破線に示した
ように、比較例の光化学2次電池は、上記第一の実施例
の光化学2次電池に比べて光充電される時の電圧の上昇
も少なく、放電時の電気容量も少ないことが分る。
(Comparative Example) The photochemical secondary of the above-mentioned first example except that the negative electrode was not provided with a barrier-reducing metal layer, and an electrode having a structure in which cobalt was directly contacted with gallium phosphide was used. A photochemical secondary battery similar to the battery was produced and used as a photochemical secondary battery of a comparative example. Then, the voltage change between the positive electrode terminal and the negative electrode terminal during charge and discharge of the photochemical secondary battery of this comparative example was examined in the same manner as in Example 1 above. The result is shown by a broken line in FIG. As shown by the broken line in FIG. 3, the photochemical secondary battery of the comparative example has a smaller increase in voltage when photocharged and the electricity generated during discharging as compared with the photochemical secondary battery of the first embodiment. It turns out that the capacity is also small.

【0028】[0028]

【発明の効果】以上説明したように、本発明の光化学2
次電池によれば、光エネルギー→電気化学エネルギーへ
の変換を行って充電することが可能となり、充電器を必
要としない省エネルギー性に優れた光化学2次電池を提
供することができる。また、特に、負極は、n型半導体
上に電気的な接続が得られるように形成され、金属−半
導体界面のエネルギーバンドにおける障壁を低減させる
障壁低減用金属層を有し、該障壁低減用金属層が負極部
材と電気的な接続が得られるように一体に張り合わされ
たものであるので、電気エネルギーの伝達効率を高める
ことができる。また、放電時に、充電時に還元された負
極部材が電解質中に含まれる酸化剤により酸化されるこ
とにより、放電反応が行れ、放電電流として取り出すこ
とができる。さらに、n型半導体と負極部材とを障壁低
減用金属層を介して一体に張り合わせたことにより、従
来の光化学2次電池における負極と光電極とを一体化さ
せることができるので、正極と負極との単純な2極構成
で、光充電が可能となり、電圧調整回路や逆流防止ダイ
オード等の機器が不要になった。また、p−n接合技術
等の高度の製造技術が不要であることから、光化学2次
電池を容易に、大量生産することができる。
As described above, the photochemistry of the present invention 2
According to the secondary battery, it becomes possible to charge by converting light energy into electrochemical energy, and it is possible to provide a photochemical secondary battery excellent in energy saving that does not require a charger. Further, in particular, the negative electrode has a barrier-reducing metal layer that is formed on the n-type semiconductor so as to obtain an electrical connection and that reduces a barrier in the energy band of the metal-semiconductor interface. Since the layers are integrally laminated with the negative electrode member so as to be electrically connected, the efficiency of transmitting electric energy can be increased. Further, at the time of discharging, the negative electrode member reduced at the time of charging is oxidized by the oxidant contained in the electrolyte, so that a discharging reaction is performed and it can be taken out as a discharging current. Further, by integrally bonding the n-type semiconductor and the negative electrode member via the barrier-reducing metal layer, the negative electrode and the photoelectrode in the conventional photochemical secondary battery can be integrated, so that the positive electrode and the negative electrode can be integrated. With a simple two-pole configuration, it becomes possible to perform light charging and eliminates the need for devices such as voltage adjustment circuits and backflow prevention diodes. Further, since a high-level manufacturing technology such as a pn junction technology is not required, the photochemical secondary battery can be easily mass-produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による光化学2次電池の第一の実施例
の概略構成を示した断面図である。
FIG. 1 is a sectional view showing a schematic configuration of a first embodiment of a photochemical secondary battery according to the present invention.

【図2】 図1に示す第一の実施例の光化学2次電池の
外観図を示した斜視図である。
FIG. 2 is a perspective view showing an external view of the photochemical secondary battery of the first embodiment shown in FIG.

【図3】 本発明の第一の実施例の光化学2次電池、及
び負極部材とn型半導体とを直接接触させた構造の負極
を有する比較例の光化学2次電池の充放電時における正
極端子と負極端子との間の電圧の変化を示した図であ
る。
FIG. 3 is a positive electrode terminal of a photochemical secondary battery of a first embodiment of the present invention and a photochemical secondary battery of a comparative example having a negative electrode having a structure in which a negative electrode member and an n-type semiconductor are in direct contact with each other during charging and discharging. It is the figure which showed the change of the voltage between a negative electrode terminal.

【図4】 従来の太陽光蓄電池の等価回路を示したもの
である。
FIG. 4 shows an equivalent circuit of a conventional solar battery.

【図5】 従来の光化学2次電池の概略構成図を示した
ものである。
FIG. 5 is a schematic configuration diagram of a conventional photochemical secondary battery.

【符号の説明】[Explanation of symbols]

10 正極 11 負極 11a 負極部材 11b 障壁低減用金属層 11c n型半導体 12 電解質 13 セパレータ 14 正極端子 15 負極端子 16 電池ケース 16a 受光部(光透過用窓) 10 Positive electrode 11 Negative electrode 11a Negative electrode member 11b Barrier reduction metal layer 11c n-type semiconductor 12 Electrolyte 13 Separator 14 Positive electrode terminal 15 Negative electrode terminal 16 Battery case 16a Light receiving part (light transmitting window)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光透過用窓が設けられた電池ケース内に
正極、負極および電解質を有し、光で充電ができる2次
電池において、 前記負極は、n型半導体の一部に金属−半導体界面にお
けるエネルギー障壁を低減する障壁低減用金属層が設け
られ、かつ該障壁低減用金属層の少なくとも一部に金属
製負極部材が設けられてなる構造を有し、かつ前記電解
質には酸化剤が含有されてなることを特徴とする光化学
2次電池。
1. A secondary battery which has a positive electrode, a negative electrode and an electrolyte in a battery case provided with a light transmitting window and can be charged by light, wherein the negative electrode is a metal-semiconductor part of an n-type semiconductor. A barrier-reducing metal layer for reducing an energy barrier at the interface is provided, and a metal negative electrode member is provided on at least a part of the barrier-reducing metal layer, and the electrolyte contains an oxidizing agent. A photochemical secondary battery characterized by being contained.
JP5230556A 1993-09-16 1993-09-16 Photochemical secondary battery Pending JPH0785895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5230556A JPH0785895A (en) 1993-09-16 1993-09-16 Photochemical secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5230556A JPH0785895A (en) 1993-09-16 1993-09-16 Photochemical secondary battery

Publications (1)

Publication Number Publication Date
JPH0785895A true JPH0785895A (en) 1995-03-31

Family

ID=16909611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5230556A Pending JPH0785895A (en) 1993-09-16 1993-09-16 Photochemical secondary battery

Country Status (1)

Country Link
JP (1) JPH0785895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693306B1 (en) * 2005-05-16 2007-03-13 가부시키가이샤 피코 사이언스 Self-recharge type alkaline battery and method for manufacturing the same
WO2017056326A1 (en) * 2015-10-02 2017-04-06 学校法人工学院大学 Lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693306B1 (en) * 2005-05-16 2007-03-13 가부시키가이샤 피코 사이언스 Self-recharge type alkaline battery and method for manufacturing the same
WO2017056326A1 (en) * 2015-10-02 2017-04-06 学校法人工学院大学 Lithium ion secondary battery
JPWO2017056326A1 (en) * 2015-10-02 2018-11-22 学校法人 工学院大学 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US7122873B2 (en) Hybrid solid state/electrochemical photoelectrode for hyrodrogen production
US4643817A (en) Photocell device for evolving hydrogen and oxygen from water
JP3336528B2 (en) Transparent regenerated photoelectric chemical battery
Sharon et al. Solar rechargeable battery—principle and materials
US4064326A (en) Photo-electrochemical cell containing chalcogenide redox couple and having storage capability
EP0553023B1 (en) Photochargeable air battery
JP3304006B2 (en) Photochemical secondary battery
JP3301454B2 (en) Photochemical secondary battery
US4242423A (en) Optical-charging type half-cell, and photochemical battery using the same
JPH09259942A (en) Photochemically hydrogenated secondary air battery
JPH0785895A (en) Photochemical secondary battery
JP2998765B2 (en) Light air secondary battery
JP3273477B2 (en) Light air secondary battery
JP3025798B2 (en) Photochemical secondary battery and method of manufacturing photochemical secondary battery
Ang et al. Photoelectrochemical systems with energy storage
JPH06215807A (en) Light secondary battery
JP3194448B2 (en) Light air secondary battery
JP3196151B2 (en) Light air secondary battery
JP3306685B2 (en) Sealed type photo-oxygen secondary battery
JP3194449B2 (en) Light air secondary battery
JPS626311B2 (en)
JPH06223889A (en) Light-air secondary battery
JP2511905B2 (en) Optical secondary battery
JPS62259359A (en) Photoelectric secondary cell
JP2615465B2 (en) Photovoltaic secondary battery