JPH05170564A - Copper plate-joined aln substrate - Google Patents

Copper plate-joined aln substrate

Info

Publication number
JPH05170564A
JPH05170564A JP3343219A JP34321991A JPH05170564A JP H05170564 A JPH05170564 A JP H05170564A JP 3343219 A JP3343219 A JP 3343219A JP 34321991 A JP34321991 A JP 34321991A JP H05170564 A JPH05170564 A JP H05170564A
Authority
JP
Japan
Prior art keywords
copper plate
substrate
aln substrate
thickness
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3343219A
Other languages
Japanese (ja)
Inventor
Kenji Fukuda
憲司 福田
Tadashi Nakano
正 中野
Takao Kanamaru
孝男 金丸
Masato Kumagai
正人 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3343219A priority Critical patent/JPH05170564A/en
Publication of JPH05170564A publication Critical patent/JPH05170564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

PURPOSE:To obtain the subject substrate having excellent heat cycle property by joining a copper plate on the circuit side to one side of an AlN substrate and joining a copper plate on the heat releasing side to other side of the AlN substrate using an alloy brazing material containing an active metal and keeping thickness of the copper plate on the heat releasing side in prescribed value of that of a copper plate on the circuit side. CONSTITUTION:In a substrate in which a copper plate on the circuit side is joined to one surface of an AlN substrate and a copper plate on the heat releasing side is joined to the other surface of the AlN substrate using a brazing material of an alloy containing an active metal (e.g. Ti), the thickness of a copper plate on the heat releasing side is kept to <=50% of that of the substrate on the circuit side. Thereby a copper plate-joined AlN substrate decreased in heat stress generated from AlN substrate and hardly generated in crack and useful as a substrate for loading electric part which consumes large electric current and excellent in heat cycle is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大電流を使用する電子
部品搭載用基板として用いられる、耐熱サイクル性に優
れた銅板接合AlN基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper plate-bonded AlN substrate which is used as a substrate for mounting electronic components using a large current and which has excellent heat cycle resistance.

【0002】[0002]

【従来の技術】大電流を使用する電子部品搭載用基板と
して、セラミックス基板の両面に銅板を接合した基板が
用いられている。このような銅板接合セラミックス基板
を実用化するには、銅板接合セラミックス基板に−40
〜+125℃の熱負荷を1000回与えてセラミックス
基板に回路側から放熱側まで貫通する亀裂が入らないこ
とが要求される。試験中に、金属とセラミックス基板の
熱膨張率の差に起因して、セラミックス基板に熱応力が
発生し、回路側銅板と基板の角に亀裂が発生する。この
亀裂は熱サイクル数の増加と共に、基板内部に基板面か
ら約45度の方向に進行し、ひどい場合には、回路側か
ら放熱側に貫通する。このような亀裂の発生を抑制する
ために放熱側銅板の体積を回路側銅板の体積の50〜9
5%となるように調整する技術が提案されている(特開
昭63−24815号公報)。しかし、この技術におい
ては、接合方法が記述されておらず、アルミナ基板を用
いた実施例しか開示されていない。銅板接合AlN基板
のように、活性金属を含有したろう材を用いて、銅板と
AlN基板を接合した基板においては、この技術では亀
裂の発生を十分に抑制することはできず、実際には使用
できない。
2. Description of the Related Art As a substrate for mounting an electronic component that uses a large current, a substrate in which copper plates are joined to both surfaces of a ceramic substrate is used. In order to put such a copper plate-bonded ceramics substrate into practical use, a copper plate-bonded ceramics substrate must be -40
It is required that the ceramic substrate is not subjected to cracks penetrating from the circuit side to the heat radiating side by applying a heat load of up to + 125 ° C. 1000 times. During the test, due to the difference in the coefficient of thermal expansion between the metal and the ceramic substrate, thermal stress is generated in the ceramic substrate, and cracks are generated in the corners of the circuit-side copper plate and the substrate. As the number of thermal cycles increases, the cracks propagate inside the substrate in the direction of about 45 degrees from the substrate surface, and in severe cases, penetrate from the circuit side to the heat radiation side. In order to suppress the occurrence of such cracks, the volume of the heat radiation side copper plate is set to 50 to 9 times the volume of the circuit side copper plate.
A technique for adjusting the amount to 5% has been proposed (Japanese Patent Laid-Open No. 63-24815). However, this technique does not describe a bonding method, and only discloses an example using an alumina substrate. With a technique in which a brazing material containing an active metal is used to bond a copper plate to an AlN substrate, such as a copper plate-bonded AlN substrate, this technique cannot sufficiently suppress the occurrence of cracks, and it is actually used. Can not.

【0003】[0003]

【発明が解決しようとする課題】ろう材を用いて接合し
た銅板接合AlN基板では室温における合金のろう材の
降伏応力は約70kgf/mm2 であり、銅の降伏応力
の約5kgf/mm2 と比較して非常に大きいので、ろ
う材の塑性変形によって、それほど熱応力は緩和されな
い。さらにAlNは一般に金属との熱膨張率の差が大き
い。したがって、活性金属を含むろう材を用いて銅板と
AlN基板を接合した基板には、熱サイクル試験中にA
lNに大きな熱応力が発生し、亀裂が入り易く、特開昭
63−248195号公報に記述されているような、放
熱側銅板の体積を回路側銅板の体積50〜95%にする
ことでは亀裂の発生と進行を十分に抑制することはでき
ない。本発明においては、活性金属を含む合金のろう材
で接合した銅板AlN基板に発生する亀裂の発生と進行
を抑制して、実際の使用に耐える製品を提供することを
目的としている。
The yield stress of the brazing material of the alloy at room temperature is about 70 kgf / mm 2 , and the yield stress of copper is about 5 kgf / mm 2 in the copper plate bonded AlN substrate bonded using the brazing material. The thermal stress is not so much relieved by the plastic deformation of the brazing material because it is so large in comparison. Further, AlN generally has a large difference in coefficient of thermal expansion from metal. Therefore, a substrate obtained by joining a copper plate and an AlN substrate using a brazing material containing an active metal is
A large thermal stress is generated in 1N and cracks are likely to occur. If the volume of the heat radiation side copper plate is set to 50 to 95% of the volume of the circuit side copper plate as described in JP-A-63-248195, cracking occurs. It is not possible to sufficiently suppress the occurrence and progression of. It is an object of the present invention to provide a product that can withstand actual use by suppressing the generation and progress of cracks that occur in a copper plate AlN substrate bonded with a brazing material of an alloy containing an active metal.

【0004】[0004]

【課題を解決するための手段】本発明は、AlN基板の
一方の面に回路側銅板を、他方の面に放熱側銅板を、活
性金属を含む合金のろう材によりそれぞれ接合した基板
において、放熱側銅板の厚さが回路側銅板の厚さの50
%以下であることを特徴とする銅板接合AlN基板であ
る。
DISCLOSURE OF THE INVENTION According to the present invention, in a substrate in which a circuit side copper plate is bonded to one surface of an AlN substrate and a heat radiation side copper plate is bonded to the other surface thereof by a brazing material of an alloy containing an active metal, The thickness of the copper plate on the side is 50 times the thickness of the copper plate on the circuit side.
% Or less, a copper plate-bonded AlN substrate.

【0005】[0005]

【作用】本発明に使用される活性金属にはTi、Zr、
Hf等がある。回路側の銅板の厚さを0.3mmに固定
して、放熱側銅板の厚さを0.4、0.3、0.2、
0.1、0mmとして、有限要素法による熱応力解析を
したところ、放熱側の銅板が薄くなればなるほど、Al
N基板に発生する熱応力は減少し、亀裂が発生しにくく
なることを知見した。この解析結果をもとにして、実際
の使用に十分耐える銅板接合AlN基板の開発に成功
し、上記発明を完成した。
The active metals used in the present invention include Ti, Zr,
There are Hf etc. The thickness of the copper plate on the circuit side is fixed to 0.3 mm, and the thickness of the copper plate on the heat dissipation side is 0.4, 0.3, 0.2,
Thermal stress analysis by the finite element method with 0.1 and 0 mm shows that the thinner the copper plate on the heat radiation side, the more Al
It was found that the thermal stress generated in the N substrate is reduced and cracks are less likely to occur. Based on the results of this analysis, we succeeded in developing a copper plate-bonded AlN substrate that can withstand actual use, and completed the above invention.

【0006】[0006]

【実施例】54mm×36mm、厚さ0.635±0.
05mmのAlN基板の両面にTi−Ag−Cuろう材
を介在させた後、真空中(10-6Torr)、約850
℃で30分熱処理して、以下の実施例における条件下で
回路側銅板と放熱側銅板を接合した。熱サイクル試験に
おいては、銅板接合AlN基板に−40〜125℃の熱
負荷(1サイクル60分)を与えて100、200、4
00、600、800、1000回にて試料を採集し
た。そして銅板とろう材を除去後、破断面の電子顕微鏡
写真を撮影して、厚さ方向の亀裂の長さを測定し、5個
の試料の値を平均した。
EXAMPLE 54 mm × 36 mm, thickness 0.635 ± 0.
After interposing a Ti-Ag-Cu brazing material on both surfaces of a 05 mm AlN substrate, in vacuum (10 -6 Torr), about 850
After heat treatment at 30 ° C. for 30 minutes, the circuit-side copper plate and the heat-radiating-side copper plate were joined under the conditions in the following examples. In the heat cycle test, a heat load (60 minutes per cycle) of -40 to 125 ° C was applied to the copper plate-bonded AlN substrate for 100, 200, 4
Samples were collected at 00, 600, 800 and 1000 times. Then, after removing the copper plate and the brazing material, an electron micrograph of the fracture surface was taken, the length of the crack in the thickness direction was measured, and the values of the five samples were averaged.

【0007】条件: 回路側銅板: 厚さ 0.3mm、0.5mm、
1.0mm AlN基板: 厚さ 0.635mm 放熱側銅板: 寸法 50mm×32mm 厚さ 0.05mm,0.15mm,0.25mm,
0.3mm,0.5mm,0.8mm 表1に回路側銅板の厚さが0.3mmの銅板接合AlN
基板の熱サイクル試験における厚さ方向の亀裂の長さの
変化を示す。放熱側銅板の厚さが0.25mmの接合体
は熱サイクル数800回で亀裂が貫通し、1000回も
たない。0.15mmにすると1000回でも亀裂の長
さは0.223mmであり十分使用に耐える。0.05
mmにすると、400回まで亀裂は発生せず、1000
回でも亀裂の長さは0.103mmであり、さらによく
なる。
Conditions: Circuit side copper plate: Thickness 0.3 mm, 0.5 mm,
1.0 mm AlN substrate: Thickness 0.635 mm Heat dissipation side copper plate: Dimension 50 mm x 32 mm Thickness 0.05 mm, 0.15 mm, 0.25 mm,
0.3mm, 0.5mm, 0.8mm Table 1 shows copper plate bonded AlN with a circuit side copper plate thickness of 0.3mm
4 shows a change in crack length in the thickness direction in a heat cycle test of a substrate. In the bonded body having a radiating side copper plate having a thickness of 0.25 mm, cracks penetrated after 800 thermal cycles and did not last 1000 times. When it is set to 0.15 mm, the crack length is 0.223 mm even after 1000 times, and it can be sufficiently used. 0.05
When it is set to mm, cracks do not occur up to 400 times and 1000
Even at the time of the crack, the crack length is 0.103 mm, which is even better.

【0008】表2に回路側銅板の厚さが0.5mmの銅
板接合AlN基板の熱サイクル試験における厚さ方向の
亀裂の長さの変化を示す。放熱側銅板の厚さが0.3m
mの接合体は熱サイクル数600回で亀裂が貫通する。
0.25mmにすると1000回でも亀裂の長さは、
0.390mmであり使用に耐える。0.05mmにす
ると、200回まで亀裂は発生しない。1000回でも
亀裂の長さは0.128mmであり、さらに良くなる。
Table 2 shows the change in the crack length in the thickness direction in a thermal cycle test of a copper plate-bonded AlN substrate having a circuit side copper plate having a thickness of 0.5 mm. Radiation side copper plate thickness is 0.3m
In the bonded body of m, the crack penetrates after 600 thermal cycles.
If the length is 0.25 mm, the crack length is 1000 times,
It is 0.390 mm and can be used. When it is 0.05 mm, cracks do not occur up to 200 times. Even after 1000 times, the crack length is 0.128 mm, which is even better.

【0009】表3に回路側銅板の厚さが1.0mmの銅
板接合AlN基板の熱サイクル試験における厚さ方向の
亀裂の長さの変化を示す。放熱側銅板の厚さが0.8m
mの接合体は熱サイクル数400回で亀裂が貫通する。
0.5mmにすると1000回でも亀裂の長さは、0.
413mmであり使用に耐える。0.05mmにすると
1000回における亀裂の長さは0.173mmであ
り、さらに良くなる。
Table 3 shows the change in the crack length in the thickness direction in the thermal cycle test of the copper plate-bonded AlN substrate having the circuit-side copper plate having a thickness of 1.0 mm. The thickness of the radiation side copper plate is 0.8m
In the bonded body of m, the crack penetrates after 400 thermal cycles.
When the length is 0.5 mm, the crack length is 0.
It is 413 mm and can be used. When the length is 0.05 mm, the crack length at 1000 times is 0.173 mm, which is even better.

【0010】したがって、回路側の銅板の厚さに関係な
く、放熱側銅板の厚さを回路側の銅板の厚さの50%以
下にした銅板接合AlN基板は、−40〜+125℃の
熱負荷を1000回かけても亀裂が貫通せず、実際の使
用に十分に耐える。また、この方法は、他の金属と他の
セラミックス基板との組合せにおいても同様な効果があ
る。
Therefore, regardless of the thickness of the copper plate on the circuit side, a copper plate-bonded AlN substrate in which the thickness of the heat radiation side copper plate is 50% or less of the thickness of the circuit side copper plate is a thermal load of -40 to + 125 ° C. Even after 1000 times, the crack does not penetrate, and it is sufficiently durable for actual use. In addition, this method has the same effect even in the combination of another metal and another ceramic substrate.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】[0014]

【発明の効果】上述したように、本発明による銅板接合
AlN基板においては、AlN基板に発生する熱応力が
小さく、亀裂の発生と進行を十分に抑制することが可能
であり、実際の使用に十分に耐えることができる。
As described above, in the copper plate-bonded AlN substrate according to the present invention, the thermal stress generated in the AlN substrate is small, and the generation and progress of cracks can be sufficiently suppressed, and it is suitable for practical use. Can withstand enough.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金丸 孝男 千葉市川崎町1番地 川崎製鉄株式会社技 術研究本部内 (72)発明者 熊谷 正人 千葉市川崎町1番地 川崎製鉄株式会社技 術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Kanemaru 1 Kawasaki-cho, Chiba City Kawasaki Steel Co., Ltd. Technical Research Division (72) Inventor Masato Kumagai 1 Kawasaki-cho Chiba City Kawasaki Steel Co., Ltd. Technical Research Division Within

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 AlN基板の一方の面に回路側銅板を、
他方の面に放熱側銅板を、活性金属を含む合金のろう材
によりそれぞれ接合した基板において、放熱側鋼板の厚
さが回路側銅板の厚さの50%以下であることを特徴と
する銅板接合AlN基板。
1. A circuit-side copper plate on one surface of an AlN substrate,
In a board in which a heat radiation side copper plate is bonded to the other surface by a brazing material of an alloy containing an active metal, the thickness of the heat radiation side steel plate is 50% or less of the thickness of the circuit side copper plate AlN substrate.
JP3343219A 1991-12-25 1991-12-25 Copper plate-joined aln substrate Pending JPH05170564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3343219A JPH05170564A (en) 1991-12-25 1991-12-25 Copper plate-joined aln substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3343219A JPH05170564A (en) 1991-12-25 1991-12-25 Copper plate-joined aln substrate

Publications (1)

Publication Number Publication Date
JPH05170564A true JPH05170564A (en) 1993-07-09

Family

ID=18359839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3343219A Pending JPH05170564A (en) 1991-12-25 1991-12-25 Copper plate-joined aln substrate

Country Status (1)

Country Link
JP (1) JPH05170564A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024813A1 (en) * 2011-08-12 2013-02-21 三菱マテリアル株式会社 Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
JP2013041913A (en) * 2011-08-12 2013-02-28 Mitsubishi Materials Corp Power module substrate, power module substrate with heat sink, power module and power module substrate manufacturing method
JP2013041924A (en) * 2011-08-12 2013-02-28 Mitsubishi Materials Corp Power module substrate, power module substrate with heat sink, power module and power module substrate manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024813A1 (en) * 2011-08-12 2013-02-21 三菱マテリアル株式会社 Substrate for power module, substrate for power module with heat sink, power module, and method for manufacturing substrate for power module
JP2013041913A (en) * 2011-08-12 2013-02-28 Mitsubishi Materials Corp Power module substrate, power module substrate with heat sink, power module and power module substrate manufacturing method
JP2013041924A (en) * 2011-08-12 2013-02-28 Mitsubishi Materials Corp Power module substrate, power module substrate with heat sink, power module and power module substrate manufacturing method
US9066433B2 (en) 2011-08-12 2015-06-23 Mitsubishi Materials Corporation Power module substrate, power module substrate with heat sink, power module, and method of manufacturing power module substrate

Similar Documents

Publication Publication Date Title
JP3211856B2 (en) Circuit board
RU2204182C2 (en) Circuit substrate (alternatives) and its manufacturing process
JPH0936540A (en) Ceramic circuit board
JP3834351B2 (en) Ceramic circuit board
JP3890539B2 (en) Ceramic-metal composite circuit board
JPH1065296A (en) Ceramic circuit board
JPH05170564A (en) Copper plate-joined aln substrate
JP2001085808A (en) Circuit board
JP2001144234A (en) Semiconductor mounting insulation circuit substrate
JPH11121889A (en) Circuit board
JP4910113B2 (en) Method for producing metal / ceramic bonding substrate
JPH05327139A (en) Copper plate bonded alumina board
JP4557398B2 (en) Electronic element
JP2003034585A (en) Joint body of nitride-based ceramic member and metal member, and nitride-based ceramic circuit board using the same
JPH08102570A (en) Ceramic circuit board
JPH0451583A (en) Metal-sheet bonded ceramic board
JP3370060B2 (en) Ceramic-metal joint
JP2677748B2 (en) Ceramics copper circuit board
JPH05201777A (en) Ceramic-metal joined body
JPH10167804A (en) Ceramic substrate, circuit board using same and its production
JP3081256B2 (en) Alloy for metallizing ceramics and metallizing method
JP2945198B2 (en) Joining method of copper plate and ceramics
JPH0684058B2 (en) Method for metallizing ceramics and alloy foil for metallizing ceramics
JP3342797B2 (en) Method for manufacturing ceramic circuit board having metal circuit
JP3289860B2 (en) Joining method of ceramics and silicon

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991130