JPH0536053A - Magnetic recording medium and production thereof - Google Patents

Magnetic recording medium and production thereof

Info

Publication number
JPH0536053A
JPH0536053A JP18991791A JP18991791A JPH0536053A JP H0536053 A JPH0536053 A JP H0536053A JP 18991791 A JP18991791 A JP 18991791A JP 18991791 A JP18991791 A JP 18991791A JP H0536053 A JPH0536053 A JP H0536053A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
recording medium
ferromagnetic metal
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18991791A
Other languages
Japanese (ja)
Inventor
Kaji Maezawa
可治 前澤
Kazuyoshi Honda
和義 本田
Yasuhiro Kawawake
康博 川分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18991791A priority Critical patent/JPH0536053A/en
Publication of JPH0536053A publication Critical patent/JPH0536053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To provide the magnetic recording medium which is used for video equipment and information equipment and has excellent electromagnetic conversion characteristics and mechanical strength and the process for production of such recording medium. CONSTITUTION:A ferromagnetic metallic layer 11 subjected to intra-surface orientation is provided as a 1st layer on a high-polymer film 1 and after the surface thereof is subjected to an ion treatment, a perpendicularly oriented ferromagnetic metal oxide layer 14 is formed as a 2nd layer on the surface of the ferromagnetic metallic layer 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、映像機器や情報機器に
用いられる高記録密度を有する量産性に優れた金属薄膜
型の磁気記録媒体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal thin film type magnetic recording medium having a high recording density for use in video equipment and information equipment and excellent in mass productivity, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、磁気記録媒体は磁気記録密度の向
上に見られるようにその技術的発展はめざましいものが
ある。従来の磁気記録媒体の例としては、オーディオ,
ビデオ用テープ材料に用いられる酸化鉄粉末,酸化クロ
ム粉末,純鉄粉末等を研磨剤,樹脂等のバインダーとと
もに高分子フイルム上に塗布した塗布型の磁気記録媒体
がある。
2. Description of the Related Art In recent years, the technical development of magnetic recording media has been remarkable as seen in the improvement of magnetic recording density. Examples of conventional magnetic recording media include audio,
There is a coating type magnetic recording medium in which iron oxide powder, chromium oxide powder, pure iron powder and the like used for video tape materials are coated on a polymer film together with an abrasive, a binder such as a resin and the like.

【0003】しかし、従来の塗布型テープよりも保磁
力,記録密度電磁変換特性などを改良するため真空蒸着
法,イオンプレイティング,スパッタリング法などでF
e,Ni,Co,Cr等の磁性金属単独またはこれらの
合金で高分子フイルム上に蒸着する金属薄膜型の磁気記
録媒体の検討がなされている。また斜方蒸着法によるオ
ーディオ用,ビデオ用の金属薄膜型の磁気記録媒体がす
でに実用化されている。またコンピュータのメモリーと
して用いられるハードディスク用磁気記録媒体はスッパ
ター法によりアルミニウムまたはガラス基板上にコバル
ト酸化物を蒸着して製造される。
However, in order to improve the coercive force, recording density and electromagnetic conversion characteristics, etc., compared with the conventional coating type tape, the vacuum deposition method, the ion plating method, the sputtering method and the like are used.
Studies have been conducted on a metal thin film type magnetic recording medium in which a magnetic metal such as e, Ni, Co and Cr alone or an alloy thereof is deposited on a polymer film. Moreover, metal thin film type magnetic recording media for audio and video by the oblique deposition method have already been put to practical use. A magnetic recording medium for a hard disk used as a memory of a computer is manufactured by depositing cobalt oxide on an aluminum or glass substrate by the spatter method.

【0004】しかし、金属薄膜型の磁気記録媒体の最大
の欠点は、磁気記録層が薄いために引っかき強度,スチ
ル寿命耐久性に乏しい点にあり、改善が望まれている。
However, the greatest drawback of the metal thin film type magnetic recording medium is that the magnetic recording layer is thin, so that scratch resistance and still life durability are poor, and improvement is desired.

【0005】また、これらのメモリー媒体においては記
録密度の向上と高画質化がますます要望され、今後さら
にこれら従来の金属薄膜型の磁気記録媒体の磁気特性と
電磁変換特性の大きな飛躍が期待されている。
Further, in these memory media, there is an increasing demand for improvement in recording density and high image quality, and it is expected that the magnetic characteristics and electromagnetic conversion characteristics of these conventional metal thin film type magnetic recording media will further leap forward. ing.

【0006】金属薄膜型の磁気記録媒体を製造する従来
の方法としては、図3に示すように連続巻取り真空蒸着
法が特にその生産性において他を凌いでおり、現実的量
産方法として非常に有力である。その製造方法の概要は
図に示すように高分子フイルム1を送り軸2にセット
し、クーリングキャン3を経て巻取り軸4で巻取る。ク
ーリングキャン3の下方からセラミックるつぼ5内の磁
性金属6を溶解し蒸発させ、高分子フイルム1上に磁性
金属層を形成する。この時、蒸着に不要な金属蒸気流は
遮蔽板7でマスキングする。通常蒸着テープ(ME)は
40度から90度位の蒸着角成分を使用するのが一般的
である。
As a conventional method of manufacturing a metal thin film type magnetic recording medium, the continuous winding vacuum deposition method is superior to the others particularly in its productivity as shown in FIG. 3, and is very practical as a mass production method. It is influential. As shown in the figure, the outline of the manufacturing method is to set the polymer film 1 on the feed shaft 2, pass through the cooling can 3, and wind by the winding shaft 4. The magnetic metal 6 in the ceramic crucible 5 is melted and evaporated from below the cooling can 3 to form a magnetic metal layer on the polymer film 1. At this time, the metal vapor flow unnecessary for vapor deposition is masked by the shield plate 7. Generally, a vapor deposition tape (ME) generally uses a vapor deposition angle component of about 40 to 90 degrees.

【0007】なお、図において8は蒸着時の金属蒸気流
が不必要な部分へ回り込むことを防止する第2の遮蔽板
であり、9は磁性金属6を溶解し蒸発させるための電子
ビーム10を発射する電子銃である。
In the figure, 8 is a second shield plate for preventing the metal vapor flow during vapor deposition from flowing into unnecessary portions, and 9 is an electron beam 10 for melting and evaporating the magnetic metal 6. It is an electron gun that fires.

【0008】[0008]

【発明が解決しようとする課題】しかしながら磁気記録
媒体の場合にはたとえばビデオ用テープにおいては、小
型化,高画質化が要望され、また情報機器用の磁気テー
プにおいては高記録密度化が要望され、従来の製造方法
による磁気記録媒体では磁気特性,電磁変換特性におい
てまだ満足すべきものはなく、その改善と耐久性の向上
が重要な課題となっている。
However, in the case of a magnetic recording medium, for example, a video tape is required to have a smaller size and higher image quality, and a magnetic tape for information equipment is required to have a higher recording density. In the magnetic recording medium manufactured by the conventional manufacturing method, the magnetic characteristics and the electromagnetic conversion characteristics are not yet satisfactory, and the improvement thereof and the improvement of durability are important issues.

【0009】本発明は上記課題を解決するものであり、
電磁変換特性やスチル寿命特性等に優れた磁気記録媒体
とその製造方法を提供することを目的とする。
The present invention is intended to solve the above problems,
An object of the present invention is to provide a magnetic recording medium excellent in electromagnetic conversion characteristics, still life characteristics and the like, and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、高分子フイルム上に真空蒸着法により、強
磁性金属層を第1層として蒸着し、その表面にイオンを
照射後強磁性金属酸化物層を積層したものである。
In order to achieve the above object, the present invention is to deposit a ferromagnetic metal layer as a first layer on a polymer film by a vacuum deposition method, and irradiate the surface of the ferromagnetic metal layer with ions and then to enhance the strength. It is a stack of magnetic metal oxide layers.

【0011】[0011]

【作用】したがって本発明によれば、真空蒸着により高
分子フイルム上に面内配向した強磁性金属層の表面をイ
オン照射し垂直配向した強磁性金属酸化物層を積層する
ことで、磁気特性,電磁変換特性に優れた金属薄膜型の
磁気記録媒体を得ることができる。すなわち、イオン照
射した第1の強磁性金属層に第2の強磁性金属酸化物層
を積層することで電磁変換の周波数特性に優れたノイズ
の低い磁気記録媒体とすることができる。たとえば5M
Hzにおける電磁変換特性Y−出力で従来のものに比べ
て+8dBの向上が見られる。
Therefore, according to the present invention, the surface of the in-plane oriented ferromagnetic metal layer is ion-irradiated on the polymer film by vacuum vapor deposition and the vertically oriented ferromagnetic metal oxide layer is laminated to obtain the magnetic characteristics, A metal thin film type magnetic recording medium having excellent electromagnetic conversion characteristics can be obtained. That is, by stacking the second ferromagnetic metal oxide layer on the ion-irradiated first ferromagnetic metal layer, a magnetic recording medium having excellent frequency characteristics of electromagnetic conversion and low noise can be obtained. For example, 5M
The electromagnetic conversion characteristic Y-output at Hz shows an improvement of +8 dB as compared with the conventional one.

【0012】[0012]

【実施例】以下、本発明の実施例について図2とともに
図3と同一部分には同一番号を付して詳しい説明を省略
し、相違する点について説明する。
Embodiments of the present invention will be described below with reference to FIG. 2 and the same parts as in FIG.

【0013】(実施例1)図2は本発明の一実施例にお
ける金属薄膜型の磁気記録媒体を製造するために使用す
る装置の要部の概略断面正面図であり、図に示すように
高分子フイルム1を送り軸2にセットし、クーリングキ
ャン3を経て巻取り軸4で巻取る。下方よりセラミック
るつぼ5内のCo−Niよりなる磁性金属6を電子ビー
ムで溶解し、高分子フイルム1上に蒸着し、図1に示す
第1層目の強磁性金属層11を形成する。第1層目の強
磁性金属層11を形成した後、その層表面にイオン源1
2よりイオン13を照射する。イオン源12のビーム電
圧,加速電圧をそれぞれ1000V,300V一定とし
てイオン13のビーム電流を300mAの範囲で変化させ
た。つぎにイオン照射した面に第2層として同じく図1
に示す強磁性金属酸化物層14を形成する。第2層目は
第2のるつぼ15内のCoなどの磁性金属を電子ビーム
10で溶解し、酸素ガスを金属蒸気流に吹き付ける反応
性蒸着法によりコバルト酸化物よりなる強磁性金属酸化
物層14を形成する。蒸着時に不要な金属蒸気流は第1
層目,第2層目ともに遮蔽板7でそれぞれマスキングす
る。また第2の遮蔽板8は蒸着時の金属蒸気流の不必要
な部分への回り込みを防ぐものである。第1層目の強磁
性金属層11の形成時の蒸着入射角は90度から40度
成分を蒸着し、磁気特性としての主成分は面内配向膜と
し、第2層目の強磁性金属酸化物層14は60度から2
0度の蒸着入射角で、主成分は垂直配向膜とした。
(Embodiment 1) FIG. 2 is a schematic sectional front view of an essential part of an apparatus used for manufacturing a metal thin film type magnetic recording medium according to an embodiment of the present invention. As shown in FIG. The molecular film 1 is set on the feed shaft 2, passed through the cooling can 3, and wound on the winding shaft 4. The magnetic metal 6 made of Co-Ni in the ceramic crucible 5 is melted by an electron beam from below and evaporated on the polymer film 1 to form the first ferromagnetic metal layer 11 shown in FIG. After forming the first ferromagnetic metal layer 11, the ion source 1 is formed on the surface of the layer.
Irradiate ions 13 from 2. The beam voltage and the acceleration voltage of the ion source 12 were kept constant at 1000 V and 300 V, respectively, and the beam current of the ions 13 was changed within the range of 300 mA. Next, as a second layer on the surface irradiated with ions, the same process as in FIG.
The ferromagnetic metal oxide layer 14 shown in is formed. The second layer is a ferromagnetic metal oxide layer 14 made of cobalt oxide by a reactive vapor deposition method in which a magnetic metal such as Co in the second crucible 15 is melted by the electron beam 10 and oxygen gas is blown to the metal vapor flow. To form. The first metal vapor flow that is unnecessary during vapor deposition is the first
Both the second layer and the second layer are masked by the shielding plate 7. The second shield plate 8 prevents the metal vapor flow from flowing into unnecessary portions during vapor deposition. When the first ferromagnetic metal layer 11 is formed, the incident angle of vapor deposition is 90 to 40 degrees. The main component of the magnetic property is the in-plane alignment film, and the second layer of ferromagnetic metal oxide is used. Material layer 14 is 60 degrees to 2
With a vapor deposition incident angle of 0 degree, the main component was a vertical alignment film.

【0014】高分子フイルム1として厚さ10μmのポ
リエチレンテレフタレート(PET)基板を用い、第1
層目の強磁性金属層11の厚さを1000Å、第2層目
の強磁性金属酸化物層14の厚さを1000Å、全厚2
000Åとした。このとき、金属蒸気の発生源であるセ
ラミックるつぼ5または第2のるつぼ15からの平均膜
堆積速度は100nm/秒とし、クーリングキャン3の表
面温度は−10度とした。
As the polymer film 1, a polyethylene terephthalate (PET) substrate having a thickness of 10 μm is used.
The thickness of the first ferromagnetic metal layer 11 is 1000Å, the thickness of the second ferromagnetic metal oxide layer 14 is 1000Å, and the total thickness is 2
It was 000Å. At this time, the average film deposition rate from the ceramic crucible 5 or the second crucible 15, which is a source of metal vapor, was 100 nm / sec, and the surface temperature of the cooling can 3 was -10 degrees.

【0015】(実施例2)図2に示す実施例1と同様の
蒸着装置で斜方蒸着によりCo−Crよりなる磁性金属
6を用いて面内配向した強磁性金属層11を1000Å
形成し、その表面にイオン源12よりビーム電圧,加速
電圧をそれぞれ1000V,300V一定とし、ビーム
電流100mAでイオン13によるイオン照射を行った。
イオン照射後、第1層表面に実施例1と同様に反応性蒸
着法によりコバルト酸化物よりなる強磁性金属酸化物層
14を1000Å蒸着した。
(Embodiment 2) The ferromagnetic metal layer 11 in-plane oriented by using the magnetic metal 6 made of Co-Cr by the vapor deposition apparatus similar to that of Embodiment 1 shown in FIG.
Ion irradiation was performed with ions 13 at a beam current of 100 mA while the beam voltage and the acceleration voltage of the ion source 12 were kept constant at 1000 V and 300 V, respectively.
After the ion irradiation, the ferromagnetic metal oxide layer 14 made of cobalt oxide was vapor-deposited on the surface of the first layer by a reactive vapor deposition method in the same manner as in Example 1 by 1000Å.

【0016】高分子フイルム1として厚さ10μmのポ
リイミド(PI)基板を用い、磁性層の全厚を2000
Åとした。この時、金属蒸気の蒸発源であるセラミック
るつぼ5または第2のるつぼ15からの平均膜堆積速度
は200nm/秒とし、第1層目のクーリングキャン3の
温度は280度、第2層目の蒸着温度は150度でそれ
ぞれ行った。
As the polymer film 1, a polyimide (PI) substrate having a thickness of 10 μm is used, and the total thickness of the magnetic layer is 2000.
Å At this time, the average film deposition rate from the ceramic crucible 5 or the second crucible 15 which is the evaporation source of the metal vapor is 200 nm / sec, the temperature of the cooling can 3 of the first layer is 280 degrees, and the temperature of the cooling can 3 of the second layer is The deposition temperature was 150 degrees.

【0017】(実施例3)図2の実施例1と同様の蒸着
装置で斜方蒸着によりCoよりなる磁性金属6を用いて
面内配向した強磁性金属層11を1000Å形成し、そ
の表面にイオン源12よりビーム電圧,加速電圧をそれ
ぞれ1000V,300V一定とし、ビーム電流を20
0mAでイオン13によるイオン照射を行った。イオン照
射後、第1層表面に実施例1と同様に反応性蒸着法によ
りコバルト酸化物よりなる強磁性金属酸化物層14を垂
直配向薄膜として1000Å蒸着した。
(Embodiment 3) An in-plane oriented ferromagnetic metal layer 11 of 1000 Å is formed by magnetic vapor deposition 6 of Co by oblique evaporation using the same evaporation apparatus as in Embodiment 1 of FIG. The beam voltage and the acceleration voltage from the ion source 12 are kept constant at 1000 V and 300 V, respectively, and the beam current is set to 20.
Ion irradiation with ion 13 was performed at 0 mA. After the ion irradiation, a ferromagnetic metal oxide layer 14 made of cobalt oxide was vapor-deposited on the surface of the first layer by the reactive vapor deposition method in the same manner as in Example 1 to form a vertically oriented thin film of 1000Å.

【0018】高分子フイルム1として厚さ10μmのポ
リエチレンナフタレート(PEN)基板を用い、磁性層
の全厚を2000Åとした。このとき、金属蒸気の蒸発
源であるセラミックるつぼ5または第2のるつぼ15か
らの平均膜堆積速度は300nm/秒とし、第1層目のク
ーリングキャン3の温度はマイナス20度、第2層目の
蒸着温度は100度でそれぞれ行った。
A polyethylene naphthalate (PEN) substrate having a thickness of 10 μm was used as the polymer film 1, and the total thickness of the magnetic layer was 2000 liters. At this time, the average film deposition rate from the ceramic crucible 5 or the second crucible 15 which is the evaporation source of the metal vapor is 300 nm / sec, the temperature of the cooling can 3 of the first layer is -20 ° C, and the temperature of the cooling can 3 of the second layer is 20 ° C. The vapor deposition temperature was 100 degrees.

【0019】上記のようにして得られた実施例による金
属薄膜型の磁気記録媒体についてその性能を測定した。
これら実施例の磁気記録媒体の評価法は得られた磁気記
録媒体より8mmテープを作成し、市販の8mmビデオデッ
キを評価装置に改造し、メタルヘッドを用いて電磁変換
特性を調べた。電磁変換特性は記録周波数1,5および
7MHz近傍のY−出力で評価し、従来例に対する相対
出力として比較した。その結果を(表1)に示す。
The performance of the metal thin film type magnetic recording medium according to the example obtained as described above was measured.
In the evaluation methods of the magnetic recording media of these examples, an 8 mm tape was prepared from the obtained magnetic recording media, a commercially available 8 mm video deck was modified into an evaluation device, and the electromagnetic conversion characteristics were examined using a metal head. The electromagnetic conversion characteristics were evaluated by the Y-output near the recording frequencies of 1, 5 and 7 MHz and compared as a relative output with respect to the conventional example. The results are shown in (Table 1).

【0020】[0020]

【表1】 [Table 1]

【0021】(表1)から明らかなように本発明の実施
例では従来例と比較して記録波長全域にわたって優れて
おり、特に短波長領域においてはY−出力で10dB改善
されている。
As is clear from Table 1, the embodiment of the present invention is superior to the conventional example over the entire recording wavelength range, and in particular in the short wavelength range, the Y-output is improved by 10 dB.

【0022】金属薄膜型の磁気記録媒体の欠点であった
耐久性を比較検討するため、引っかき試験とスチル寿命
試験を行った。引っかき試験は市販の引っかき試験機に
フェライトの疑似ヘッドをつけ、ヘッド加重を変えるこ
とで膜強度を調べた。スチル寿命は、市販デッキを改造
し、テープの荷重を20gとし、加速試験した。引っか
き試験は従来のテープが損傷した時の荷重を基準に相対
比較した。また、スチル寿命試験においても従来のテー
プのスチル寿命の時間を基準に相対比較した。その結果
を(表2)に示す。
A scratch test and a still life test were conducted in order to compare and examine durability, which was a drawback of the metal thin film type magnetic recording medium. In the scratch test, a ferrite pseudo head was attached to a commercially available scratch tester, and the film strength was examined by changing the head load. For the still life, a commercially available deck was remodeled, the tape load was set to 20 g, and an accelerated test was performed. In the scratch test, relative comparison was made based on the load when the conventional tape was damaged. Also, in the still life test, relative comparison was made based on the still life time of the conventional tape. The results are shown in (Table 2).

【0023】[0023]

【表2】 [Table 2]

【0024】(表2)から明らかなように、本発明の実
施例では従来例と比較して引っかき試験,スチル寿命試
験ともに従来例に比較して大幅に改善している。
As is clear from (Table 2), in the examples of the present invention, both the scratch test and the still life test are significantly improved as compared with the conventional example.

【0025】このように上記実施例によれば、金属薄膜
型の磁気記録媒体を製造するとき、高分子フイルム1上
に面内配向性の強い強磁性金属層11を設け、その表面
に垂直配向性の強磁性金属酸化物層14を設けることで
電磁変換特性の優れた磁気記録媒体を得ることができ
る。このとき第1層目形成後、その表面をイオン処理す
ることにより引っかき強度,スチル寿命等の耐久性も大
幅に改善することができる。
As described above, according to the above-described embodiment, when the metal thin film type magnetic recording medium is manufactured, the ferromagnetic metal layer 11 having a strong in-plane orientation is provided on the polymer film 1, and the surface thereof is vertically aligned. By providing the ferromagnetic metal oxide layer 14 having magnetic properties, a magnetic recording medium having excellent electromagnetic conversion characteristics can be obtained. At this time, after the formation of the first layer, the surface thereof is subjected to ion treatment, whereby the durability such as scratch strength and still life can be greatly improved.

【0026】なお、実施例としては磁性層として第1層
目としてCo−Ni,Co−CrまたはCoを、第2層
目としてCo−Oを用いたが、強磁性金属であるCo,
Ni,FeまたはCrであれば単独または混合の形で使
用することも可能である。また、高分子フイルム1は本
発明以外にアラミドなど他の高分子フイルムを使用する
こともできる。
In the examples, Co--Ni, Co--Cr or Co was used as the first layer of the magnetic layer and Co--O was used as the second layer.
It is possible to use Ni, Fe or Cr alone or in a mixed form. Further, as the polymer film 1, other polymer films such as aramid can be used in addition to the present invention.

【0027】その他、本発明は磁気記録媒体に限らず、
液晶配向膜、そのほかの各種機能性薄膜にも応用できる
ことは言うまでもない。
In addition, the present invention is not limited to the magnetic recording medium,
It goes without saying that it can be applied to liquid crystal alignment films and other various functional thin films.

【0028】[0028]

【発明の効果】上記実施例より明らかなように本発明は
高分子フイルム上に強磁性金属層を第1層として蒸着
し、その表面に強磁性金属酸化物層を積層しているため
に電磁変換特性に優れ、かつ引っかき強度,スチル寿命
等の耐久性にも優れた磁気記録媒体を得ることができ
る。
As is apparent from the above-mentioned embodiments, the present invention is characterized in that the ferromagnetic metal layer is vapor-deposited as the first layer on the polymer film and the ferromagnetic metal oxide layer is laminated on the surface of the polymer film. It is possible to obtain a magnetic recording medium having excellent conversion characteristics and excellent durability such as scratch strength and still life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の磁気記録媒体の部分断面図FIG. 1 is a partial sectional view of a magnetic recording medium according to an embodiment of the present invention.

【図2】本発明の一実施例における磁気記録媒体の製造
方法を実施するために使用する装置の要部の概略断面正
面図
FIG. 2 is a schematic cross-sectional front view of a main part of an apparatus used to carry out a method of manufacturing a magnetic recording medium according to an embodiment of the present invention.

【図3】従来の磁気記録媒体の製造方法において使用さ
れる装置の要部の概略断面正面図
FIG. 3 is a schematic cross-sectional front view of a main part of an apparatus used in a conventional magnetic recording medium manufacturing method.

【符号の説明】[Explanation of symbols]

1 高分子フイルム 11 強磁性金属層 14 強磁性金属酸化物層 1 polymer film 11 Ferromagnetic metal layer 14 Ferromagnetic metal oxide layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】真空蒸着法によって高分子フイルム上に第
1層として形成した強磁性金属層と、その第1層の表面
に第2層として形成した強磁性金属酸化物層とを有する
磁気記録媒体。
1. A magnetic recording comprising a ferromagnetic metal layer formed as a first layer on a polymer film by a vacuum vapor deposition method, and a ferromagnetic metal oxide layer formed as a second layer on the surface of the first layer. Medium.
【請求項2】強磁性金属層が面内配向を主成分とするも
のであり、強磁性金属酸化物層が垂直配向を主成分とす
るものである請求項1記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the ferromagnetic metal layer is mainly composed of in-plane orientation, and the ferromagnetic metal oxide layer is mainly composed of vertical orientation.
【請求項3】真空蒸着法によって高分子フイルム上に強
磁性金属層を第1層として蒸着し、その第1層の表面に
イオンを照射後、強磁性金属酸化物層を積層することを
特徴とする磁気記録媒体の製造方法。
3. A ferromagnetic metal layer is deposited as a first layer on a polymer film by a vacuum deposition method, and the surface of the first layer is irradiated with ions, and then a ferromagnetic metal oxide layer is laminated. And a method for manufacturing a magnetic recording medium.
JP18991791A 1991-07-30 1991-07-30 Magnetic recording medium and production thereof Pending JPH0536053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18991791A JPH0536053A (en) 1991-07-30 1991-07-30 Magnetic recording medium and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18991791A JPH0536053A (en) 1991-07-30 1991-07-30 Magnetic recording medium and production thereof

Publications (1)

Publication Number Publication Date
JPH0536053A true JPH0536053A (en) 1993-02-12

Family

ID=16249376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18991791A Pending JPH0536053A (en) 1991-07-30 1991-07-30 Magnetic recording medium and production thereof

Country Status (1)

Country Link
JP (1) JPH0536053A (en)

Similar Documents

Publication Publication Date Title
US4582746A (en) Magnetic recording medium
JPH11250437A (en) Magnetic recording medium and magnetic recording and reproducing system
JP7367706B2 (en) Magnetic recording tape and magnetic recording tape cartridge
JPH0536053A (en) Magnetic recording medium and production thereof
JP2976699B2 (en) Magnetic recording medium and manufacturing method thereof
JPH0536068A (en) Magnetic recording medium and production thereof
JPH0352115A (en) Metallic thin film type magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JP2894253B2 (en) Manufacturing method of highly functional thin film
JP3491778B2 (en) Magnetic recording media
JP2874419B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPS63124213A (en) Perpendicular magnetic recording medium
JP2558753B2 (en) Magnetic recording media
JPH0517607B2 (en)
JPH07109570A (en) Vacuum deposition device and production of magnetic recording medium
JPS6037528B2 (en) Manufacturing method for magnetic recording media
JPS6194239A (en) Preparation of magnetic recording medium
JP2004039078A (en) Magnetic recording medium
JPH0991663A (en) Magnetic recording medium and its production
JPH05159287A (en) Production of magnetic recording medium
JPH061550B2 (en) Method of manufacturing magnetic recording medium
JPS6378339A (en) Production of magnetic recording medium
JPS63183608A (en) Magnetic recording medium
JPH09198648A (en) Magnetic recording medium
JPH03134819A (en) Magnetic recording medium and its production