JPH0517607B2 - - Google Patents

Info

Publication number
JPH0517607B2
JPH0517607B2 JP58215465A JP21546583A JPH0517607B2 JP H0517607 B2 JPH0517607 B2 JP H0517607B2 JP 58215465 A JP58215465 A JP 58215465A JP 21546583 A JP21546583 A JP 21546583A JP H0517607 B2 JPH0517607 B2 JP H0517607B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
support
recording
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58215465A
Other languages
Japanese (ja)
Other versions
JPS60107727A (en
Inventor
Koichi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21546583A priority Critical patent/JPS60107727A/en
Publication of JPS60107727A publication Critical patent/JPS60107727A/en
Publication of JPH0517607B2 publication Critical patent/JPH0517607B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は広帯域の信号記録再生に適した磁気記
録媒体に関する。 従来例の構成とその問題点 回転磁気ヘツドによるヘリカル走査方式による
音声,画像の記録再生を行う技術は磁気記録の中
でも最も高密度記録化が進んでいる。 更に記録密度を高めていくには、新しい磁気記
録媒体と磁気ヘツドの組み合せが必要であるが、
本質的に信号処理の面から、最短記録波長は短か
くなるが、信号の周波数帯域としてはおよそ最短
記録波長の約10倍の記録波長まで望まれるので、
磁気記録媒体の設計もこの点に配慮が必要不可欠
となる。 従来の磁気記録媒体が本質的に短波長域の特性
限界を有していることは良く知られている事実で
ある。これは従来の磁気記録媒体は媒体長手方向
の残留磁化を利用するものであり、記録が短波長
になるほど媒体内部の自己減磁界が増大し、更に
媒体内部エネルギーが最小になるよう磁化ベクト
ルの回転が生じ、それらが急激な再生出力低下と
して現れるためである。 自己減磁界の影響をできる限り小さくするため
の最も一般的な方法は、自己減磁界に打ち勝つよ
うに媒体の保磁力を大きくすることである。しか
しこの方法は媒体厚さ方向への磁化浸透を減ずる
ように働くため長波長出力の低下を招くか、或い
は磁束密度の非常に大きい消去,記録ヘツドが要
求されることになり、消費電力の増大につながり
媒体コストの上昇と共に、ヘツドの高価格化をき
たす。 そこで支持体上に比較的低保磁力の第1磁性
層,例えばγ−Fe2O3針状粒子を結合剤と共に塗
布配向乾燥した層を形成し、その上に第2磁性
層,例えばγ−Fe2O3針状粒子をCrO2に置き換え
た層を形成する二層構造の磁気記録媒体が考案さ
れ、既に実用に供されている。 最近では塗布型磁性層上に強磁性金属薄膜層を
蒸着した二層構造のものもオーデイオ用途に実用
化されている。 この構造によれば、短波長側の特性改善は若干
認められるが、基本的に長手磁化に頼つているた
め依然として広帯域媒体としてはまだまだ不十分
であつた。 その他にも、実用化はされていないが、二層構
造体による改良提案がなされている。 例えば特開昭54−145105号公報では、主たる磁
気異方性軸が支持体に平行な第1磁性層上に、支
持体面に垂直な方向に磁気異方性軸を有する第2
磁性体を形成し、保磁力を限定することでヘツド
の作る磁界に適合化を図ることが提案されている
が、基本的に情報の担い手が第1磁性体層であ
り、自己減磁界の大きい長手磁化であることから
短波長特性はやはり十分ではない。 特公昭40−5351号公報でも塗布磁性層で類似の
組み合わせが提案されているが、垂直配向時に針
状粒子を核にした突起で表面が荒れるため、これ
によるスペーシングロスが生じて、結果的に短波
長の改善は十分行え得ない。 発明の目的 本発明は上記従来の問題点を解消するもので、
広帯域で且つリング型磁気ヘツドでの記録再生特
性にすぐれた磁気記録媒体を提供することであ
る。 発明の構成 本発明は支持体上に、その支持体の面内方向に
磁化容易軸を有すると共にその磁化容易軸が等方
的である第1の磁性層と、その第1の磁性層上に
前記支持体面と垂直な方向に磁化容易軸を有する
強磁性金属薄膜から成る第2の磁性層とを備えた
磁気記録媒体であり、広帯域の信号記録再生特性
に優れたものである。 実施例の説明 以下本発明の実施例について、図面を参照しな
がら説明する。 図は本発明の実施例における磁気記録媒体の基
本構成を示す図である。図において、1は支持体
で、支持体1の主面上には支持体1の面内方向に
磁化容易軸を有すると共に、その磁化容易軸が等
方的である第1の磁性層2が配されている。第1
の磁性層2上には支持体1の面と垂直な方向に磁
化容易軸を有する強磁性金属薄膜からなる第2の
磁性層3が配されている。 本発明は前記した従来の媒体の欠点に鑑みなさ
れたもので、特に高密度記録時に、トラツク幅を
狭くすると増えるノイズが、媒体構成要因の異方
性に原因があり、特に第1の磁性層が支配的であ
ることを尽きとめ本発明を完成させたものであ
る。 本発明に用いることの出来る支持体としては、
ポリエチレンテレフタレート等のポリエステル
類,ポリプロピレン等のポリオレフイン類,セル
ロースジアセテート,ニトロセルロース等のセル
ロース誘導体,ポリカーボネート,ポリ塩化ビニ
ル,芳香族ポリアミド,ポリイミド等が挙げられ
る。 本発明に用いることの第1の磁性層は等方的で
あれば良く、強磁性微粒子を分散固定した樹脂層
か酸化鉄磁性薄膜のいずれかが適している。尚こ
こでいう等方的の意味は磁気エネルギー的にみ
て、テープ長手、と幅方向を代表させて評価した
時、両者の差が20%以内であることとする。それ
以上差があるとノイズが許容範囲を越えるからで
ある。 前者の樹脂層は、磁気塗料を公知の塗布材によ
り塗布乾燥したものであつて、且つ磁気的に等方
的であるように、回転磁界処理等の処理をした、
厚みは2μm程度あれば充分である。飽和磁束密度
Bsは1200〔G〕から4000〔G〕,保磁力は500〔O″e〕
から1500〔O″e〕の範囲にあれば良い。第1の磁
性層の構成はCoをドープしたγ−Fe2O3微粒子や
CrO2微粒子,合金微粒子等の磁性粉末の中から
選んだ磁性粉末を、塩化ビニル系共重合体,繊維
素系樹脂,ブチラール系樹脂,ポリウレタン系樹
脂等から選ばれた1種又は2種以上の結合剤,溶
剤,希釈剤,分散剤,と必要に応じて潤滑剤,研
磨剤を加えて得られた磁気塗料は極力分散度をあ
げて支持体上に例えばグラビアコータ,リバース
ロースコータ等に塗布固定し、回転磁界処理し、
充分乾燥させて得られる。 第1の磁性層の第2の構成例としてはγ−
Fe2O3かFe3O4のいずれかの強磁性薄膜が挙げら
れる。 これらの薄膜の形成法は、酸素を含む真空中で
の反応性蒸着,反応性イオンプレーテイング,反
応性スパツタリング法のうちのいずれかの方法単
独或いは、熱処理との組み合わせによる。 第1の磁性層上に配される支持体面と垂直な方
向に磁化容易軸を有する強磁性金属薄膜からなる
第2の磁性層は、Co−Cr,Co−V,Co−Mo,
Co−W,Co−Ru,Co−Ni−Cr等のCo系合金が
適しており、保磁力は、第1の磁性層と同一かそ
れ以上であることが好ましい。飽和磁束密度Bs
は2500〔G〕から4500〔G〕,厚みは0.05μmから
0.2μm好ましくは0.05μmから0.1μmの範囲に設定
される。かかるCo系合金の薄膜の形成法は電子
ビーム蒸着法,イオンプレーテイング法,スパツ
クリング法,無電解メツキ法等が挙げられる。 尚本発明の磁気記録媒体は磁気テープを中心に
詳説するものの、他の形態,例えばデイスク,シ
ート状での実施を拒むものではない。 本発明の磁気記録媒体は磁気ヘツドの発生する
磁界からみて、磁気ヘツドに近い側の短波長での
自己減磁損失の殆んどない垂直方向に磁化させる
第2の磁性層があり、遠い位置には中波長から長
波長に適して等方的な第1の磁性層があるため記
録効率が良い。ここで波長域区分は便宜的なもの
で、短波長域を1μm以下,中波長域を1〜3μm,
長波長域を3μm以上の記録波長でわけているが、
あくまで目安である。 第1の磁性層は等方的であるからヘツド磁界の
水平成分,垂直成分によく順応するので記録効率
は従来知られている2層構成の第1磁性層のいず
れよりも良好である。 磁気記録媒体上の残留磁化により、再生磁気ヘ
ツドを励磁する場合を考慮すると、第1の磁性層
の発生する磁束は第2の磁性層が垂直方向に磁化
容易軸のある磁石の集団であるため、磁気ヘツド
に向う磁界を相互作用により強め合うので、再生
効率も良好となる。 これまでは記録,再生の信号出力面について述
べたが、磁気記録媒体としては、ノイズの低いこ
とも極めて重要である。 特にトラツク幅が狭くなると、ノイズが低くな
いと、システムとして確保すべき信号対雑音比
(以後S/Nで示す)を得ることができなくなる
が、従来の媒体の第1の磁性層の異方性が磁気的
な不均一性を生むために、記録波長が短かいとこ
ろで、ノスズが急激に大きくなることが本発明で
は全くみられないので、良好なS/Nが得られる
のである。 又、第2の磁性層の変調ノイズも磁性層厚みが
薄いので実用上問題にならないので、全体として
も狭トラツク化にも適した媒体といえる。 以下に本発明のさらに具体的な実施例を説明す
る。 本発明に基ずく構造の磁気記録媒体の試作例と
比較例との特性を表に示した。 製法については後述した方法によつた。 S/Nは夫々の媒体を8mm幅の磁気テープとし
て試作したビデオテープレコーダで実測し、色信
号と輝度信号の両者で比較した。トラツク幅は
10μmとし、磁気ヘツドはギヤツプ長0.26μmのア
モルフアス合金ヘツドを用い、磁気テープとの相
対速度は3.8m/secで色信号周波数は0.8MHz,輝
度信号周波数は5MHzとした場合である。 支持体は厚み8μm表面粗さ100Åの芳香族ポリ
アミドを用いた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a magnetic recording medium suitable for wideband signal recording and reproduction. Conventional configurations and their problems The technology for recording and reproducing audio and images using a helical scanning method using a rotating magnetic head is the most advanced type of magnetic recording in terms of high-density recording. In order to further increase the recording density, a new combination of magnetic recording medium and magnetic head is required.
Essentially, from the standpoint of signal processing, the shortest recording wavelength is shortened, but the desired signal frequency band is approximately 10 times the shortest recording wavelength.
It is essential to take this point into consideration when designing magnetic recording media. It is a well-known fact that conventional magnetic recording media inherently have characteristic limits in the short wavelength region. This is because conventional magnetic recording media utilize residual magnetization in the longitudinal direction of the medium, and the shorter the recording wavelength, the greater the self-demagnetizing field inside the medium, and the rotation of the magnetization vector to minimize the internal energy of the medium. This is because they appear as a sudden drop in reproduction output. The most common way to minimize the effect of the self-demagnetizing field is to increase the coercive force of the medium to overcome the self-demagnetizing field. However, this method works to reduce magnetization penetration in the direction of the medium thickness, resulting in a decrease in long wavelength output, or requires erasing and recording heads with extremely high magnetic flux density, resulting in increased power consumption. This leads to an increase in media costs and an increase in the price of the head. Therefore, a first magnetic layer having a relatively low coercive force, such as a layer in which acicular particles of γ-Fe 2 O 3 are coated and oriented and dried together with a binder, is formed on the support, and a second magnetic layer, such as γ-Fe 2 O 3, is formed on the support. A two-layer magnetic recording medium in which Fe 2 O 3 acicular particles are replaced with CrO 2 has been devised and is already in practical use. Recently, a two-layer structure in which a ferromagnetic metal thin film layer is deposited on a coated magnetic layer has also been put into practical use for audio applications. According to this structure, some improvement in characteristics on the short wavelength side was observed, but it was still insufficient as a broadband medium because it basically relied on longitudinal magnetization. Other improvements have been proposed using a two-layer structure, although they have not been put into practical use. For example, in JP-A-54-145105, a first magnetic layer whose main magnetic anisotropy axis is parallel to the support, and a second magnetic layer whose main magnetic anisotropy axis is perpendicular to the support surface.
It has been proposed to adapt the magnetic field produced by the head by forming a magnetic material and limiting the coercive force, but basically the information carrier is the first magnetic material layer, and the self-demagnetizing field is large. Since the magnetization is longitudinal, the short wavelength characteristics are still not sufficient. A similar combination of coated magnetic layers has been proposed in Japanese Patent Publication No. 40-5351, but when vertically aligned, the surface is roughened by protrusions with needle-like particles as nuclei, resulting in spacing loss. Therefore, it is not possible to sufficiently improve short wavelengths. Purpose of the invention The present invention solves the above-mentioned conventional problems.
An object of the present invention is to provide a magnetic recording medium that has a wide band and has excellent recording and reproducing characteristics with a ring-type magnetic head. Structure of the Invention The present invention includes a first magnetic layer on a support, which has an easy axis of magnetization in the in-plane direction of the support and whose easy axis of magnetization is isotropic, and a first magnetic layer on the first magnetic layer. This magnetic recording medium includes a second magnetic layer made of a ferromagnetic metal thin film having an axis of easy magnetization perpendicular to the support surface, and has excellent broadband signal recording and reproducing characteristics. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The figure is a diagram showing the basic configuration of a magnetic recording medium in an embodiment of the present invention. In the figure, 1 is a support, and on the main surface of the support 1 there is a first magnetic layer 2 having an easy axis of magnetization in the in-plane direction of the support 1 and whose easy axis of magnetization is isotropic. It is arranged. 1st
A second magnetic layer 3 made of a ferromagnetic metal thin film having an axis of easy magnetization in a direction perpendicular to the surface of the support 1 is disposed on the magnetic layer 2 . The present invention was developed in view of the above-mentioned drawbacks of conventional media. Particularly during high-density recording, the noise that increases when the track width is narrowed is caused by the anisotropy of the media's constituent factors, particularly in the first magnetic layer. The present invention has been completed by eliminating the predominance of Supports that can be used in the present invention include:
Examples include polyesters such as polyethylene terephthalate, polyolefins such as polypropylene, cellulose derivatives such as cellulose diacetate and nitrocellulose, polycarbonate, polyvinyl chloride, aromatic polyamide, and polyimide. The first magnetic layer used in the present invention only needs to be isotropic, and is suitably either a resin layer in which fine ferromagnetic particles are dispersed and fixed, or an iron oxide magnetic thin film. Note that isotropic here means that, in terms of magnetic energy, when the longitudinal and width directions of the tape are evaluated representatively, the difference between the two is within 20%. This is because if the difference is larger than that, the noise will exceed the allowable range. The former resin layer is made by applying and drying a magnetic paint using a known coating material, and is treated with a rotating magnetic field or the like so that it is magnetically isotropic.
A thickness of about 2 μm is sufficient. Saturation magnetic flux density
Bs is 1200 [G] to 4000 [G], coercive force is 500 [O″e]
to 1500 [O″e].The first magnetic layer is composed of Co-doped γ-Fe 2 O 3 fine particles and
Magnetic powder selected from magnetic powders such as CrO2 fine particles and alloy fine particles is mixed with one or more types selected from vinyl chloride copolymers, cellulose resins, butyral resins, polyurethane resins, etc. The magnetic paint obtained by adding a binder, a solvent, a diluent, a dispersant, and if necessary a lubricant and an abrasive is coated onto a support using a gravure coater, reverse throw coater, etc., with the degree of dispersion as high as possible. Fixed, processed by rotating magnetic field,
Obtained by thorough drying. As a second configuration example of the first magnetic layer, γ-
Examples include ferromagnetic thin films of either Fe 2 O 3 or Fe 3 O 4 . The method for forming these thin films is one of reactive vapor deposition in a vacuum containing oxygen, reactive ion plating, and reactive sputtering, either alone or in combination with heat treatment. The second magnetic layer made of a ferromagnetic metal thin film having an axis of easy magnetization in the direction perpendicular to the support surface disposed on the first magnetic layer is Co-Cr, Co-V, Co-Mo, Co-Cr, Co-V, Co-Mo,
Co-based alloys such as Co-W, Co-Ru, and Co-Ni-Cr are suitable, and the coercive force is preferably the same as or greater than that of the first magnetic layer. Saturation magnetic flux density Bs
is 2500 [G] to 4500 [G], thickness is from 0.05μm
It is set to 0.2 μm, preferably in the range of 0.05 μm to 0.1 μm. Examples of methods for forming such a Co-based alloy thin film include electron beam evaporation, ion plating, spackle, and electroless plating. Although the magnetic recording medium of the present invention will be described in detail with a focus on a magnetic tape, implementation in other forms, such as a disk or a sheet, is not prohibited. The magnetic recording medium of the present invention has a second magnetic layer that is magnetized in the perpendicular direction, with almost no self-demagnetization loss at short wavelengths near the magnetic head, when viewed from the magnetic field generated by the magnetic head; has a first magnetic layer that is isotropic and suitable for medium to long wavelengths, and therefore has good recording efficiency. The wavelength range classification here is for convenience; the short wavelength range is 1 μm or less, the medium wavelength range is 1 to 3 μm, and
The long wavelength range is divided into recording wavelengths of 3 μm or more,
This is just a guideline. Since the first magnetic layer is isotropic, it adapts well to the horizontal and vertical components of the head magnetic field, so the recording efficiency is better than any of the conventionally known first magnetic layers having a two-layer structure. Considering the case where the reproducing magnetic head is excited by the residual magnetization on the magnetic recording medium, the magnetic flux generated by the first magnetic layer is due to the fact that the second magnetic layer is a group of magnets with easy magnetization axes in the perpendicular direction. Since the magnetic fields toward the magnetic head are strengthened by interaction, the reproduction efficiency is also improved. So far, we have talked about the signal output side for recording and reproduction, but low noise is also extremely important for magnetic recording media. In particular, when the track width becomes narrower, it becomes impossible to obtain the signal-to-noise ratio (hereinafter referred to as S/N) required for the system unless the noise is low. In the present invention, there is no sudden increase in the noise density at short recording wavelengths due to magnetic non-uniformity, and therefore a good S/N ratio can be obtained. Moreover, the modulation noise of the second magnetic layer does not pose a practical problem because the thickness of the magnetic layer is thin, so that the medium as a whole is suitable for narrowing the track. More specific examples of the present invention will be described below. The characteristics of a prototype magnetic recording medium having a structure based on the present invention and a comparative example are shown in the table. The manufacturing method was as described below. The S/N was measured using a prototype video tape recorder using an 8 mm wide magnetic tape for each medium, and compared for both color signals and luminance signals. The track width is
10 μm, the magnetic head is an amorphous alloy head with a gap length of 0.26 μm, the relative speed to the magnetic tape is 3.8 m/sec, the color signal frequency is 0.8 MHz, and the luminance signal frequency is 5 MHz. The support was made of aromatic polyamide with a thickness of 8 μm and a surface roughness of 100 Å.

【表】【table】

【表】 前述の表に示した磁気テープの製法について簡
単に説明する。 平均250Åの球状微粒子からなる磁性粉末を
80重量部(以下単に「部」と記す)塩化ビニ
ル・酢酸ビニル・ビニルアルコール共重合体12
部,アクリロニトリル・ブタジエン共重合体8
部,シクロヘキサノン・メチルイソブチルケト
ン混合溶剤(混合比1:1)100部から成る塗
料成分をボールミル中で72時間混合分散させて
磁気塗料を調製し、グラビアコータで夫々乾燥
時の厚みが所定の厚みになるよう塗布,乾燥し
た後、等方的な磁性がえられるままで回転磁界
処理し、80℃のロールによるロール圧着法でカ
レンダ処理し(ロール圧力は88Kg/cm2)平均表
面粗さ80Å,最大粗さ500Åに制御した。 支持体であるフイルム表面をAr0.1Torr,
500V,1Aの交流グロー放電(周波数60Hz)で
2秒間処理し、直径30cmの230℃に表面温度に
保持した誘導加熱式の熱ローラに沿わせて移動
させながらFeをターゲツトとして2極スパツ
タ法によりγ−Fe2O3薄膜を形成した。熱ロー
ラとターゲツトの至近距離は6.6cmで放電ガス
は、Arが5×10-3Torr,H2が5×10-4Torrの
混合気体で、放電のタイプは13.56MHzの高周
波放電で、投入電力は1.6KW,反射電力は
0.03KWであつた。 支持体を表面温度50℃に保持した直径50cmの
ローラに沿つて移動させて、ローラの真下30cm
に置いた電子ビーム蒸発源よりFeを620Å/
secで蒸発させ、酸素分圧1.3×10-4Torrで反応
蒸着した。 支持体をと同一の表面処理し、で用いた
装置を改造したCo−Crを電子ビーム蒸着した。
即ち、直径30cmの250℃に表面温度に保持した
誘導加熱式の熱ローラに沿わせて支持体を移動
させ、前記熱ローラの真下29cmに置いた電子ビ
ーム蒸発源よりCo−Crを1060Å/secで蒸発さ
せ、熱ローラ表面から2cm離れた位置に配置し
た、2cm幅のスリツトを通過する蒸気流で垂直
蒸着を行つた。 真空度は8×10-7Torrであつた。 で用いた装置で、ターゲツトの材料を変え
て2極スパツタによりそれぞれ所定の薄膜を形
成した。但し熱ローラの表面温度は150℃で、
放電ガスはAr6×10-4Torr,H21×10-4Torr
で、13.56MHzの高周波で投入電力は1.4KW,
反射電力は0.02KWであつた。 で用いた装置で酸素分圧5×10-5Torrで
最小入射角が41゜になるマスクを用いてCo−Ni
を電子ビームで加熱気化させ斜め蒸着した。
,で用いた装置でFeを斜め蒸着し、磁気
エネルギーの長手と幅方向の差が40%になる膜
を形成した。 上記より明らかなように本発明の磁気記録媒体
は、輝度信号,色信号共に優れたS/Nを示し、
特に短波長である輝度信号では実用の目安がおよ
そ45〜46dBといわれていることとあわせ考えて
も、ずば抜けており、複製する余裕すらあり、録
画,録音での高密度記録に格好の媒体といえる。 発明の効果 本発明の磁気記録媒体は、第1の磁性層を等方
的な性質にして、第2の磁性層を支持体面と垂直
な方向に磁化容易軸を有する強磁性金属薄膜で形
成することで、雑音を下げ、信号出力をあげ、結
果的にS/Nを飛躍的に向上させたもので、広帯
域の信号記録再生に適し、信号の種類を問わず、
高密度記録を可能にする。
[Table] The manufacturing method of the magnetic tape shown in the above table will be briefly explained. Magnetic powder consisting of fine spherical particles with an average size of 250Å
80 parts by weight (hereinafter simply referred to as "parts") Vinyl chloride/vinyl acetate/vinyl alcohol copolymer 12
Part, acrylonitrile-butadiene copolymer 8
A magnetic paint was prepared by mixing and dispersing paint components consisting of 100 parts of a mixed solvent of cyclohexanone and methyl isobutyl ketone (mixing ratio 1:1) for 72 hours in a ball mill, and coated with a gravure coater to a specified thickness when dried. After coating and drying, it was treated with a rotating magnetic field while maintaining isotropic magnetism, and then calendered using a roll pressure method using rolls at 80°C (roll pressure was 88 kg/cm 2 ) to give an average surface roughness of 80 Å. , the maximum roughness was controlled to 500 Å. The surface of the film that is the support is Ar0.1Torr,
It was treated with 500 V, 1 A AC glow discharge (frequency 60 Hz) for 2 seconds, and Fe was targeted by the bipolar sputtering method while moving along an induction heated heated roller with a diameter of 30 cm and whose surface temperature was maintained at 230 °C. A γ-Fe 2 O 3 thin film was formed. The closest distance between the heat roller and the target was 6.6 cm, and the discharge gas was a mixture of Ar and H2 of 5 x 10 -3 Torr and 5 x 10 -4 Torr, and the discharge type was a high frequency discharge of 13.56 MHz. Power is 1.6KW, reflected power is
It was 0.03KW. Move the support along a 50cm diameter roller whose surface temperature is 50℃, and place it 30cm directly below the roller.
Fe was deposited at 620Å/
sec and reactive vapor deposition at an oxygen partial pressure of 1.3×10 −4 Torr. The support was subjected to the same surface treatment as in the above, and Co-Cr was electron beam evaporated using a modified apparatus.
That is, the support was moved along an induction-heated heated roller with a diameter of 30 cm and whose surface temperature was maintained at 250°C, and Co-Cr was evaporated at 1060 Å/sec from an electron beam evaporation source placed 29 cm directly below the heated roller. Vertical deposition was performed with a vapor flow passing through a 2 cm wide slit placed 2 cm from the heated roller surface. The degree of vacuum was 8×10 -7 Torr. Using the same apparatus used in 2003, a predetermined thin film was formed using bipolar sputtering with different target materials. However, the surface temperature of the heat roller is 150℃,
Discharge gas is Ar6×10 -4 Torr, H 2 1×10 -4 Torr
The input power is 1.4KW at a high frequency of 13.56MHz.
The reflected power was 0.02KW. Using the equipment used in
was vaporized by heating with an electron beam and deposited obliquely.
By diagonally depositing Fe using the equipment used in , we formed a film with a 40% difference in magnetic energy between the longitudinal and width directions. As is clear from the above, the magnetic recording medium of the present invention exhibits excellent S/N for both the luminance signal and the color signal,
Considering that the practical standard for luminance signals, which are particularly short wavelengths, is said to be approximately 45 to 46 dB, this is by far the best, and there is even room for duplication, making it an ideal medium for high-density recording. I can say that. Effects of the Invention In the magnetic recording medium of the present invention, the first magnetic layer is made isotropic, and the second magnetic layer is formed of a ferromagnetic metal thin film having an axis of easy magnetization in a direction perpendicular to the support surface. This reduces noise and increases signal output, resulting in a dramatic improvement in S/N.It is suitable for wideband signal recording and playback, regardless of the type of signal.
Enables high-density recording.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例における磁気記録媒体を示
す断面図である。 1……支持体、2……第1の磁性層、3……第
2の磁性層。
The figure is a sectional view showing a magnetic recording medium in an example of the present invention. DESCRIPTION OF SYMBOLS 1... Support body, 2... First magnetic layer, 3... Second magnetic layer.

Claims (1)

【特許請求の範囲】[Claims] 1 支持体上に、その支持体の面内方向に磁化容
易軸を有すると共にその磁化容易軸が等方的であ
る第1の磁性層と、その第1の磁性層上に前記支
持体面と垂直な方向に磁化容易軸を有する強磁性
金属薄膜から成る第2の磁性層とを備えたことを
特徴とする磁気記録媒体。
1. A first magnetic layer on a support, which has an easy axis of magnetization in the in-plane direction of the support and whose easy axis of magnetization is isotropic, and a magnetic layer perpendicular to the surface of the support on the first magnetic layer. a second magnetic layer made of a ferromagnetic metal thin film having an axis of easy magnetization in the direction of the magnetic recording medium.
JP21546583A 1983-11-15 1983-11-15 Magnetic recording medium Granted JPS60107727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21546583A JPS60107727A (en) 1983-11-15 1983-11-15 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21546583A JPS60107727A (en) 1983-11-15 1983-11-15 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60107727A JPS60107727A (en) 1985-06-13
JPH0517607B2 true JPH0517607B2 (en) 1993-03-09

Family

ID=16672821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21546583A Granted JPS60107727A (en) 1983-11-15 1983-11-15 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60107727A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297126A (en) * 1985-10-24 1987-05-06 Matsushita Electric Ind Co Ltd Magnetic recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634A (en) * 1979-06-11 1981-01-06 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS5868234A (en) * 1981-10-16 1983-04-23 Hitachi Ltd Composite magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634A (en) * 1979-06-11 1981-01-06 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS5868234A (en) * 1981-10-16 1983-04-23 Hitachi Ltd Composite magnetic recording medium

Also Published As

Publication number Publication date
JPS60107727A (en) 1985-06-13

Similar Documents

Publication Publication Date Title
US4486496A (en) Magnetic recording medium
US4666754A (en) Magnetic recording medium
EP0573026A1 (en) Magnetic recording medium and method for producing the same
US4604293A (en) Process for producing magnetic recording medium
JPH0517607B2 (en)
JPH03256223A (en) Magnetic transfering method
US4722862A (en) Magnetic recording medium
US20060141294A1 (en) Magnetic recording medium
JP2605803B2 (en) Magnetic recording media
US20010050829A1 (en) Magnetic recording and reproducing system including a ring head of materials having different saturation flux densities
JPS60143426A (en) Magnetic recording medium
JPS6194239A (en) Preparation of magnetic recording medium
JPH0746417B2 (en) Magnetic recording medium
JPH02270125A (en) Magnetic recording medium
JPH0473215B2 (en)
JPS62102414A (en) Magnetic recording medium
JPS6267728A (en) Production of magnetic recording medium
JPH07254139A (en) Magnetic recording medium and transfer method
JPH08129740A (en) Magnetic recording medium, manufacture and manufacturing device therefor
JPH0536053A (en) Magnetic recording medium and production thereof
JPH09128751A (en) Production of magnetic recording medium
JPH0223530A (en) Production of magnetic recording medium
JPS62120621A (en) Magnetic recording medium
JP2004039078A (en) Magnetic recording medium
JPH054724B2 (en)