JPH05159803A - Manufacture of solid secondary battery - Google Patents

Manufacture of solid secondary battery

Info

Publication number
JPH05159803A
JPH05159803A JP3324214A JP32421491A JPH05159803A JP H05159803 A JPH05159803 A JP H05159803A JP 3324214 A JP3324214 A JP 3324214A JP 32421491 A JP32421491 A JP 32421491A JP H05159803 A JPH05159803 A JP H05159803A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
solid secondary
binder
layer mainly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3324214A
Other languages
Japanese (ja)
Other versions
JP3240650B2 (en
Inventor
Tadashi Tonomura
正 外邨
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32421491A priority Critical patent/JP3240650B2/en
Publication of JPH05159803A publication Critical patent/JPH05159803A/en
Application granted granted Critical
Publication of JP3240650B2 publication Critical patent/JP3240650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a manufacturing method of a solid secondary battery allowing an excellent discharge property and a long life by suppressing especially a phenomenon of expanding of electrodes in the process of charge and discharge while suppressing increase in the inside resistance during charge and discharge, and removing bad influence due to moisture in the atmosphere. CONSTITUTION:In a solid secondary battery consisting of a layer mainly composed of an electrode material and a binder and a layer mainly composed of an electrolyte and a binder, a thin plate consisting of a metal and resin is used as a battery jar and its periphery is heated and fused under reduced pressure while pressing it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体二次電池の製造法に
関し、特に構成材料がすべて固体のいわゆる固体二次電
池の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid secondary battery, and more particularly to a method for manufacturing a so-called solid secondary battery whose constituent materials are all solid.

【0002】[0002]

【従来の技術】各種の電源として使われる電池のうち構
成材料がすべて固体であるいわゆる固体電池は、液漏れ
がなく、したがって高信頼性が期待でき、小形軽量化も
可能などの理由で一次、二次電池ともに注目されてき
た。現在のところ各種機器のメモリーバックアップ用を
中心に考えられている。
2. Description of the Related Art Among batteries used as various power sources, so-called solid-state batteries, whose constituent materials are all solid, have no liquid leakage, and therefore can be expected to have high reliability, and can be made compact and lightweight for any reason. Attention has been paid to both secondary batteries. Currently, it is mainly used for memory backup of various devices.

【0003】この固体電池では、電池内でイオンを動か
すための固体電解質としてLi+イオン導電性固体電解
質、Ag+イオン導電性固体電解質、H+イオン導電性固
体電解質それにRbCu41.5Cl3.5、CuI−Cu2
O−MoO3などのCu+イオン導電性固体電解質などが
取り上げられている。
In this solid battery, Li + ion conductive solid electrolyte, Ag + ion conductive solid electrolyte, H + ion conductive solid electrolyte and RbCu 4 I 1.5 Cl 3.5 are used as solid electrolytes for moving ions in the battery. CuI-Cu 2
Cu + ion conductive solid electrolytes such as O-MoO 3 are taken up.

【0004】また、正極用材料としてはCu0.1Ti
2、Ag0.1TiS2、Cu0.1NbS2、Ag0.1NbS
2、WO3それにCuyMo68-2、FeyMo68-2(但
し、いずづれもy=0〜4、z=0〜0.2)などのシ
ェブレル相化合物があげられている。一方、負極にはC
u、Ag、Li1.5WO3それに正極用と同様のシェブレ
ル相化合物が試みられている。
Further, as a material for the positive electrode, Cu 0.1 Ti
S 2 , Ag 0.1 TiS 2 , Cu 0.1 NbS 2 , Ag 0.1 NbS
2 , WO 3, and Cu y Mo 6 S 8-2 , Fe y Mo 6 S 8-2 (however, y = 0 to 4, z = 0 to 0.2 in each case) and the like. Has been. On the other hand, the negative electrode is C
u, Ag, Li 1.5 WO 3 and similar Chevrel phase compounds for the positive electrode have been tried.

【0005】[0005]

【発明が解決しようとする課題】このような構成の固体
二次電池を製造し充放電を行なったところ、比較的少な
いサイクル数で容量の低下が認められた。すなわち、充
放電を繰返すと内部抵抗が増加して性能の劣化が認めら
れた。その原因について調べた結果、電極が充放電の過
程で膨張し内部抵抗が増加して諸性能が劣化することが
判明した。
When the solid secondary battery having such a structure was manufactured and charged and discharged, the capacity was found to be reduced in a relatively small number of cycles. That is, when charging and discharging were repeated, the internal resistance increased and deterioration of performance was recognized. As a result of investigating the cause, it was found that the electrode expands in the process of charging and discharging, the internal resistance increases, and various performances deteriorate.

【0006】さらに、放電特性や寿命などの点で有望で
ある電解質としてRbCu41.5Cl3.5などのCu+
オン導電性固体電解質、正極および負極用材料としてC
yMo68-2などのシェブレル相化合物を用いた際
に、大気中の水分による電極や電解質材料の変質などの
悪影響も発生しやすい問題があった。本発明はこのよう
な問題を解決するもので、内部抵抗の少ない、高性能の
全固体二次電池の製造法を提供することを目的する。
Further, a Cu + ion conductive solid electrolyte such as RbCu 4 I 1.5 Cl 3.5 is used as a promising electrolyte in terms of discharge characteristics and life, and C is used as a material for the positive and negative electrodes.
When a chevrel phase compound such as u y Mo 6 S 8-2 is used, there is a problem that adverse effects such as alteration of electrodes and electrolyte materials due to moisture in the atmosphere are likely to occur. The present invention solves such a problem, and an object of the present invention is to provide a method for manufacturing a high-performance all-solid-state secondary battery with low internal resistance.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明の固体二次電池の製造法は、電極材料あるいはこ
れに結着剤を加えた層と、電解質あるいはこれを結着剤
を加えた層からなる固体二次電池を、薄形のリチウム電
池などに利用されている金属および樹脂からなる薄膜を
電槽として用い、これをプレス機により加圧しながら真
空減圧下でその周囲を加熱融着することにより電池を構
成する。金属としては、アルミニウム、銅、ニッケル、
ステンレススチール、チタン、樹脂はポリエチレン、ポ
リプロピレンなどのポリオレフィン系のそれぞれ薄板が
よい。
In order to achieve this object, a method for producing a solid secondary battery according to the present invention comprises an electrode material or a layer obtained by adding a binder thereto and an electrolyte or a layer obtained by adding a binder thereto. A thin solid battery made of metal and resin, which is used in thin lithium batteries, is used as a battery case for the solid secondary battery. A battery is constructed by wearing the battery. The metals include aluminum, copper, nickel,
The stainless steel, titanium, and resin are preferably polyolefin-based thin plates such as polyethylene and polypropylene.

【0008】さらに電池周辺部に接着剤を被覆した後
に、減圧下で金属および樹脂からなる薄板の周囲を加熱
融着してもよく、この際プレス機により加圧してもよ
い。加圧の効果をより徹底するために電池を2枚の板で
挟み、これを電池周辺部で接着する工程を加える。この
場合、板は集電体であっても、別に配しておいても良
い。
Further, after coating the peripheral portion of the battery with an adhesive, the periphery of the thin plate made of metal and resin may be heat-sealed under reduced pressure, and in this case, pressurization may be performed by a press machine. In order to make the effect of pressurization more thorough, a step of sandwiching the battery between two plates and adhering this to the periphery of the battery is added. In this case, the plate may be a current collector or may be separately arranged.

【0009】[0009]

【作用】固体二次電池を金属および樹脂からなる薄膜を
電槽として用い、これをプレス機により加圧しながら真
空減圧下でその周囲を加熱融着することにより電池を構
成する。この工程中に電池周辺部に接着剤を被覆したり
電池を2枚の板で挟みこれを電池周辺部で接着する工程
を加える。これらの場合はプレス機による加圧は省略し
てもよい。これらの製法により、電極と電解質の層が強
固に圧着した状態で電池が得られるので、充放電の過程
で電池が膨張する現象を抑制でき、したがって内部抵抗
の増大を抑制することができる。
In the solid secondary battery, a thin film made of metal and resin is used as a battery case, and the periphery of the battery is heated and fused under reduced pressure in a vacuum while being pressurized by a press machine. During this step, there is added a step of coating an adhesive agent on the peripheral portion of the battery or sandwiching the battery between two plates and adhering this on the peripheral portion of the battery. In these cases, the pressing by the press may be omitted. By these manufacturing methods, a battery can be obtained in a state where the electrode and the electrolyte layer are firmly pressure-bonded to each other, so that it is possible to suppress the phenomenon that the battery expands during the process of charging and discharging, and thus to suppress the increase of the internal resistance.

【0010】また電解質としてRbCu41.5Cl3.5
などのCu+イオン導電性固体電解質、正極および負極
用材料としてCuyMo68-2などのシェブレル相化合
物を用いた際には、金属および樹脂からなる薄膜を電槽
として用いるので、大気中の水分による悪影響を有効に
避けることができる。
Further, RbCu 4 I 1.5 Cl 3.5 is used as an electrolyte.
When using a Cu + ion conductive solid electrolyte such as, and a Chevrel phase compound such as Cu y Mo 6 S 8-2 as a material for the positive electrode and the negative electrode, a thin film made of metal and resin is used as a battery case. It is possible to effectively avoid the adverse effect of moisture in the inside.

【0011】[0011]

【実施例】以下、本発明の一実施例の固体二次電池の製
造法について説明する。正および負電極用材料とて銅シ
ェブレル(Cu2Mo68)を1000g用い、これに
電解質としてRbCu41.5Cl3.5を用い、この粉末
500gに結着剤として市販のアクリル系樹脂が8wt
%になるように、そのアセトン溶液を加え充分撹拌して
ペーストを得る。これを公知のドクターブレード法によ
り厚さ0.35mmの電極シートを作成する。
EXAMPLES A method of manufacturing a solid secondary battery according to an example of the present invention will be described below. 1000 g of copper chevrel (Cu 2 Mo 6 S 8 ) was used as the material for the positive and negative electrodes, and RbCu 4 I 1.5 Cl 3.5 was used as the electrolyte in this, and 500 g of this powder contained 8 wt% of a commercially available acrylic resin as a binder.
%, The acetone solution is added and sufficiently stirred to obtain a paste. An electrode sheet having a thickness of 0.35 mm is prepared from this by a known doctor blade method.

【0012】電解質としてRbCu41.5Cl3.5を用
い、やはり結着剤として市販のアクリル系樹脂が11w
t%になるように、そのアセトン溶液を加え充分撹拌し
てペーストを得る。これを公知のドクターブレード法に
より厚さ0.12mmの電解質シートを作成する。正極シ
ート、電解質シート、負極シートの順に重ね、まずこれ
らを160℃に加熱したプレス機で500kg/cm2の条
件で一体に加圧し、その後に70℃で乾燥した。一体化
したものの両面にゴム中にカーボンブラック微粉末を分
散させた市販のカーボンフィルムを集電体として当てた
後、さらにその外側に厚さ0.3mm、径26mmのCu板
を当てて120℃、500kg/cm2の条件で加圧一体化
した。加圧一体化して得た裸の電池を、厚さ0.10mm
のポリエチレンフィルムと一体化した厚さ0.05mmの
アルミニウム板2枚の間にポリエチレンフィルムが裸の
電池の上下に当接するように挟み、電池全体を真空ポン
プで減圧に保ちながら、アルミニウム板の上から内側の
ポリエチレンフィルムを130℃、100kg/cm2の条
件で加圧加熱融着して電池を構成した。なおCu板とア
ルミニウム板は導電性接着剤で接着固定した。この電池
をAとする。
RbCu 4 I 1.5 Cl 3.5 is used as an electrolyte, and a commercially available acrylic resin is also used as a binder.
The acetone solution is added so as to be t%, and the mixture is sufficiently stirred to obtain a paste. An electrolyte sheet having a thickness of 0.12 mm is prepared from this by a known doctor blade method. The positive electrode sheet, the electrolyte sheet, and the negative electrode sheet were stacked in this order, and these were pressed together under the condition of 500 kg / cm 2 with a press machine heated to 160 ° C., and then dried at 70 ° C. After putting a commercially available carbon film in which carbon black fine powder is dispersed in rubber on both sides of the integrated one as a current collector, a Cu plate having a thickness of 0.3 mm and a diameter of 26 mm is further applied to the outside thereof to 120 ° C. , 500 kg / cm 2 under pressure. Bare battery obtained by pressure integration is 0.10 mm thick
Sandwich the polyethylene film between two aluminum plates with a thickness of 0.05 mm that are integrated with the polyethylene film so that they come into contact with the top and bottom of a bare battery, and keep the whole battery at a reduced pressure with a vacuum pump. The inner polyethylene film was heated and fused under pressure at 130 ° C. and 100 kg / cm 2 to form a battery. The Cu plate and the aluminum plate were bonded and fixed with a conductive adhesive. This battery is designated as A.

【0013】つぎに、比較のために、減圧にしないで他
はAと同じ工程で得られた電池をBとした。
Next, for comparison, a battery obtained in the same process as A except that the pressure was not reduced was designated as B.

【0014】この両電池の特性を比較した。まず通常の
充放電での放電電圧と容量を調べた。0.2mAで0.
58Vまでの充電と0.2mAで0.3Vまでの放電を
行なったところ、Aでは平均電圧は0.47V、放電容
量は4.6mAhに対して、Bでは、それぞれ0.46
V、4.3mAhであり、AはややBより優れていた。
The characteristics of these two batteries were compared. First, the discharge voltage and capacity during normal charge and discharge were examined. 0 at 0.2 mA.
When the battery was charged up to 58 V and discharged at 0.2 mA to 0.3 V, the average voltage at A was 0.47 V and the discharge capacity was 4.6 mAh, while at B, it was 0.46 V.
V was 4.3 mAh, and A was slightly superior to B.

【0015】そこで、つぎに各電池の充放電サイクル寿
命特性を調べた。0.2mAで0.56Vまでの充電、
0.05mAで0.3Vまでの放電を繰り返した。電池
は、いずれも10セル用いた。周囲温度を20℃とし
た。その結果、放電容量が初期の60%にまで劣化する
充放電サイクル数が、Aでは1300〜1400サイク
ルであったのに対して、Bでは1100〜1200サイ
クルであり、Aが長寿命であった。
Then, the charge / discharge cycle life characteristics of each battery were examined next. Charge up to 0.56V at 0.2mA,
Discharge up to 0.3 V at 0.05 mA was repeated. 10 cells were used for each battery. The ambient temperature was 20 ° C. As a result, the number of charge / discharge cycles at which the discharge capacity deteriorates to 60% of the initial value was 1300 to 1400 cycles in A, whereas it was 1100 to 1200 cycles in B, and A had a long life. ..

【0016】[0016]

【発明の効果】以上の実施例の説明により明らかなよう
に、本発明の固体二次電池の製造法によれば、電極材料
と結着剤を主とする層と、電解質と結着剤を主とする層
からなる固体二次電池に、金属および樹脂からなる薄板
を電槽として用い、これをプレスしつつ減圧下でその周
囲を加熱融着することにより、充放電の過程でとくに電
極が膨張する現象を抑制し、したがって電池の充放電中
での内部抵抗の増加を抑え、さらに、大気中の水分によ
る悪影響を除くことが可能になり、優れた放電性能や長
寿命化が可能になる。
As is apparent from the above description of the embodiments, according to the method for producing a solid secondary battery of the present invention, an electrode material, a layer mainly containing a binder, an electrolyte and a binder are used. A thin plate made of a metal and a resin is used as a battery case in a solid secondary battery composed of a main layer, and the periphery of the plate is heated and fused under reduced pressure while being pressed. Suppresses the phenomenon of expansion, thus suppressing the increase in internal resistance during battery charging and discharging, and eliminating the adverse effects of moisture in the atmosphere, which enables superior discharge performance and longer life. ..

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電極材料と結着剤を主とする層と、電解質
と結着剤を主とする層からなる固体二次電池において、
金属および樹脂からなる薄板を電槽として用い、これを
プレスしつつ減圧下でその周囲を加熱融着することによ
り電池を構成する固体二次電池の製造法。
1. A solid secondary battery comprising a layer mainly containing an electrode material and a binder and a layer mainly containing an electrolyte and a binder,
A method for producing a solid secondary battery, wherein a thin plate made of a metal and a resin is used as a battery case, and the periphery of the thin plate is heated and fused while being pressed while being pressed.
【請求項2】電極材料と結着剤を主とする層と、電解質
と結着剤を主とする層からなる固体二次電池において、
電池周辺部に接着剤を被覆した後に、金属および樹脂か
らなる薄板を電槽として用い、減圧下でその周囲を加熱
融着することにより電池を構成する固体二次電池の製造
法。
2. A solid secondary battery comprising a layer mainly composed of an electrode material and a binder, and a layer mainly composed of an electrolyte and a binder,
A method for producing a solid secondary battery, which comprises forming a battery by coating a peripheral portion of the battery with an adhesive, using a thin plate made of metal and resin as a battery case, and heating and fusing the periphery thereof under reduced pressure.
【請求項3】電極材料と結着剤を主とする層と、電解質
と結着剤を主とする層からなる固体二次電池において、
電池周辺部に接着剤を被覆した後に、金属および樹脂か
らなる薄板を電槽として用い、これをプレスしつつ減圧
下でその周囲を加熱融着することにより電池を構成する
固体二次電池の製造法。
3. A solid secondary battery comprising a layer mainly containing an electrode material and a binder and a layer mainly containing an electrolyte and a binder,
Manufacture of a solid secondary battery that constitutes a battery by coating a peripheral part of the battery with an adhesive and then using a thin plate made of metal and resin as a battery case and heating and fusing the periphery thereof under reduced pressure while pressing this Law.
【請求項4】電池の両外側面にそれぞれ板を配し、この
2枚の板を電池周辺部で接着する工程を加える請求項
1,2または3記載の固体二次電池の製造法。
4. The method for producing a solid secondary battery according to claim 1, wherein a plate is arranged on each of both outer side surfaces of the battery, and the step of adhering the two plates at the peripheral portion of the battery is added.
【請求項5】電池が積層構造である請求項1,2,3ま
たは4記載の固体二次電池の製造法。
5. The method for producing a solid secondary battery according to claim 1, 2, 3 or 4, wherein the battery has a laminated structure.
【請求項6】金属がアルミニウム、銅、ニッケル、ステ
ンレススチール、チタン、樹脂がポリオレフィン系のそ
れぞれ薄膜である請求項1,2,3,4または5記載の
固体二次電池の製造法。
6. The method for producing a solid secondary battery according to claim 1, wherein the metal is aluminum, copper, nickel, stainless steel, titanium, and the resin is a polyolefin-based thin film, respectively.
JP32421491A 1991-12-09 1991-12-09 Manufacturing method of solid state secondary battery Expired - Fee Related JP3240650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32421491A JP3240650B2 (en) 1991-12-09 1991-12-09 Manufacturing method of solid state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32421491A JP3240650B2 (en) 1991-12-09 1991-12-09 Manufacturing method of solid state secondary battery

Publications (2)

Publication Number Publication Date
JPH05159803A true JPH05159803A (en) 1993-06-25
JP3240650B2 JP3240650B2 (en) 2001-12-17

Family

ID=18163320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32421491A Expired - Fee Related JP3240650B2 (en) 1991-12-09 1991-12-09 Manufacturing method of solid state secondary battery

Country Status (1)

Country Link
JP (1) JP3240650B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797429B1 (en) 1998-11-06 2004-09-28 Japan Storage Battery Co, Ltd. Non-aqueous electrolytic secondary cell
US8870976B2 (en) 2006-08-31 2014-10-28 Seiko Epson Corporation Method for manufacturing a secondary battery
US9257718B2 (en) 2006-08-31 2016-02-09 Seiko Epson Corporation Secondary battery
CN107240718A (en) * 2017-06-19 2017-10-10 中国科学院物理研究所 Solid state battery and preparation method thereof
CN113851763A (en) * 2021-09-15 2021-12-28 中汽创智科技有限公司 Solid-state battery structure and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6655837B2 (en) 1998-05-29 2003-12-02 Toyo Seikan Kaisha, Ltd. Pouch having a branched chamber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797429B1 (en) 1998-11-06 2004-09-28 Japan Storage Battery Co, Ltd. Non-aqueous electrolytic secondary cell
US7267904B2 (en) 1998-11-06 2007-09-11 Gs Yuasa Corporation Nonaqueous secondary electrolytic battery
US7348099B2 (en) 1998-11-06 2008-03-25 Gs Yuasa Corporation Nonaqueous secondary electrolytic battery
US8870976B2 (en) 2006-08-31 2014-10-28 Seiko Epson Corporation Method for manufacturing a secondary battery
US9257718B2 (en) 2006-08-31 2016-02-09 Seiko Epson Corporation Secondary battery
CN107240718A (en) * 2017-06-19 2017-10-10 中国科学院物理研究所 Solid state battery and preparation method thereof
CN107240718B (en) * 2017-06-19 2019-09-27 中国科学院物理研究所 Solid state battery and preparation method thereof
CN113851763A (en) * 2021-09-15 2021-12-28 中汽创智科技有限公司 Solid-state battery structure and preparation method thereof

Also Published As

Publication number Publication date
JP3240650B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
JPH09213338A (en) Battery and lithium ion secondary battery
JP3533117B2 (en) Method of manufacturing film-covered battery
JP2003031261A (en) Bipolar battery
EP3726638A1 (en) Secondary battery capacity recovery method and secondary battery capacity recovery apparatus
JP3508514B2 (en) Organic electrolyte battery
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
WO1999026308A1 (en) Bonding agent for cells and cell using the same
JPH0513099A (en) Manufacture of solid secondary battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JP3211308B2 (en) Manufacturing method of solid state secondary battery
JPH0355767A (en) Manufacture of solid secondary battery
JPH02253569A (en) Manufacture of solid state secondary battery
JPH056775A (en) Manufacture of solid secondary battery
JP2780391B2 (en) Manufacturing method of solid state secondary battery
JPH0384869A (en) Manufacture of solid secondary cell
JPH02114460A (en) Manufacture of solid secondary battery
JP2732442B2 (en) Manufacturing method of solid state secondary battery
JP2658396B2 (en) Method for manufacturing solid secondary battery
JP4507300B2 (en) Non-aqueous gel secondary battery and manufacturing method thereof
JPH02174077A (en) Solid secondary battery and manufacture thereof
JP2770388B2 (en) Manufacturing method of all solid state secondary battery
JPH02247980A (en) Manufacture of all-solid secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees