JP2770492B2 - Manufacturing method of solid state secondary battery - Google Patents

Manufacturing method of solid state secondary battery

Info

Publication number
JP2770492B2
JP2770492B2 JP1287043A JP28704389A JP2770492B2 JP 2770492 B2 JP2770492 B2 JP 2770492B2 JP 1287043 A JP1287043 A JP 1287043A JP 28704389 A JP28704389 A JP 28704389A JP 2770492 B2 JP2770492 B2 JP 2770492B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
battery
electrolyte
softening point
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1287043A
Other languages
Japanese (ja)
Other versions
JPH03149765A (en
Inventor
勉 岩城
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1287043A priority Critical patent/JP2770492B2/en
Publication of JPH03149765A publication Critical patent/JPH03149765A/en
Application granted granted Critical
Publication of JP2770492B2 publication Critical patent/JP2770492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は構成材料がすべて固体のいわゆる固体二次電
池の製造法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a so-called solid secondary battery in which all constituent materials are solid.

従来の技術 各種の電源として使われる電池のうち構成材料がすべ
て固体である固体電池は、液漏れがなく、したがって高
信頼性が期待でき、小形軽量化も可能などの理由で一
次、二次電池ともに注目されてきた。その用途として、
現在のところ各種機器のメモリーバックアップ用を中心
に考えられている。
2. Description of the Related Art Among all types of batteries used as power sources, solid-state batteries, in which all of the components are solid, have no liquid leakage and therefore can be expected to have high reliability and can be reduced in size and weight for primary and secondary batteries. Both have been noticed. As its use,
At present, it is mainly considered for memory backup of various devices.

この固体電池では、電池内でイオンを動かすための固
体電解質としてLi+イオン導電性固体電解質、Ag+イオン
導電性固体電解質、H+イオン導電性固体電解質それにRb
Cu4I1.5Cl31.5、CuI−Cu2O−MoO3などのCu+イオン導電
性固体電解質などが取り上げられている。
In this solid state battery, Li + ion conductive solid electrolyte, Ag + ion conductive solid electrolyte, H + ion conductive solid electrolyte and Rb are used as solid electrolytes to move ions in the battery.
Cu 4 I 1.5 Cl 31.5, such as Cu + ion conductive solid electrolyte such as CuI-Cu 2 O-MoO 3 is taken up.

また、正極用材料としてはCu0.1TiS2、Ag0.1TiS2、Cu
0.1NbS2、Ag0.1NbS2、WO3それにCuyMo6S8-z、FeyMo6S
8-zなどのシェブレル相化合物があげられている。一
方、負極にはCu、Ag、Li1.5WO3それに正極用と同様のシ
ェブレル相化合物が試みられている。
In addition, as materials for the positive electrode, Cu 0.1 TiS 2 , Ag 0.1 TiS 2 , Cu
0.1 NbS 2 , Ag 0.1 NbS 2 , WO 3 and Cu y Mo 6 S 8-z , Fe y Mo 6 S
Chevrel phase compounds such as 8-z are mentioned. On the other hand, for the negative electrode, Cu, Ag, Li 1.5 WO 3 and the same chevrel phase compound as for the positive electrode have been tried.

発明が解決しようとする課題 このような構成の固体二次電池を製造し充放電を行な
ったところ、室温での充放電特性は向上したが、たとえ
ば高温のような過酷な条件では比較的少ないサイクル数
で容量の低下が認められた。すなわち、充放電を繰返す
と内部抵抗が増加して性能の劣化が認められた。その原
因について調べた結果、この電池の場合も他の電解質に
溶液を用いる電池の場合と同様にとくに電極が充放電の
過程で若干でも膨張することが認められ、これが高温ほ
ど顕著であり内部抵抗が増加して諸性能が劣化する。
Problems to be Solved by the Invention When a solid-state secondary battery having such a configuration was manufactured and charged and discharged, the charge-discharge characteristics at room temperature were improved, but, for example, under a severe condition such as a high temperature, a relatively small cycle was used. A decrease in capacity was observed in the number. That is, when charge and discharge were repeated, the internal resistance was increased and the performance was deteriorated. As a result of investigating the cause, it was confirmed that the electrode expanded in the case of this battery as well as in the case of using a solution for other electrolytes, even in the process of charging and discharging, even if it was slightly higher. Increases and various performances deteriorate.

さらに、放電特性や寿命などの点で有望である電解質
としてRbCuI1.5Cl3.5、などのCu+イオン導電性固体電解
質、正極および負極用材料としてCuyMo6S8-zなどのシェ
ブレル相化合物を用いた際に、大気中の水分による電極
や電解質材料の変質などの悪影響も発生しやすい問題が
あった。
Furthermore, promising electrolytes such as RbCuI 1.5 Cl 3.5 as the electrolyte and Cu + ion conductive solid electrolytes such as Cu y Mo 6 S 8-z as materials for the positive and negative electrodes are used as promising electrolytes and lifetimes. When used, there is a problem that adverse effects such as deterioration of electrodes and electrolyte materials due to moisture in the air are likely to occur.

本発明は上記欠点を解決出来る固体二次電池の製造法
を提供するものである。
The present invention provides a method for manufacturing a solid-state secondary battery capable of solving the above-mentioned disadvantages.

課題を解決するための手段 本発明の固体二次電池の製造法は、電極材料と熱可塑
性結着剤を有する活物質層と、電解質と熱可塑性結着剤
を有する電解質層とからなり、金属薄板と熱可塑性樹脂
薄板との積層体を電槽として用い、上記活物質層中の熱
可塑性結着剤の軟化点温度以上の温度で、かつ上記電槽
中の熱可塑性樹脂薄板の軟化点温度以上の温度で全体を
加圧しつつ、上記電槽の熱可塑性樹脂を加熱融着するこ
とにより封口を行い、この後上記軟化点以下の温度で常
圧に戻すことを特徴とする。また、本発明の固体二次電
池の製造法は、電極材料を有する活物質層と、電解質を
有する電解質層とからなり、上記活物質層または上記電
解質層の周辺部に接着剤を被覆した後に、金属薄板と熱
可塑性樹脂薄板との積層体を電槽として用い、上記熱可
塑性樹脂薄板の軟化点温度以上の温度で全体を加圧しつ
つ、上記電槽の熱可塑性樹脂を加熱融着することにより
封口を行い、この後上記軟化点以下の温度で常圧に戻す
ことを特徴とする。
Means for Solving the Problems The method for producing a solid secondary battery of the present invention comprises an active material layer having an electrode material and a thermoplastic binder, and an electrolyte layer having an electrolyte and a thermoplastic binder. Using a laminate of a thin plate and a thermoplastic resin thin plate as a battery case, at a temperature equal to or higher than the softening point temperature of the thermoplastic binder in the active material layer, and the softening point temperature of the thermoplastic resin thin plate in the battery case. Sealing is performed by heating and fusing the thermoplastic resin in the battery case while pressurizing the whole at the above temperature, and thereafter returning to normal pressure at a temperature below the softening point. Further, the method for producing a solid state secondary battery of the present invention comprises an active material layer having an electrode material and an electrolyte layer having an electrolyte, and after coating an adhesive on the periphery of the active material layer or the electrolyte layer. Using a laminate of a metal thin plate and a thermoplastic resin thin plate as a battery case, and heating and fusing the thermoplastic resin in the battery case while pressing the entire body at a temperature equal to or higher than the softening point temperature of the thermoplastic resin thin plate. And thereafter returning to normal pressure at a temperature below the softening point.

作用 以上の構成により、電極と電解質の層が強固に圧着し
た状態で電池が得られるので充放電の過程で若干でも膨
張する現象を抑制し、したがって内部抵抗が増大するこ
との抑制が可能になる。
Operation With the above configuration, a battery can be obtained in a state in which the electrode and the electrolyte layer are firmly pressed, so that the phenomenon of slight expansion during the charging / discharging process can be suppressed, and therefore, an increase in internal resistance can be suppressed. .

実施例 以下、本発明の構成を説明する。EXAMPLES Hereinafter, the configuration of the present invention will be described.

正および負電極用材料として銅シェブレル(Cu2Mo
6S8)を1000g用い、これに電解質としてRbCu4I1.5Cl3.5
を用い、この粉末500gに結着剤として市販のスチレン−
ブタジエン系樹脂が8Wt%になるように、そのトルエン
溶液を加え充分撹拌してペーストを得る。これを公知の
ドクターブレード法により厚さ0.35mmの電極シートを作
成する。
Copper Chebrel (Cu 2 Mo
6 S 8 ) using 1000 g of RbCu 4 I 1.5 Cl 3.5
Using 500 g of this powder, commercially available styrene-
A toluene solution of the butadiene-based resin is added at 8 Wt%, and the mixture is sufficiently stirred to obtain a paste. From this, an electrode sheet having a thickness of 0.35 mm is formed by a known doctor blade method.

電解質としてRbCu4I1.5Cl3.5を用い、やはり結着剤と
して同様の樹脂が11Wt%になるように、そのトルエン溶
液を加え充分撹拌してペーストを得る。これを公知のド
クターブレード法により厚さ0.12mmの電解質シートを作
成する。
RbCu 4 I 1.5 Cl 3.5 is used as an electrolyte, and a toluene solution of the same resin is used as a binder so that the same resin becomes 11 Wt%, and the mixture is sufficiently stirred to obtain a paste. From this, an electrolyte sheet having a thickness of 0.12 mm is prepared by a known doctor blade method.

正極用、電解質、負極用の順にそれぞれシートを重
ね、まずこれを180℃に加熱したプレス機で500Kg/cm2
条件で加圧し、その後にその両面にゴム中にカーボンブ
ラック微粉末を分散させた市販のカーボンフィルムを集
電体として当てた後、120℃、500Kg/cm2の条件で加圧一
体化した。これを電池周辺部に当たる部分に厚さ0.10mm
のポリプロピレンフィルムを用いこれと一体化した厚さ
0.05mmのアルミニウム板2枚の間に挟み、180℃に加熱
したローラ加圧機で150Kg/cm2の条件で電池全面を加圧
し、アルミニウム板の上から内側のポリプロピレンフィ
ルムを溶着して封口を行い、以下ただちに150℃、120
℃、100℃の順に加熱したローラ加圧機に通して電池を
製作した。この電池をAとする。
The sheets for the positive electrode, the electrolyte, and the negative electrode were stacked in this order, and this was first pressed under a condition of 500 kg / cm 2 by a press machine heated to 180 ° C., and then carbon black fine powder was dispersed in rubber on both surfaces thereof. A commercially available carbon film was applied as a current collector and then integrated under pressure at 120 ° C. and 500 kg / cm 2 . Apply 0.10mm thick to the area that hits the periphery of the battery
Thickness integrated with a polypropylene film
Sandwiched between aluminum plates two 0.05 mm, and subjected to sealing by welding the inner polypropylene film batteries entire surface with a roller pressing machine heated to 180 ° C. under conditions of 150 Kg / cm 2 pressurized from the top of the aluminum plate , Immediately below 150 ℃, 120
The battery was manufactured by passing through a roller pressing machine heated in the order of ° C and 100 ° C. This battery is designated as A.

つぎに比較のために180℃で封口し、ただちに常圧に
戻した電池をBとして加えた。
Next, for comparison, the battery sealed at 180 ° C. and immediately returned to normal pressure was added as B.

この両電池の特性を比較した。まず70℃での充放電で
の放電電圧と容量を調べた。0.58V定電位充電−0.2mAで
0.3Vまでの定電流放電を行なったところAでは平均電圧
は0.48V、放電容量は4.3mAhに対して、Bではそれぞれ
0.47V、4.1mAhでありAはややBより優れていた。
The characteristics of the two batteries were compared. First, the discharge voltage and capacity during charging and discharging at 70 ° C. were examined. 0.58V constant potential charging -0.2mA
When a constant current discharge was performed up to 0.3 V, the average voltage was 0.48 V and the discharge capacity was 4.3 mAh in A, and in B,
A was slightly better than B at 0.47 V, 4.1 mAh.

そこで、つぎに各電池の寿命特性を調べた。やはり70
℃で同じ条件で充放電を行なった。電池は、いずれも10
セル用いた。その結果放電容量が初期の80%にまで劣化
するサイクル数がAでは1050〜1100サイクルであったの
に対してBでは810〜880サイクルでありAが長寿命であ
った。
Then, the life characteristics of each battery were examined next. After all 70
The charge and discharge were performed at the same temperature under the same conditions. All batteries are 10
A cell was used. As a result, the number of cycles at which the discharge capacity was reduced to 80% of the initial value was 1050 to 1100 cycles for A, whereas 810 to 880 cycles for B, and A had a long life.

発明の効果 以上、本発明によれば、固体二次電池の電極や電解質
に熱可塑性結着剤を用いて一体化により電池素子を構成
後金属および樹脂からなる薄膜を電槽として用い結着剤
と樹脂薄膜の軟化点以上の温度でプレス機により電池全
面を加圧しながら電池周囲の樹脂を加熱融着することに
より電池を構成し、その後これら樹脂の軟化点以下の温
度で常圧に戻すので、電池の充放電中での内部抵抗の増
加を抑え、さらに大気中の水分による悪影響を除くこと
が可能になり、優れた放電性能や長寿命化が可能にな
る。
Effects of the Invention As described above, according to the present invention, after a battery element is integrally formed by using a thermoplastic binder for an electrode or an electrolyte of a solid secondary battery, a thin film made of a metal and a resin is used as a battery case, and the binder is used. The battery is constructed by heating and fusing the resin around the battery while pressing the entire surface of the battery with a press at a temperature above the softening point of the resin thin film, and then returning to normal pressure at a temperature below the softening point of these resins. In addition, it is possible to suppress an increase in internal resistance during charging / discharging of the battery, to remove an adverse effect due to moisture in the atmosphere, and to achieve excellent discharge performance and a long life.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電極材料と熱可塑性結着剤を有する活物質
層と、電解質と熱可塑性結着剤を有する電解質層とから
なり、金属薄板と熱可塑性樹脂薄板との積層体を電槽と
して用い、上記活物質層中の熱可塑性結着剤の軟化点温
度以上の温度で、かつ上記電槽中の熱可塑性樹脂薄板の
軟化点温度以上の温度で全体を加圧しつつ、上記電槽の
熱可塑性樹脂を加熱融着することにより封口を行い、こ
の後上記軟化点以下の温度で常圧に戻すことを特徴とす
る固体二次電池の製造法。
A laminated body of a metal thin plate and a thermoplastic resin thin plate, comprising an active material layer having an electrode material and a thermoplastic binder, and an electrolyte layer having an electrolyte and a thermoplastic binder is used as a battery case. Using, at a temperature equal to or higher than the softening point temperature of the thermoplastic binder in the active material layer, and while pressing the whole at a temperature equal to or higher than the softening point temperature of the thermoplastic resin sheet in the battery case, A method for producing a solid secondary battery, wherein sealing is performed by heating and fusing a thermoplastic resin, and thereafter, the pressure is returned to normal pressure at a temperature equal to or lower than the softening point.
【請求項2】電極材料を有する活物質層と、電解質を有
する電解質層とからなり、上記活物質層または上記電解
質層の周辺部に接着剤を被覆した後に、金属薄板と熱可
塑性樹脂薄板との積層体を電槽として用い、上記熱可塑
性樹脂薄板の軟化点以上の温度で全体を加圧しつつ、上
記電槽の熱可塑性樹脂を加熱融着することにより封口を
行い、この後上記軟化点以下の温度で常圧に戻すことを
特徴とする固体二次電池の製造法。
2. An active material layer having an electrode material and an electrolyte layer having an electrolyte. After the active material layer or the periphery of the electrolyte layer is coated with an adhesive, a thin metal sheet and a thin thermoplastic resin sheet are formed. Using the laminate of the above as a battery case, while the entire body is pressed at a temperature equal to or higher than the softening point of the thermoplastic resin thin plate, the thermoplastic resin of the battery case is sealed by heating and fusion, and then the softening point is reduced. A method for producing a solid state secondary battery, wherein the method returns to normal pressure at the following temperature.
【請求項3】電池が積層構造である請求項1または2記
載の固体二次電池の製造法。
3. The method for producing a solid secondary battery according to claim 1, wherein the battery has a laminated structure.
JP1287043A 1989-11-02 1989-11-02 Manufacturing method of solid state secondary battery Expired - Fee Related JP2770492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287043A JP2770492B2 (en) 1989-11-02 1989-11-02 Manufacturing method of solid state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287043A JP2770492B2 (en) 1989-11-02 1989-11-02 Manufacturing method of solid state secondary battery

Publications (2)

Publication Number Publication Date
JPH03149765A JPH03149765A (en) 1991-06-26
JP2770492B2 true JP2770492B2 (en) 1998-07-02

Family

ID=17712312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287043A Expired - Fee Related JP2770492B2 (en) 1989-11-02 1989-11-02 Manufacturing method of solid state secondary battery

Country Status (1)

Country Link
JP (1) JP2770492B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5387051B2 (en) * 2009-02-27 2014-01-15 日本ゼオン株式会社 Laminated body for all solid state secondary battery and all solid state secondary battery

Also Published As

Publication number Publication date
JPH03149765A (en) 1991-06-26

Similar Documents

Publication Publication Date Title
US20100091430A1 (en) Hybrid Energy Storage Device and Method of Making Same
JP3198828B2 (en) Manufacturing method of all solid lithium secondary battery
JP3533117B2 (en) Method of manufacturing film-covered battery
JPH10144298A (en) Lithium secondary battery
JP3508514B2 (en) Organic electrolyte battery
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JPH0513099A (en) Manufacture of solid secondary battery
JPH10106627A (en) Lithium battery
JP2780391B2 (en) Manufacturing method of solid state secondary battery
JP3211308B2 (en) Manufacturing method of solid state secondary battery
JPH056775A (en) Manufacture of solid secondary battery
JPH02253569A (en) Manufacture of solid state secondary battery
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JP2002025540A (en) Manufacturing method of nonaqueous electrolyte secondary battery and electrode plate for nonaqueous electrolyte secondary battery
JPH0355767A (en) Manufacture of solid secondary battery
JP2732442B2 (en) Manufacturing method of solid state secondary battery
JP3488267B2 (en) Sheet secondary battery and method of manufacturing the same
JP2658396B2 (en) Method for manufacturing solid secondary battery
JPH02114460A (en) Manufacture of solid secondary battery
JPH0750617B2 (en) Solid secondary battery
JPH0384869A (en) Manufacture of solid secondary cell
JPH0513098A (en) Solid secondary battery and manufacture thereof
JP2770388B2 (en) Manufacturing method of all solid state secondary battery
JPH02174077A (en) Solid secondary battery and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees