JPH0223530A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0223530A
JPH0223530A JP17331888A JP17331888A JPH0223530A JP H0223530 A JPH0223530 A JP H0223530A JP 17331888 A JP17331888 A JP 17331888A JP 17331888 A JP17331888 A JP 17331888A JP H0223530 A JPH0223530 A JP H0223530A
Authority
JP
Japan
Prior art keywords
magnetic recording
vapor deposition
electron beam
recording medium
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17331888A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17331888A priority Critical patent/JPH0223530A/en
Publication of JPH0223530A publication Critical patent/JPH0223530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording layer which is isotropic and has excellent C/N by forming the magnetic recording layer on a high-polymer film by electron beam vapor deposition after cluster ion vapor deposition. CONSTITUTION:After the surface of the high-polymer film 1 is subjected to the cluster ion beam vapor deposition by diagonal incidence, the magnetic recording layer 2 is formed on the nearly perpendicular components thereon by the electron beam vapor deposition. Uniform nuclear formation is executed on the high-polymer film in this way and the noises arising from the nonuniformity by charge particles are decreased; in addition, the effect of increasing the coercive force by the nuclear formation is maintained even at the time of the electron beam vapor deposition of the nearly perpendicular components. The medium which has less noises while the medium is isotropic is thus formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、強磁性金属薄膜を磁気記録層とする磁気記録
媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a magnetic recording medium using a ferromagnetic metal thin film as a magnetic recording layer.

従来の技術 従来、広く使用されている磁気記録媒体は磁性微粉末と
高分子結合剤とを主体とする磁性塗料を、高分子フィル
ム等の非磁性支持体上に塗布、乾燥して磁性層を形成し
た塗布型の磁気記録媒体である。これに比し、Co、C
o−Ni等の強磁性金属を真空蒸着法、スパッタリング
等により、非磁性支持体上に、磁気記録層として形成す
る金属薄膜型の磁気記録媒体は、短波長出力が大きくで
きることから、今後の高密度磁気記録を担う媒体として
注目されている〔例えば、アイイーイーイー トランザ
クシッンズ オン マグネティクス (IEEETRA
NSACTIONS ON MAGNETIC8)VO
I−MAG−21、JE3.P、P 1217〜122
0 (1985) )。
Conventional technology Conventionally, widely used magnetic recording media are made by coating a magnetic coating mainly consisting of magnetic fine powder and a polymer binder on a non-magnetic support such as a polymer film and drying it to form a magnetic layer. This is a coating-type magnetic recording medium. In comparison, Co, C
Metal thin film magnetic recording media, in which a ferromagnetic metal such as o-Ni is formed as a magnetic recording layer on a non-magnetic support by vacuum evaporation, sputtering, etc., are expected to have high output in the future because they can produce large output at short wavelengths. It is attracting attention as a medium for density magnetic recording [for example, IEETRA
NSACTIONS ON MAGNETIC8) VO
I-MAG-21, JE3. P, P 1217-122
0 (1985)).

しかしながら、この種の金属薄膜型の磁気記録媒体にお
いては、CO単体、Co−Ni等の合金を単に非磁性支
持体上に、真空蒸着しただけでは、十分な大きさの抗磁
力Haを有する磁気記録層を得ることは困難である。こ
のような金属薄膜型磁気記録媒体で、大きなHaを得る
ことの出来る方法として、斜め蒸着法が知られている〔
特公昭41−19389号公報〕。
However, in this type of metal thin film type magnetic recording medium, simply vacuum-depositing CO alone or an alloy such as Co-Ni on a non-magnetic support cannot produce a magnetic recording medium with a sufficiently large coercive force Ha. It is difficult to obtain a recording layer. An oblique evaporation method is known as a method that can obtain a large amount of Ha in such metal thin film magnetic recording media [
Special Publication No. 41-19389].

発明が解決しようとする課題 しかしながら、斜め蒸着法では、蒸着効率が低いといっ
た問題の他に、異方性が非磁性基板の長手方向につくた
め、磁気ディスクとして用いた時、高密度記録特性を十
分発揮させることができないといった課題があり、改善
が望まれていた。
Problems to be Solved by the Invention However, in the oblique evaporation method, in addition to the problem of low evaporation efficiency, anisotropy occurs in the longitudinal direction of the nonmagnetic substrate, making it difficult to achieve high-density recording characteristics when used as a magnetic disk. There were issues such as not being able to perform to the fullest, and improvements were desired.

本発明は上記した事情に鑑みなされたもので、等方的で
優れたC/Hの磁気記録層を高速で得ることの出来る磁
気記録媒体の製造方法を提供するものである。
The present invention has been made in view of the above-mentioned circumstances, and provides a method for manufacturing a magnetic recording medium that can produce an isotropic and excellent C/H magnetic recording layer at high speed.

課題を解決するための手段 上記した課題を解決するため、本発明の磁気記録媒体の
製造方法は、高分子フィノ1/ム上に斜め入射でクラス
ターイオンビーム蒸着を行った後、垂直に近い成分で電
子ビーム蒸着して磁気記録層を形成するようにしたもの
である。
Means for Solving the Problems In order to solve the above-mentioned problems, the method for manufacturing a magnetic recording medium of the present invention involves performing cluster ion beam evaporation on a polymer finomum with oblique incidence, and then depositing near-perpendicular components. The magnetic recording layer is formed by electron beam evaporation.

作  用 本発明の磁気記録媒体の製造方法は上記した構成により
、高分子フィルム上に均一な核形成が行われ荷電粒子に
よる不均一性から生じる雑音も少なく、なおかつ上記核
形成による保磁力増大効果が垂直に近い成分の電子ビー
ム蒸着時にも維持され、等方的でありながら雑音の少な
い媒体を製造できることになる。
Effect: Due to the above-described structure, the method for manufacturing a magnetic recording medium of the present invention allows uniform nucleation to occur on the polymer film, reduces noise caused by non-uniformity due to charged particles, and has an effect of increasing coercive force due to the nucleation. is maintained even during electron beam evaporation with a nearly vertical component, making it possible to manufacture an isotropic medium with low noise.

実施例 以下、図面を参照しながら本発明の実施例について説明
する。第1図は本発明の製造方法により製造する磁気記
録媒体の拡大断面図である。第11図で、1はポリエチ
レンテレフタレート、ポリエチレンナフタレート、ホリ
フェニレンサルファイド、ポリエーテルエーテルケトン
、ポリアミド。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an enlarged sectional view of a magnetic recording medium manufactured by the manufacturing method of the present invention. In FIG. 11, 1 is polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polyether ether ketone, and polyamide.

ポリイミド等の高分子フィルムで必要に応じて水溶性高
分子のミミズ状下塗り層や、無機微粒子や樹脂粒子を配
した微粒子塗布層を配したものでもよい。2はクラスタ
ーイオンビーム蒸着層で3は垂直に近い成分で電子ビー
ム蒸着した磁気記録層である。2はTi、Cr、Go、
SL等の非磁性層か、3と同じCo−Ni 、Co−T
 i 、Co−Go 、Co−8i 、Co −Cr 
A polymer film such as polyimide may be provided with a worm-like undercoat layer of a water-soluble polymer or a fine particle coating layer containing inorganic fine particles or resin particles, if necessary. 2 is a cluster ion beam deposited layer, and 3 is a magnetic recording layer deposited with an electron beam with nearly perpendicular components. 2 is Ti, Cr, Go,
Non-magnetic layer such as SL, Co-Ni, Co-T same as 3
i, Co-Go, Co-8i, Co-Cr
.

Go−0,Co−Ni−0等の強磁性金属薄膜のいずれ
かで、クラスターイオンビーム蒸着で入射角はC/Nよ
り6o度以上、好ましくはSO度以上の斜め蒸着を行い
、等方性を得るためには、強磁性金属薄膜の時は、3の
膜厚の尾〜%が好ましい。4は保護層でSio2膜、カ
ーボン膜、パーフルオロポリエーテル、脂肪酸等を適宜
組み合わせればよい。尚本発明は磁気ディスクが望まし
いが、磁気テープに用いてもよいのは勿論である。
A ferromagnetic metal thin film such as Go-0 or Co-Ni-0 is obliquely deposited using cluster ion beam evaporation at an incident angle of at least 6 degrees, preferably at least SO degrees, from C/N to obtain isotropic properties. In order to obtain this, in the case of a ferromagnetic metal thin film, a film thickness of ~3% is preferable. 4 is a protective layer which may be appropriately combined with Sio2 film, carbon film, perfluoropolyether, fatty acid, etc. Although the present invention is preferably applied to a magnetic disk, it is of course possible to use a magnetic tape.

第2図は本発明を実施するのに用いた蒸着装置の要部断
面図である。第2図で6は高分子フィルムで、eは円筒
キャンで、絶縁し電位を付与できるよう構成する。7は
巻出し軸、8は巻取り軸で円筒キャンは矢印Aの方向に
口伝する。9はクラスター蒸発源容器、10は蒸着材料
A111は誘導加熱コイル、12は高周波コイル、13
は絶縁導入端子、14は高周波電源、16は蒸気流A1
16は防着板Aで、17は防着板B118は電子ビーム
蒸発源容器、19は蒸着材料B、20は電子ビーム発生
器、21は電子ビーム、22は蒸気流Bで、23は真空
容器、24は真空排気系である。
FIG. 2 is a sectional view of a main part of a vapor deposition apparatus used to carry out the present invention. In FIG. 2, 6 is a polymer film, and e is a cylindrical can, which is constructed to be insulated and capable of applying a potential. 7 is an unwinding shaft, 8 is a winding shaft, and the cylindrical can is moved in the direction of arrow A. 9 is a cluster evaporation source container, 10 is a vapor deposition material A111 is an induction heating coil, 12 is a high frequency coil, 13
is an insulation introduction terminal, 14 is a high frequency power supply, and 16 is a steam flow A1.
16 is the deposition prevention plate A, 17 is the deposition prevention plate B, 118 is the electron beam evaporation source container, 19 is the evaporation material B, 20 is the electron beam generator, 21 is the electron beam, 22 is the vapor flow B, and 23 is the vacuum container. , 24 is a vacuum evacuation system.

第2図で電子ビーム蒸発源容器を直径5Qc+aの円筒
キャンの真下4oclII−に置いて、クラスター蒸発
源容器を、電子ビーム蒸発源より高分子フィルムの入っ
てくる側へ、水平に22c&、垂直に181移動した位
置に配した。キャンは一200Vとした。この条件で以
下に具体的な例について比較例との対比で説明する。
In Figure 2, place the electron beam evaporation source container directly below the cylindrical can with a diameter of 5Qc+a, and move the cluster evaporation source container 22c horizontally and vertically toward the side where the polymer film enters from the electron beam evaporation source. It was placed at a position moved by 181 points. The can was set to -200V. Under these conditions, a specific example will be explained below in comparison with a comparative example.

厚み40μmのポリエチレンテレフタレートフィルム上
に直径100人のCr2o3 微粒子を10ケ/隼2配
I〜、その上にCr を300人最小入射角64度でク
ラスターイオンビーム蒸着した。イオン化は13.56
M、eoowO高周波パワーで行った。その後、1.4
X10−5Torrの散゛素分圧下でCo−N1(Co
:80wtチ)を1000人電子ビーム蒸着した。
On a polyethylene terephthalate film with a thickness of 40 μm, 10 particles of Cr2O3 with a diameter of 10 particles were deposited on a polyethylene terephthalate film at a minimum incidence angle of 64 degrees, and Cr was deposited thereon with a cluster ion beam for 300 particles at a minimum incident angle of 64 degrees. Ionization is 13.56
M, eooowO performed with high frequency power. After that, 1.4
Co-N1 (Co
:80wt) was deposited by 1000 electron beams.

入射角は13度以内とした。更にモンテフルオス社製の
”フオンブリンZ−26″を60人塗布し、3.6 イ
ンチの磁気ディスクAに加工した。
The angle of incidence was within 13 degrees. Furthermore, 60 people coated the disc with "Fuonblin Z-26" manufactured by Monte Fluos, and processed it into a 3.6-inch magnetic disk A.

次はフイ/l/ム上にCo−Cr (、Co :80w
 t % )を120人最小入射角67度でクラスター
イオンビーム蒸着した(高周波パワーは13.56ht
m、 550Wとした)。
Next, apply Co-Cr (, Co: 80w) on the film/l/mu.
t %) was cluster ion beam evaporated on 120 people at a minimum incident angle of 67 degrees (the radio frequency power was 13.56 h).
m, 550W).

引き続きCo−Cr (Co : 80w t%)を電
子ビーム蒸着(入射角18度以内)し、Co−Cr膜厚
をトータルで1000人とした。この上に同じ潤滑剤を
60人配し、磁気ディスクBとした。
Subsequently, Co--Cr (Co: 80 wt%) was deposited by electron beam (at an incident angle of 18 degrees or less) to give a total Co--Cr film thickness of 1000. On top of this, 60 people placed the same lubricant to form a magnetic disk B.

比較例Aとして、高周波スパッタリング法でCr、Co
−N1(Co:80wt%)を300人〜1600人積
層した以外は磁気テ゛イスクAと同様のものを準備した
。比較例Bとして高周波スパッタリング法で、Co−C
r (Co :80wt%)垂直磁化膜を2000人配
した以外は磁気ディスクBど同様のものを準備した。
As Comparative Example A, Cr, Co
A magnetic disk similar to A was prepared except that -N1 (Co: 80 wt%) was laminated by 300 to 1,600 layers. As Comparative Example B, Co-C was
A similar magnetic disk as B was prepared except that 2000 perpendicular magnetization films (Co: 80 wt%) were arranged.

夫々の磁気ディスクをギャップ長0.26μmトラック
幅10μmのリングヘッドで0.33μmのビット長の
信号を記録し再生比較した。比較例BのC/NをodB
 とした時、比・咬例Aば−0,7dB、実施例Aは+
s、5dBS実施例Bは+3.、odBと良好であった
A signal with a bit length of 0.33 μm was recorded on each magnetic disk using a ring head with a gap length of 0.26 μm and a track width of 10 μm, and reproduction was compared. C/N of comparative example B in odB
When the ratio/bite example A is -0.7 dB, the example A is +
s, 5dBS Example B is +3. , odB, which was good.

実施例A、Bは1周に渡って出力は±o、1dB以内と
均一で、比較例Bと同等で比較例A7ふ3dB  より
良好で、より等方性に優れていることがわかる。
It can be seen that Examples A and B have uniform outputs of ±o and within 1 dB over one round, which is equivalent to Comparative Example B and better than Comparative Example A7 by 3 dB, and is more excellent in isotropy.

尚、実施例Bの条件で全Co−0rに占めるクラ、7−
ターイオンビーム蒸着層が%以上になると、モジ↓レー
ジランが1dBを越え、九以下になると、保磁力の低下
が目立ち、高密度記録性能が低下することをCo−Cx
の全厚600人から2600人で確認した。
In addition, under the conditions of Example B, the proportion of Co-0r in the total Co-0r is 7-
Co-Cx
The total thickness was confirmed to be between 600 and 2,600 people.

尚スパッタリング法に対比して製膜速度は26〜80倍
の範囲で同様の結果になることを実施確認した。
It has been experimentally confirmed that similar results can be obtained when the film forming rate is 26 to 80 times faster than that of the sputtering method.

発明の効果 以上のように本発明によれば、等方的で優れたC/Nの
磁気記録媒体を高速で得られるといったすぐれた効果が
ある。
Effects of the Invention As described above, according to the present invention, there is an excellent effect that a magnetic recording medium that is isotropic and has an excellent C/N can be obtained at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により製造される磁気記録媒体の拡大断
面図、第2図は本発明を実施するのに用いた蒸着装置の
要部断面図である。 1.6・・・・・・高分子フィルム、2・・・・・・ク
ラスターイオンビーム蒸着層、3・・・・・・強磁性金
属薄膜、9・・・・・・クラスター蒸発源容器、18・
・・・・・電子ビーム蒸発源容器。
FIG. 1 is an enlarged cross-sectional view of a magnetic recording medium manufactured according to the present invention, and FIG. 2 is a cross-sectional view of essential parts of a vapor deposition apparatus used to carry out the present invention. 1.6...Polymer film, 2...Cluster ion beam evaporation layer, 3...Ferromagnetic metal thin film, 9...Cluster evaporation source container, 18・
...Electron beam evaporation source container.

Claims (1)

【特許請求の範囲】[Claims] 高分子フィルム上に、斜め入射でクラスターイオンビー
ム蒸着を行った後、垂直に近い成分で電子ビーム蒸着し
て磁気記録層を形成することを特徴とする磁気記録媒体
の製造方法。
A method for manufacturing a magnetic recording medium, which comprises performing cluster ion beam evaporation on a polymer film with oblique incidence, and then performing electron beam evaporation with a nearly perpendicular component to form a magnetic recording layer.
JP17331888A 1988-07-12 1988-07-12 Production of magnetic recording medium Pending JPH0223530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17331888A JPH0223530A (en) 1988-07-12 1988-07-12 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17331888A JPH0223530A (en) 1988-07-12 1988-07-12 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0223530A true JPH0223530A (en) 1990-01-25

Family

ID=15958213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17331888A Pending JPH0223530A (en) 1988-07-12 1988-07-12 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0223530A (en)

Similar Documents

Publication Publication Date Title
JPS6321254B2 (en)
JPH0223530A (en) Production of magnetic recording medium
JPH0546013B2 (en)
JPH0475577B2 (en)
JPH0552566B2 (en)
JP2558753B2 (en) Magnetic recording media
JPH0473215B2 (en)
JPS61273738A (en) Production of magnetic recording medium
JPS59157833A (en) Magnetic recording medium
JPS61110332A (en) Magnetic recording medium
JP2874419B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPH0341898B2 (en)
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPH0328733B2 (en)
JPH0517607B2 (en)
JPH0341899B2 (en)
JPS58171717A (en) Magnetic recording medium
JPS62102414A (en) Magnetic recording medium
JPS63251928A (en) Production of magnetic recording medium
JPS63282918A (en) Production of magnetic recording medium
JPS6378339A (en) Production of magnetic recording medium
JPH04328325A (en) Manufacture of magnetic recording medium
JPS6174133A (en) Magnetic recording medium
JPH02240825A (en) Magnetic recording medium and production thereof
JPS5873019A (en) Manufacture for magnetic recording medium