JPH0384869A - Manufacture of solid secondary cell - Google Patents

Manufacture of solid secondary cell

Info

Publication number
JPH0384869A
JPH0384869A JP1220745A JP22074589A JPH0384869A JP H0384869 A JPH0384869 A JP H0384869A JP 1220745 A JP1220745 A JP 1220745A JP 22074589 A JP22074589 A JP 22074589A JP H0384869 A JPH0384869 A JP H0384869A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
secondary battery
electrode layer
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1220745A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Akiyoshi Shintani
新谷 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1220745A priority Critical patent/JPH0384869A/en
Publication of JPH0384869A publication Critical patent/JPH0384869A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the close contact of an electrode layer and an electrolyte layer by impregnating cyanoacrylate monomer solution to the electrode layer and the electrolyte layer, and after that, applying a pressure to the electrode layer and the electrolyte layer under the heating condition to unify them. CONSTITUTION:Cyanoacrylate monomer solution is impregnated to an electrode layer consisting mainly of an electrode material and a rubber type binder, and an electrolyte layer mainly of an electrolyte and a rubber type binder. After that, a pressure is applied to the electrode layer and the electrolyte layer under the heating condition so as to unify them. That is, the cyanoacrylate resin to use is harder than the rubber type resin, and exercises a large effect to suppress the reduction of the close contact property especially at a high temperature condition. Consequently, by the synergism of the both resins, the handling is made easier and a good close contact property can be maintained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は構成材料がすべて固体のいわゆる固体二次電池
の製造法に関すa 従来の技術 各種の電源として使われる電池のうち構成材料がすべて
固体であるいわゆる固体電池は液漏れがなく、したがっ
て高信頼性が期待でき、小形軽量化も可能などの理由で
一次 二次電池ともに注目されてきtも  現在のとこ
ろ各種機器のメモリーバックアップ用を中心に考えられ
ていも この固体電池では電池内でイオンを動かすための固体電
解質としてLi゛イオン導電性固体電解質、Ag”イオ
ン導電性固体電解質、H0イオン導電性固体電解質、そ
れにRbCu4I +、sCli、s、  CuI−C
us〇−M2O3などのCu”イオン導電性固体電解質
などが取上げられてン)モ また 正極用材料としてはCus、+T i S2、A
g*、+T i Sa、Cus、+N b S2、Ag
@、+NbS2、W Os、それにCu yM Oe 
S@−z、FevMoeSs−tなどのシェブレル相化
合物が挙げられてい&  −X 負極にはCu、  A
 g、  L i +、5WQsそれに正極用と同様の
シェブレル相化合物が試みられていも また電極材料と結着剤で電極シートを、電解質と結着剤
で電解質シートをそれぞれ作製し 両シートを一体化す
る方法が簡単で連続生産性上優れていも この際の結着
剤としては公知のゴム系樹脂やフッ素樹脂が強度や可撓
性の点で優れているとされていも さらに放電特性や寿命などの点で有望である電解質とし
てRbCu4I +、sCls、sなどのCu +イオ
ン導電性固体電解質、正極および負極用材料としてCu
 i+M Oa S @−zなどのシェブレル相化合物
を用いた際に 大気中の水分による電極や電解質材料の
変質などの悪影響を受けやすい力曳 これに対しては電
極層と電解質層とを加熱下で加圧一体化して密着度を上
げることにより、充放電を繰返した際の内部抵抗の増加
を抑制できることが知られている。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for manufacturing so-called solid-state secondary batteries whose constituent materials are all solid. Certain so-called solid-state batteries do not leak, so they can be expected to be highly reliable, and they can be made smaller and lighter, so both primary and secondary batteries have been attracting attention.Currently, they are mainly considered for memory backup in various devices. However, in this solid state battery, the solid electrolytes for moving ions within the battery include a Li' ion conductive solid electrolyte, an Ag' ion conductive solid electrolyte, a H0 ion conductive solid electrolyte, and RbCu4I +, sCli, s, and CuI. -C
Cu" ion conductive solid electrolytes such as us〇-M2O3 have been taken up. In addition, as positive electrode materials, Cu, +T i S2, A
g*, +T i Sa, Cus, +N b S2, Ag
@, +NbS2, W Os, and Cu yM Oe
Chevrel phase compounds such as S@-z and FevMoeSs-t are mentioned.
g, L i +, 5WQs, and Chevrel phase compounds similar to those for positive electrodes have been tried; however, an electrode sheet is made from the electrode material and a binder, and an electrolyte sheet is made from an electrolyte and a binder, and both sheets are integrated. Although this method is simple and superior in terms of continuous productivity, well-known rubber resins and fluororesins are used as binders in this case, and although they are said to be superior in terms of strength and flexibility, Cu+ ion conductive solid electrolytes such as RbCu4I+, sCls, and s are promising electrolytes in terms of electrolytes, and Cu as positive and negative electrode materials.
When using Chevrel phase compounds such as i+M Oa S @-z, the electrode and electrolyte materials are susceptible to adverse effects such as deterioration due to moisture in the atmosphere. It is known that increasing the degree of adhesion through pressure integration can suppress an increase in internal resistance when charging and discharging are repeated.

発明が解決しようとする課題 このような構成の固体二次電池を製造し充放電を行なっ
たとこム その条件にもよるが比較的少ないサイクル数
で容量の低下が認められた すなわち充放電を繰返すと
内部抵抗が増加して性能の劣化が認められtも  その
原因について調べた結果この電池の場合も他の電解質に
溶液を用いる電池の場合の電池と同様に とくに電極層
が充放電の過程で若干でも膨張することが認められtも
  このような溶液を用いる電池の場合には溶液が膨張
の大きな原因であり外観からも明らかに観察できもこれ
に対して固体二次電池で(よ 当然溶液は存在しないの
でその度合は小さい力支 しかし膨張でもあると今度は
逆に液がないので電極層と電解質層との密着性が低下し
 内部抵抗が増加して諸性能が劣化すも 以上の問題を更に詳しく分析した粘気 次の3つの課題
が明らかとなった ゴム系結着剤は取扱いの点やシートの見かけの強度では
有利であも しかし 樹脂に可撓性があることからこの
ような変形から生ずる密着性の劣化にはそれほど有効で
ない(第1の課題)ことが解っtら 電極層と電解質層とを一体化する際に 両者の密着性を
高るためには温度は高く圧力は大きいほうがよI、% 
 しかし きびしい条件で一体化すると、結着剤の軟化
により電解質層や電極層が変形するという問題(第2の
課題)が生ずる。
Problem to be Solved by the Invention When a solid-state secondary battery with such a configuration was manufactured and charged and discharged, a decrease in capacity was observed after a relatively small number of cycles, depending on the conditions.In other words, charging and discharging were repeated. As a result, we investigated the cause of this and found that the internal resistance increased and the performance deteriorated.As a result, in this battery, as in other batteries that use a solution as the electrolyte, the electrode layer is particularly affected during the charging and discharging process. In the case of batteries that use such solutions, the solution is a major cause of expansion, and this can be clearly observed from the external appearance. However, if there is expansion, the adhesion between the electrode layer and electrolyte layer decreases because there is no liquid, increasing internal resistance and deteriorating various performances, but this is a problem. A more detailed analysis of the viscosity revealed the following three issues.Although rubber-based binders are advantageous in terms of handling and the apparent strength of the sheet, however, due to the flexibility of the resin, It turns out that it is not very effective against deterioration of adhesion caused by deformation (the first problem), so when integrating the electrode layer and electrolyte layer, high temperature and pressure are necessary to improve the adhesion between the two. The bigger the better I,%
However, if they are integrated under strict conditions, a problem arises in that the electrolyte layer and electrode layer are deformed due to softening of the binder (second problem).

加圧一体化後に防湿のために金属および樹脂からなる薄
板を電槽として用t、%  その周囲を加熱融着する暇
 温度に考慮を払わないと、電極層や電解質層中の結着
剤が軟化して密着度が低下するという問題(第3の課題
)が生じる。
If a thin plate made of metal and resin is used as a battery case to prevent moisture after pressurized integration, the binder in the electrode layer and electrolyte layer may A problem (third problem) arises that the degree of adhesion decreases due to softening.

課題を解決するための手段 請求項1記載の発明は第1の課題を解決するたへ 電極
材料とゴム系結着剤を主とする電極層と、電解質とゴム
系結着剤を主とする電解質層とにシアノアクリレート単
量体溶液を含浸した眞 これら電極層および電解質層を
加熱下で加圧により一体化することを特徴とする 請求項3記載の発明は第2の課題を解決するた吹 電極
材料を主とする電極層と、電解質を主とする電解質層と
を一体化した後に 電池周辺部にゼリー状シアノアクリ
レートを塗布することを特徴とすも 好ましくはゼリー
状シアノアクリレートを塗布した後金属および樹脂から
なる薄板を電槽として用(\ その周囲を加熱融着する
ことにより電池を構威すも 請求項6記載の発明は第3の課題を解決するた碌 電極
材料に結着剤を加えた電極層と、電解質に結着剤を加え
た電解質層とを加熱下で加圧一体化した抵 薄型のリチ
ウム電池などに利用されている金属および樹脂からなる
薄膜を電槽として用1、N、これをプレス機により電極
層と電解質層とを前記加圧一体化時の温度よりも高温で
加圧しなか板 好ましくは減圧下でその周囲を加熱融着
することにより電池を構成することを特徴とすも 金属
としてはアルミニウー/、、鏡  ニッケ/14  ス
テンレススチー/k  チタンなど、樹脂はポリエチレ
ン、ポリプロピレンなどのポリオレフィン系のそれぞれ
薄板がよ鶏 さらに電池周辺部に接着剤を被覆した後に
 前記手段を講じてもよ賎 作   用 請求項I記載の発明に用いるシアノアクリレート樹脂(
よ ゴム系樹脂よりも硬い樹脂であり、このような密着
性の低下とくに高温での低下の抑制には効果が大きいこ
とが解った これにより、両樹脂の相乗効果で取扱性と
良好な密着性の維持が可能になっ九 請求項3記載の発明で(よ 一体化した後に電池周辺部
にゼリー状シアノアクリレートを塗布するので樹脂が電
極層や電解質層にしみこむことなく、しかもシアノアク
リレート樹脂は強度が大きいので電極層と電解質層とが
強固に付着した状態を保つことができも したがって充
放電の過程で生じる若干の膨張も抑制し内部抵抗が増大
することなく優れた放電性能や自己放電性が得られ さ
らに比較的少ないサイクル数で容量が低下することがな
くなも またゼリー状シアノアクリレートを塗布した後
金属および樹脂からなる薄板を電槽として用し\ その
周囲を加熱融着することにより大気中の湿気による電解
質などへの悪影響を除くことができも 請求項6記載の発明で(よ 電極層と電解質層の加圧一
体化時よりも高い温度のもとで加圧しつつその周囲を加
熱融着することにより電池を構威すも したがってこの
工程で電極層と電解質層の最終的な加圧一体化が行われ
る。これら、により電極層と電解質層との密着度の低下
の防止と防湿を可能にすも 実施例 (実施例1) 電極用材料として銅シェプレル(CusMoaS・)を
1000g用す\ これに電解質としてRbCu 4 
I +、sCI s、sを用いて、この粉末500gを
角丸 市販の摺潰機を用いて2時間si  混合すもこ
のようにして得られた混合粉末に 結着剤として市販の
スチレン−ブタジェン系の樹脂が8wt%になるように
 そのトルエン溶液を加え充分撹拌してペーストを得も
 これを用いて公知のドクターブレード法により厚さ0
.35mmの電極シート、を作製し乾燥すも ついでこ
れに市販のシアノアクリレート単量体をトルエンで10
倍に希釈した溶液を含浸後乾燥する。
Means for Solving the Problem The invention according to claim 1 is for solving the first problem.An electrode layer mainly composed of an electrode material and a rubber-based binder, and an electrolyte and a rubber-based binder are mainly used. In order to solve the second problem, the invention according to claim 3 is characterized in that the electrode layer and the electrolyte layer are integrated by applying pressure under heat. It is characterized by applying jelly-like cyanoacrylate to the peripheral area of the battery after integrating an electrode layer mainly made of blown electrode material and an electrolyte layer mainly consisting of electrolyte. Preferably, jelly-like cyanoacrylate is applied. A thin plate made of metal and resin is then used as a battery case (by heating and fusing the periphery, a battery is constructed. However, the invention set forth in claim 6 is capable of solving the third problem. A thin film made of metal and resin, which is used in thin and thin lithium batteries, can be used as a battery case by integrating an electrode layer containing a binder and an electrolyte layer containing an electrolyte and a binder under heat and pressure. 1.N, the electrode layer and the electrolyte layer are pressurized using a press machine at a temperature higher than the temperature at which the electrode layer and the electrolyte layer are integrated, and the battery is constructed by heating and fusing the periphery of the plate, preferably under reduced pressure. The metals are aluminum, mirrors, nickel, stainless steel, titanium, etc., and the resins are thin sheets of polyolefin, such as polyethylene and polypropylene.Furthermore, after coating the surrounding area of the battery with adhesive, Even if the above-mentioned means are taken, the cyanoacrylate resin (
It is a harder resin than rubber-based resins, and it has been found to be highly effective in suppressing the decline in adhesion, especially at high temperatures.As a result, the synergistic effect of both resins improves ease of handling and good adhesion. With the invention described in claim 3, it is possible to maintain the cyanoacrylate (jelly-like cyanoacrylate is applied to the periphery of the battery after integration, so the resin does not seep into the electrode layer or electrolyte layer, and the cyanoacrylate resin has high strength. Since the electrode layer and electrolyte layer are large, it is possible to maintain a strong adhesion between the electrode layer and the electrolyte layer. Therefore, the slight expansion that occurs during the charging and discharging process is suppressed, and the internal resistance does not increase, resulting in excellent discharge performance and self-discharge properties. In addition, after applying the jelly-like cyanoacrylate, a thin plate made of metal and resin is used as a battery case, and the surrounding area is heated and fused, so that the capacity does not decrease with a relatively small number of cycles. In the invention as claimed in claim 6, it is possible to eliminate the adverse effect of moisture on the electrolyte, etc. Although a battery is constructed by fusing, the electrode layer and the electrolyte layer are finally integrated under pressure in this process.This prevents a decrease in the degree of adhesion between the electrode layer and the electrolyte layer and prevents moisture. Example (Example 1) 1000 g of copper sheprel (CusMoaS) is used as an electrode material. In addition, RbCu 4 is used as an electrolyte.
Using I+, sCI s, s, 500 g of this powder was rounded with a commercially available grinder for 2 hours, and the resulting mixed powder was mixed with commercially available styrene-butadiene as a binder. Add the toluene solution so that the resin content of the system is 8wt% and stir thoroughly to obtain a paste. Using this, use the known doctor blade method to obtain a paste with a thickness of 0.
.. A 35 mm electrode sheet was prepared and dried. Next, a commercially available cyanoacrylate monomer was added to it with toluene for 10 minutes.
After impregnating with the diluted solution, dry it.

電解質としrRb Cu a I +、sCl 3.s
ヲ用L1.  M着剤として市販のスチレン−ブタジェ
ンゴム系樹脂が12wt%になるように そのトルエン
溶液を加え充分撹拌してペーストを得も やはりこれも
公知のドクターブレード法により厚さ0.10mmの電
解質シートを作成する。ついでこれに市販のシアノアク
リレート単量体をトルエンで5倍に希釈した溶液を含浸
後乾燥すも 電解質シートの両面に電極シートを配してこれを180
℃に加熱したプレス機で500kg/1m8の条件で加
圧し一体化すも カーボンブラッ微粉末を分散させた市
販のカーボンフィルムを多電体として当てた眞 さらに
その外側に厚さ01mmのCu板を当ててI20t、 
 500kg/(m2の条件で加圧一体化しtも  こ
れに公知のボリチレンとアルミニウム箔製ラミネートで
封止し]電池を構成した 電池の有効面積は20cm”
でも この電池をAとすも つぎ番ヘ  比較のために前記電極シフトへのシフノア
クリレート単量体溶液の含浸と乾燥は行わづ他はAの電
池と同じ工程によって得られた電池4Bとして加えtも 以上の2つの電池A、  Bについてまず70C,”?
rRb Cu a I +, sCl as electrolyte 3. s
Woyo L1. Add a toluene solution of a commercially available styrene-butadiene rubber resin as an M adhesive so that the concentration is 12 wt%, and stir thoroughly to obtain a paste.An electrolyte sheet with a thickness of 0.10 mm is also created using the well-known doctor blade method. do. Next, this was impregnated with a solution of a commercially available cyanoacrylate monomer diluted 5 times with toluene, and then dried. Electrode sheets were placed on both sides of the electrolyte sheet, and the electrolyte sheet was heated at 180%
A commercially available carbon film with finely dispersed carbon black powder was applied as a multi-electric body, and a Cu plate with a thickness of 0.1 mm was placed on the outside. I20t,
500 kg/(integrated under pressure under m2 conditions and sealed with a well-known polyethylene and aluminum foil laminate) The effective area of the battery is 20 cm.
However, this battery is also referred to as battery A.For comparison, the electrode shift was impregnated with Schifnoacrylate monomer solution and dried, but otherwise it was added as battery 4B obtained by the same process as battery A. Regarding the two batteries A and B whose t is 70C,"?
.

の充放電での放電電圧と容量を比較しf;0.5Aで0
.58Vまでの充!  −0,5mAで0.3までの放
電を行ったところA、  Bとも平均電圧!;0.49
V、  放電容量は26.2mAhを示しあそこでつぎ
にこの充放電の条件で各電池の寿4特性を調べた 電池
は いずれも10セル用い六周囲温度を80tとしtも
  その結果 放電容量が初期の60%にまで劣化する
サイクル数戟 Aでは850〜900サイクルであった
のに対して、Bでは300〜340サイクルであっtラ
  この結果から明らかなようにAが長寿命であっtう
(実施例2) 電解質としてRb Cu a I +、sCl s、s
ヲ用t=\ この粉末500gと、電極用材料として銅
シユブレル(Cu *M 068 s)を1ooog用
い混合すもこの混合粉末に 結着剤として市販のゴム系
樹脂が8wt%になるように そのトルエン溶液を加え
充分撹拌してペーストを得る。これを公知のドクターブ
レード法により厚さ0.35mmの電極シートを作威す
も 電解質とり、てRbcu4I+、sc la、sをJf
Hz結着剤として、やはりゴム系樹脂が10wt%にな
るように そのトルエン溶液を加え充分撹拌してペース
トを得も これを公知のドクターブレード法により厚さ
0.25mmの電解質シートを作成する。
Compare the discharge voltage and capacity during charging and discharging of f; 0 at 0.5A.
.. Charge up to 58V! When discharging up to 0.3 at -0.5 mA, the average voltage for both A and B! ;0.49
V, the discharge capacity was 26.2mAh, and then we investigated the life characteristics of each battery under these charging and discharging conditions.The batteries were all 10 cells, and the ambient temperature was 80t.As a result, the discharge capacity was at the initial stage. It took 850 to 900 cycles for A to degrade to 60% of its lifespan, while it took 300 to 340 cycles for B. As is clear from these results, A has a longer lifespan ( Example 2) Rb Cu a I +, sCl s, s as electrolytes
500g of this powder was mixed with 100g of copper shubrel (Cu * M 068 s) as an electrode material, and a commercially available rubber resin was added as a binder to the mixed powder so that the amount was 8wt%. Add the toluene solution and stir thoroughly to obtain a paste. This was used to make an electrode sheet with a thickness of 0.35 mm using the known doctor blade method.
As a Hz binder, a toluene solution containing 10 wt % of the rubber resin was added and thoroughly stirred to obtain a paste, which was then used to prepare an electrolyte sheet with a thickness of 0.25 mm using the known doctor blade method.

ついで電解質シートを中心に その両面に電極シートを
配し これを160t’に加熱したプレス機で500k
g/cm”の条件で加圧しf、、  ツい]このように
して得られた電池素子の主に周辺部に市販のゼリー状シ
アノアクリレートを塗布した後電池素子の両面にゴム中
にカーボンブラック微粉末を分散させた市販のカーボン
フィルムを集電体として当てた樵 さらにその外側に厚
さ0.3mnのAl板と電池周辺部にポリエチレン樹脂
フィルムを当てて120t、  500kg/cm”7
)条件1周辺部のポリエチレン樹脂フィルムを加熱溶着
して一体化した この電池をAとすも つぎに比較のために電池素子の主に周辺部にゼリー状シ
アノアクリレートの塗布は行わず他はAと同じ工程によ
って得られた電池をBとして加えた。
Next, electrode sheets were placed on both sides of the electrolyte sheet, and this was pressed through a press heated to 160 tons for 500 kph.
After applying a commercially available jelly-like cyanoacrylate mainly to the periphery of the battery element thus obtained, carbon black was applied to both sides of the battery element in the rubber. A woodcutter applied a commercially available carbon film with fine powder dispersed thereon as a current collector.Furthermore, a 0.3mm thick Al plate was placed on the outside and a polyethylene resin film was placed around the battery to produce a 120t, 500kg/cm”7
) Condition 1 This battery is called A, in which the polyethylene resin film around the periphery is heat-welded and integrated.Next, for comparison, jelly-like cyanoacrylate is not applied mainly to the periphery of the battery element, and the others are A. A battery obtained by the same process as above was added as B.

以上の2つの電池についてまず通常の充放電での放電電
圧と容量を比較し?、、0.60V定電圧夫電−2,0
mAで0.25Vまでの放電を行ったところAでは平均
電圧は0.48V、放電容量は26.2mAhを示した
のに対して、Bではそれぞれ0.46V、21.6rn
Ahであり、いずれもAが優れていtも そこでつぎにこの充放電の条件で各電池の自己放電特性
を調べ′F、、0.60V定電圧充電後35定電圧充電
後置5℃後容量を調べたところ維持率がAでは92%で
あったのにBでは88%であっf。
First, compare the discharge voltage and capacity of the above two batteries during normal charging and discharging. ,,0.60V constant voltage power -2,0
When discharging to 0.25V at mA, the average voltage in A was 0.48V and the discharge capacity was 26.2mAh, whereas in B, it was 0.46V and 21.6rn, respectively.
Ah, A is excellent in all cases, and t is the same.Then, we next examined the self-discharge characteristics of each battery under these charging and discharging conditions.' When we investigated the retention rate, the retention rate was 92% for A, but 88% for B.

最後に2つの電池の寿命特性を調べtラ  電池(よい
ずれも10セル用いた 周囲温度を30℃とした その
結果 放電容量が初期の60%にまで劣化するサイクル
数力tAでは950〜1010サイクルであったのに対
してBでは750〜810サイクルであっtラ  この
結果から明らかなようにAが長寿命であっ丸 (実施例3) 正および負電極用材料として銅シェブレル(CuzMo
es*)を1000g用(\ これに電解質としテRb
 Cu a I +、sC11Gを用(\コノ粉末5゜
Ogに結着剤として市販のアクリル系樹脂が8wt%に
なるよう番ヘ  そのアセトン溶液を加え充分撹拌して
ペーストを得る。これを公知のドクターブレード法によ
り厚さ0.35mmの電極シートを作成すも 電解質としてRbCu4I+、5C13,8を用tX%
ヤはり結着剤として市販のアクリル系樹脂が11wt%
になるように そのアセトン溶液を加え充分撹拌してペ
ーストを得も これを公知のドクターブレード法により
厚さ0.12mmの電解質シートを作威すも 正極用シート、電解質シート、負極用シートの順にそれ
ぞれシートを重ね まずこれを150°Cに加熱したプ
レス機で500kg/cm”の条件で加圧し その後に
その両面にゴム中にカーボンブラック微粉末を分散させ
た市販のカーボンフィルムを集電体として当てた後、 
さらにその外側に厚さ0.3rrza  径26mmの
Cu板を当てて120覧 500kg/cm”の条件で
加圧一体化しtらこれを電池周辺部に咳る部分に厚さ0
.10mmのポリプロピレンフィルムを用いこれと一体
化した厚さ0.08mmのアルミニウム板2枚の間に挟
ム アルミニウム板の上から内側のポリプロピレンフィ
ルムを真空ポンプで減圧にしなか板170℃のもと20
0 kg/cm”の条件で加熱融着して電池を構成しf
、  この電池をAとすも なおCu板とアルミニウム
板は導電性接着剤で接着固定した つぎに比較のためにポリプロピレンフィルムを真空ポン
プで減圧にしながら140℃のもと200kg/cm”
の条件で加熱融着し 他はAと同じ工程による電池を構
成してBとして加えtもこの両電池の特性を比較し1.
  まず通常の充放電での放電電圧と容量を調べ?、、
、0.58V定充電・−0,2mAで0.3Vまでの放
電を行ったとこムAでは平均電圧は0.48V、放電容
量は4.8mAhに対して、Bテ!−1,ソれぞれ0.
47V、4.6mAhであり、AはややBよりやや優れ
ていf。
Finally, we investigated the life characteristics of the two batteries. (10 cells were used in each case. The ambient temperature was 30°C.) As a result, the number of cycles at which the discharge capacity deteriorates to 60% of the initial value is 950 to 1010 cycles. On the other hand, B had a cycle life of 750 to 810 cycles.As is clear from these results, A had a long life and was round (Example 3).
es*) for 1000g (\ Use this as an electrolyte and
Cu a I +, sC11G was added to the acetone solution of the commercially available acrylic resin as a binder at 8 wt % to 5° Og of powder. Add the acetone solution and stir thoroughly to obtain a paste. An electrode sheet with a thickness of 0.35 mm was prepared by the doctor blade method using RbCu4I+, 5C13,8 as the electrolyte.
Commercially available acrylic resin as a binder is 11wt%
Add the acetone solution and stir thoroughly to obtain a paste. Then, use the well-known doctor blade method to make an electrolyte sheet with a thickness of 0.12 mm. The sheets are stacked one on top of the other, and first they are pressed at 500kg/cm'' using a press heated to 150°C, and then a commercially available carbon film made of fine carbon black powder dispersed in rubber is used as a current collector on both sides. After guessing,
Furthermore, a Cu plate with a thickness of 0.3 mm and a diameter of 26 mm was placed on the outside of the plate, and the pressure was applied to the area of 500 kg/cm.
.. A 10 mm polypropylene film was sandwiched between two 0.08 mm thick aluminum plates integrated with the polypropylene film. The inner polypropylene film from above the aluminum plate was depressurized with a vacuum pump, and the plate was heated to 170°C for 20 minutes.
0 kg/cm" to form a battery.
, This battery is called A. The Cu plate and aluminum plate were fixed with conductive adhesive. Next, for comparison, a polypropylene film was heated to 200 kg/cm at 140°C under reduced pressure with a vacuum pump.
A battery was constructed using the same process as A except for heating and fusing under the following conditions, and t was added as B to compare the characteristics of both batteries.1.
First, check the discharge voltage and capacity during normal charging and discharging? ,,
, 0.58V constant charge and discharge to 0.3V at -0.2mA In case A, the average voltage was 0.48V and the discharge capacity was 4.8mAh, whereas in case B! -1, sore 0.
47V, 4.6mAh, A is slightly better than B.

そこで、つぎに各電池の寿命特性を調べt−0゜6v定
電圧充電−0,5mAで0.3Vまでの放電の条件とし
 電池は いずれも10セル用いtも周囲温度を40℃
とし1.  その結電 放電容量が初期の75%にまで
劣化するサイクル数力<、Aでは1100〜1200サ
イクルであったのに対して、Bでは1000−1100
サイクルであり、Aが長寿命であった 発明の効果 充放電の過程でとくに電極層が膨張して電極層と電解質
層との密着性が低下する現象を抑制することができるの
で、電池の充放電中での内部抵抗の増加を抑えることが
でき、優れた放電性能や長寿命化が可能になん
Therefore, we next investigated the life characteristics of each battery and set the conditions of constant voltage charging at t-0°6V and discharging to 0.3V at -0.5mA.The batteries were all 10 cells and the ambient temperature was 40°C.
Toshi 1. The number of cycles at which the discharge capacity deteriorates to 75% of the initial value is 1100 to 1200 cycles in A, while it is 1000 to 1100 in B.
The effect of the invention is that A has a long life.It is possible to suppress the phenomenon in which the electrode layer expands during the charging and discharging process and the adhesion between the electrode layer and the electrolyte layer decreases, so that the charging and discharging of the battery can be suppressed. It is possible to suppress the increase in internal resistance during discharge, resulting in excellent discharge performance and long life.

Claims

【特許請求の範囲】 (1)電極材料とゴム系結着剤を主とする電極層と、電
解質とゴム系結着剤を主とする電解質層とに、シアノア
クリレート単量体溶液を含浸させた後、これら電極層お
よび電解質層を加熱下で加圧により一体化することを特
徴とする固体二次電池の製造法。
(2)電極層にはシアノアクリレート単量体を5〜10
倍に希釈した溶液を含浸させ、電解質層にシアノアクリ
レート単量体の2〜5倍の希釈溶液を含浸させることを
特徴とする請求項1記載の固体二次電池の製造法。
(3)電極材料を主とする電極層と、電解質を主とする
電解質層とを一体化した後に、電池周辺部にゼリー状シ
アノアクリレートを塗布することを特徴とする固体二次
電池の製造法。
(4)ゼリー状シアノアクリレートを塗布した後、金属
および樹脂からなる薄板を電槽として用い、その周囲を
加熱融着することにより電池を構成することを特徴とす
る請求項3記載の固体二次電池の製造法。
(5)電極材料が銅シェブレル構造体で、電解質が銅イ
オン導電体であることを特徴とする請求項1または3記
載の固体二次電池の製造法。
(6)電極材料と結着剤を主とする電極層と電解質と結
着剤を主とする電解質層とを加熱下で加圧一体化した後
、金属および樹脂からなる薄板を電槽として用い、これ
を加圧一体化時よりも高い温度のもとで加圧しつつその
周囲を加熱融着することにより電池を構成することを特
徴とする固体二次電池の製造法。
(7)加圧一体化後の加圧を減圧下で行なうことにより
電池を構成することを特徴とする請求項6記載の固体二
次電池の製造法。
  (8)加圧一体化後、電池周辺部に接着剤を被覆した後
に減圧下で加圧することにより電池を構成することをこ
とを特徴とする請求項6記載の固体二次電池の製造法。
(9)電池が積層構造である請求項6記載の固体二次電
池の製造法。
(10)金属がアルミニウム、銅、ニッケル、ステンレ
ススチール、チタンなど、樹脂がポリオレフィン系のそ
れぞれ薄膜である請求項6記載の固体二次電池の製造法
[Claims] (1) After impregnating an electrode layer mainly consisting of an electrode material and a rubber-based binder and an electrolyte layer mainly consisting of an electrolyte and a rubber-based binder with a cyanoacrylate monomer solution, these electrode layers are and a method for producing a solid secondary battery, characterized in that the electrolyte layer is integrated by applying pressure under heat. (2) The electrode layer contains 5 to 10 cyanoacrylate monomers.
2. The method for producing a solid secondary battery according to claim 1, wherein the electrolyte layer is impregnated with a solution diluted to a volume of 2 to 5 times the amount of the cyanoacrylate monomer.
(3) A method for producing a solid secondary battery, which comprises applying a jelly-like cyanoacrylate around the battery after integrating an electrode layer mainly made of electrode material and an electrolyte layer mainly made of electrolyte. . (4) After applying the jelly-like cyanoacrylate, a thin plate made of metal and resin is used as a battery case, and the periphery thereof is heat-fused to form a battery. Battery manufacturing method. (5) The method for producing a solid secondary battery according to claim 1 or 3, wherein the electrode material is a copper Chevrel structure and the electrolyte is a copper ion conductor. (6) After integrating the electrode layer containing the electrode material and the binder and the electrolyte layer containing the electrolyte and the binder under heat and pressure, the thin plate made of metal and resin is used as a battery case. A method for manufacturing a solid-state secondary battery, characterized in that a battery is constructed by heating and fusing the periphery while pressurizing the solid-state secondary battery at a temperature higher than that during pressurization and integration. (7) The method for producing a solid secondary battery according to claim 6, wherein the battery is constructed by performing pressurization under reduced pressure after pressurization and integration. (8) The method for producing a solid secondary battery according to claim 6, wherein after the integration under pressure, the battery is constructed by coating the peripheral portion of the battery with an adhesive and then applying pressure under reduced pressure. (9) The method for manufacturing a solid secondary battery according to claim 6, wherein the battery has a laminated structure. (10) The method for producing a solid secondary battery according to claim 6, wherein the metal is aluminum, copper, nickel, stainless steel, titanium, or the like, and the resin is a polyolefin thin film.
JP1220745A 1989-08-28 1989-08-28 Manufacture of solid secondary cell Pending JPH0384869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220745A JPH0384869A (en) 1989-08-28 1989-08-28 Manufacture of solid secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220745A JPH0384869A (en) 1989-08-28 1989-08-28 Manufacture of solid secondary cell

Publications (1)

Publication Number Publication Date
JPH0384869A true JPH0384869A (en) 1991-04-10

Family

ID=16755871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220745A Pending JPH0384869A (en) 1989-08-28 1989-08-28 Manufacture of solid secondary cell

Country Status (1)

Country Link
JP (1) JPH0384869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859417A3 (en) * 1997-02-12 2003-05-02 Mitsubishi Denki Kabushiki Kaisha Adhesive for battery, battery using the same and method of fabricating a battery using the same
KR100388905B1 (en) * 2000-09-22 2003-06-25 삼성에스디아이 주식회사 Lithium secondary battery
JP2010205449A (en) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd Electrolyte layer for all-solid secondary battery, laminate for all-solid secondary battery, and all-solid secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859417A3 (en) * 1997-02-12 2003-05-02 Mitsubishi Denki Kabushiki Kaisha Adhesive for battery, battery using the same and method of fabricating a battery using the same
KR100388905B1 (en) * 2000-09-22 2003-06-25 삼성에스디아이 주식회사 Lithium secondary battery
JP2010205449A (en) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd Electrolyte layer for all-solid secondary battery, laminate for all-solid secondary battery, and all-solid secondary battery

Similar Documents

Publication Publication Date Title
JP4352475B2 (en) Solid electrolyte secondary battery
JP4207439B2 (en) Manufacturing method of lithium ion secondary battery
KR20010015414A (en) Method for producing film packed battery
JP3533117B2 (en) Method of manufacturing film-covered battery
EP3726638A1 (en) Secondary battery capacity recovery method and secondary battery capacity recovery apparatus
JP4526617B2 (en) Secondary battery
JPH0384869A (en) Manufacture of solid secondary cell
JP3858465B2 (en) Lithium secondary battery
CN113698718B (en) Zwitterionic hydrogel, electrolyte, secondary battery or super capacitor, and electric equipment
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPH0513099A (en) Manufacture of solid secondary battery
JP2003317695A (en) Nonaqueous electrolyte lithium ion cell and separator there for
JPH02253569A (en) Manufacture of solid state secondary battery
JP2002033093A (en) Nickel hydrogen storage battery and manufacturing method for it
JP2002025540A (en) Manufacturing method of nonaqueous electrolyte secondary battery and electrode plate for nonaqueous electrolyte secondary battery
JPH0355767A (en) Manufacture of solid secondary battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JPH10112305A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP4183337B2 (en) Manufacturing method of secondary battery
JPH02174077A (en) Solid secondary battery and manufacture thereof
JP2000348774A (en) Manufacture of secondary battery
JPH11233114A (en) Electrode for organic electrolyte secondary battery, and its manufacture
JPH02114460A (en) Manufacture of solid secondary battery
JPH056775A (en) Manufacture of solid secondary battery