JP2003031261A - Bipolar battery - Google Patents

Bipolar battery

Info

Publication number
JP2003031261A
JP2003031261A JP2001217578A JP2001217578A JP2003031261A JP 2003031261 A JP2003031261 A JP 2003031261A JP 2001217578 A JP2001217578 A JP 2001217578A JP 2001217578 A JP2001217578 A JP 2001217578A JP 2003031261 A JP2003031261 A JP 2003031261A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
electrode
layer
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001217578A
Other languages
Japanese (ja)
Inventor
Kenji Hamada
謙二 濱田
Ryuzo Kamimura
隆三 上村
Yukinori Takahashi
幸徳 高橋
Yasuhiko Osawa
康彦 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001217578A priority Critical patent/JP2003031261A/en
Publication of JP2003031261A publication Critical patent/JP2003031261A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for a bipolar battery having a structure composed of highly cross-linked polymers in a polymer solid electrolyte in an electrode layer by adequately progressing a cross-linking reaction in a negative electrode, having high strength and excellent reactivity of a battery reaction, and to provide a bipolar battery using the electrode. SOLUTION: This bipolar battery has a structure in which a positive electrode layer having a polymer solid electrolyte obtained by cross-linking is formed on one surface of a collector, a negative electrode layer having a polymer solid electrolyte obtained by cross-linking is formed on the other surface thereof, and a plurality of bipolar electrodes having the positive and negative layers are stacked via a polymer solid electrolyte layer. At least the surface on the negative electrode side of the collector is formed of a material selected from nickel or a nickel alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電解質として高分
子電解質を用いて構成したバイポーラ電池に関するもの
である。
TECHNICAL FIELD The present invention relates to a bipolar battery constructed by using a polymer electrolyte as an electrolyte.

【0002】[0002]

【従来の技術】近年、電気自動車などの大容量電源とし
て、高エネルギー密度、高出力密度が達成できるリチウ
ムイオン二次電池が開発されてきた。リチウムイオン二
次電池の基本構成は、アルミニウム集電体にコバルト酸
リチウムなどの正極活物質とアセチレンブラックなどの
導電助剤をバインダーを用いて塗布した正極と、銅集電
体にカーボン微粒子をバインダーを用いて塗布した負極
を、オレフィン系の多孔質膜セパレーターを介して配置
し、これにLiPF6等を含む非水電解液を満たしたものと
なっている。
2. Description of the Related Art In recent years, a lithium ion secondary battery capable of achieving high energy density and high output density has been developed as a large capacity power source for electric vehicles and the like. The basic structure of a lithium-ion secondary battery is a positive electrode in which a positive electrode active material such as lithium cobalt oxide and a conductive auxiliary agent such as acetylene black are applied to an aluminum current collector using a binder, and a carbon fine particle is bound to a copper current collector as a binder. The negative electrode coated by using is placed via an olefin-based porous membrane separator, and this is filled with a non-aqueous electrolyte containing LiPF 6 and the like.

【0003】電気自動車等へ適用する場合には、この構
成の単電池(セル)を直列接続して、電池モジュール単
位、更にモジュールを直列接続して組電池を構成して用
いる。電池のエネルギー密度、出力密度の観点からは、
このセル間接続、モジュール間接続の接続抵抗的、空間
的、重量的改良が望まれる。
In the case of application to an electric vehicle or the like, unit cells (cells) of this structure are connected in series to form a battery module unit, and further modules are connected in series to form an assembled battery. From the viewpoint of battery energy density and power density,
It is desired to improve the connection resistance, the space, and the weight of the connection between cells and the connection between modules.

【0004】最近、このセル間接続の抵抗低減が可能で
コンパクト化が期待できるバイポーラ電極ユニットを採
用した電池の提案がなされた。例えば、特開平8−79
26号公報に記載の技術では、集電体に2種類の金属箔
を圧延加工したいわばクラッド材を用いて、電解質に液
体を用いている。この従来技術では電解質に液体を用い
ているため、各セル単位での密閉シールが不可欠であ
り、セル間の液絡がおこる可能性がある。この液絡の問
題を解決するために、特開2000−100471号公
報に記載の技術では、バイポーラ電極ユニットを用いた
積層型の電池において、正極と負極の間の電解質に固体
電解質を用いる提案がなされている。固体電解質の定義
は、必ずしも統一されているわけではなく、溶液を含む
高分子ゲル電解質をも含めることがある。高分子ゲル電
解質の場合には、正極層内部や負極層内部に電解質を含
まない構成でも、セパレーター層に高分子ゲル電解質膜
を用いれば、この膜内部の電解液が正極層内、負極層内
へしみこむので電池として機能する。
Recently, a battery has been proposed which employs a bipolar electrode unit capable of reducing the resistance of the connection between cells and expected to be compact. For example, Japanese Patent Laid-Open No. 8-79
In the technique described in Japanese Patent No. 26, a so-called clad material obtained by rolling two kinds of metal foils is used as a current collector, and a liquid is used as an electrolyte. Since a liquid is used as the electrolyte in this conventional technique, a hermetic seal in each cell unit is indispensable, and liquid junction between cells may occur. In order to solve this liquid junction problem, in the technique described in Japanese Patent Laid-Open No. 2000-100471, there is a proposal to use a solid electrolyte as an electrolyte between a positive electrode and a negative electrode in a stacked battery using a bipolar electrode unit. Has been done. The definition of a solid electrolyte is not necessarily unified, and a polymer gel electrolyte containing a solution may be included. In the case of a polymer gel electrolyte, even if the inside of the positive electrode layer or the negative electrode layer does not contain an electrolyte, if a polymer gel electrolyte membrane is used for the separator layer, the electrolyte solution inside the membrane will be in the positive electrode layer and the negative electrode layer. Since it dents, it functions as a battery.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、高分子
ゲル電解質を用いた積層型のバイポーラ電池では、単セ
ル間密閉シールを設けないと電池が高温にさらされた場
合などには液体がにじみ出て液絡がおこる恐れがある。
このため、バイポーラ電池用の電解質には、溶液を実質
的に含まない全固体タイプのもの(以下全固体高分子電
解質ということにする)がよいと考えられる。この全固
体高分子電解質を用いて電池を構成するためには、セパ
レーター層ばかりでなく、正極層内部及び負極層内部に
も電解質を含ませた方が反応性がよくなると考えられ
る。この全固体高分子電解質を含ませた構造の正負極層
を形成する方法としては例えば次のような方法がある。
すなわち、電極活物質、架橋性基を有する高分子、リチ
イウム塩、溶媒とこれに必要により熱重合開始剤を加え
てスラリーを調製し、これを集電体上に塗布して熱架橋
等により架橋し、真空下加熱乾燥して溶媒を除くことに
よって製造する方法である。
However, in a laminated bipolar battery using a polymer gel electrolyte, the liquid oozes out when the battery is exposed to high temperature unless a sealing seal between the single cells is provided. There is a risk of entanglement.
Therefore, it is considered that an all solid type electrolyte (hereinafter, referred to as an all solid polymer electrolyte) that does not substantially contain a solution is preferable as the electrolyte for the bipolar battery. In order to construct a battery using this all-solid-state polymer electrolyte, it is considered that the reactivity is improved when the electrolyte is included not only in the separator layer but also in the positive electrode layer and the negative electrode layer. As a method of forming the positive and negative electrode layers having a structure including the all solid polymer electrolyte, for example, the following method is available.
That is, a slurry is prepared by adding an electrode active material, a polymer having a crosslinkable group, a lithium salt, a solvent and optionally a thermal polymerization initiator to the slurry, coating this on a current collector and crosslinking by thermal crosslinking or the like. And heating and drying under vacuum to remove the solvent.

【0006】この高分子電解質を含ませた構成の負極層
を製造する場合、集電体として溶液型のリチイウムイオ
ン電池から類推しやすいアルミニウムと銅のクラッド材
の箔を用い、この銅側の上に負極層を熱架橋で形成しよ
うとすると、活物質の種類や架橋反応を引き起こす重合
開始剤の種類にもよるが、架橋反応が進行しにくいとい
う問題点があった。
In the case of producing the negative electrode layer containing the polymer electrolyte, a foil of a clad material of aluminum and copper, which is easy to infer from a solution type lithium-ion battery, is used as a current collector, and a foil is provided on the copper side. When the negative electrode layer is formed by thermal crosslinking, there is a problem that the crosslinking reaction is difficult to proceed depending on the type of active material and the type of polymerization initiator that causes the crosslinking reaction.

【0007】本発明はこの問題点に鑑み、負極での架橋
反応を十分進行させて、電極層内の高分子固体電解質の
高分子が架橋した構造で、強度が大きく、しかも電池反
応の反応性に優れたバイポーラ電池用電極と、それを用
いてなるバイポーラ電池を提供することを目的とする。
In view of this problem, the present invention has a structure in which the polymer of the solid polymer electrolyte in the electrode layer is crosslinked by sufficiently promoting the crosslinking reaction in the negative electrode, and the strength is high and the reactivity of the battery reaction is high. It is an object of the present invention to provide an excellent bipolar battery electrode and a bipolar battery using the electrode.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に鋭意検討した結果、本発明では、1枚の集電体の片面
に架橋して形成した高分子固体電解質を有する正極層を
形成し、他方の片面に架橋して形成した高分子固体電解
質を有する負極層を形成し、この正負極層を有したバイ
ポーラ電極を高分子固体電解質層を介して複数個積層し
た構造を有するバイポーラ電池において、集電体の少な
くとも負極側の面がニッケルあるいはニッケル合金から
選ばれる材質とすることによって電極層内部に架橋した
高分子固体電解質を含む電極を構成できるようにするこ
とで、バイポーラ電池を構成できるようにした。ここで
負極の活物質は、充放電でリチウムを出し入れできる遷
移金属酸化物あるいは、遷移金属とリチウムの複合酸物
であることがより好ましい。また、ここでいう遷移金属
としてはチタンが更に好ましい。
Means for Solving the Problems As a result of intensive studies to achieve the above object, in the present invention, a positive electrode layer having a solid polymer electrolyte formed by crosslinking is formed on one surface of one current collector. In a bipolar battery having a structure in which a negative electrode layer having a solid polymer electrolyte formed by cross-linking on the other side is formed, and a plurality of bipolar electrodes having the positive and negative electrode layers are laminated with the solid polymer electrolyte layer interposed therebetween. By forming at least the negative electrode side surface of the current collector from a material selected from nickel or a nickel alloy so that an electrode containing a crosslinked polymer solid electrolyte inside the electrode layer can be formed, a bipolar battery can be formed. I did it. Here, the active material of the negative electrode is more preferably a transition metal oxide capable of taking lithium in and out through charge / discharge, or a complex acid product of a transition metal and lithium. Further, the transition metal referred to here is more preferably titanium.

【0009】[0009]

【発明の作用】本発明によれば、1枚の集電体の両側に
正負極層を備えたバイポーラ電極を、電極(活物質)層
内部にも架橋して形成した高分子固体電解質を有する構
成とすることが可能となり、それにより電極の反応性と
強度の向上を図ることができる。このバイポーラ電極を
用いることにより、単セル間での液絡がおこらない充放
電特性に優れたコンパクトなバイポーラ積層電池を構成
できるので、電池の高エネルギー密度化及び高出力密度
化を図れ、産業に寄与するところ大である。
According to the present invention, a bipolar electrode having positive and negative electrode layers on both sides of a current collector is cross-linked also in the electrode (active material) layer to form a solid polymer electrolyte. It becomes possible to have a constitution, and thereby the reactivity and strength of the electrode can be improved. By using this bipolar electrode, it is possible to construct a compact bipolar laminated battery with excellent charge / discharge characteristics that does not cause liquid junction between single cells, and thus to achieve high energy density and high power density of the battery, and to be used in industry. It is a great place to contribute.

【0010】[0010]

【発明の実施の形態】以下、本発明を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below with reference to the drawings.

【0011】図1はバイポーラ電極の断面図である。図
に示したように、バイポーラ電極の構造は、1枚の集電
体の片面に正極活物質層を設け、もう一方の面に負極
活物質層を設け、高分子固体電解質層を挟みこれら
活物質層が対向するようになっている。正極活物質層
、負極活物質層はそれぞれ層内に架橋して形成した
高分子固体電解質を含んでいる。この高分子固体電解質
は、リチウム塩と極性基を含む高分子からなり、これが
電解液系電池での電解液とバインダーの役目を担う。電
極活物質層内でのイオンの移動をスムーズにするために
は、活物質層内の空隙をこの高分子固体電解質が満たす
ように充填するのが好ましい。
FIG. 1 is a sectional view of a bipolar electrode. As shown in the figure, the structure of the bipolar electrode is such that the positive electrode active material layer is provided on one surface of one current collector, the negative electrode active material layer is provided on the other surface, and the solid polymer electrolyte layer is sandwiched between these active materials. The material layers face each other. The positive electrode active material layer and the negative electrode active material layer each include a solid polymer electrolyte formed by crosslinking in the layers. This polymer solid electrolyte is composed of a polymer containing a lithium salt and a polar group, and this plays the role of an electrolytic solution and a binder in an electrolytic solution battery. In order to smoothly move the ions in the electrode active material layer, it is preferable to fill the voids in the active material layer so that the polymer solid electrolyte is filled.

【0012】電極活物質層内での高分子固体電解質の最
適充填割合は、電池の使用目的(高出力用か高エネルギ
ー用かなど)、イオン伝導度によって変わるが、少なす
ぎると電極内でのイオン伝導抵抗とイオンの拡散抵抗が
大きくなり、あまり多すぎると構成する電池のエネルギ
ー密度が低下してしまう。現状の高分子電解質のイオン
伝導度のレベル(10-5〜10-4 S/cm)だと、反応性を
優先する電池では、導電助材を多めにしたり、活物質の
かさ密度を下げて活物質微粒子間の電子伝導抵抗は低く
保ち、同時に空隙部を増やし、そこに高分子電解質を充
填した構造として高分子電解質相の割合を高めるのがよ
い。別途実施した電極の相対エネルギー密度と電極活物
質層内での高分子電解質相の体積分率の関係を概念的に
図2に示した。ここでピークの位置は、温度が上昇し、
イオン伝導度が上がると左上に移動していく。
The optimum filling ratio of the solid polymer electrolyte in the electrode active material layer depends on the purpose of use of the battery (whether for high output or high energy, etc.) and ionic conductivity. The ion conduction resistance and the ion diffusion resistance increase, and if the amount is too large, the energy density of the battery to be constructed will decrease. At the current ionic conductivity level of polymer electrolytes (10-5 to 10-4 S / cm), in batteries that prioritize reactivity, use more conductive aids or lower the bulk density of the active material. It is preferable to keep the electron conduction resistance between the active material fine particles low, increase the voids at the same time, and increase the proportion of the polymer electrolyte phase as a structure in which the voids are filled with the polymer electrolyte. The relationship between the relative energy density of the electrode and the volume fraction of the polymer electrolyte phase in the electrode active material layer, which was separately carried out, is conceptually shown in FIG. Here, at the peak position, the temperature rises,
When the ionic conductivity increases, it moves to the upper left.

【0013】本発明で高分子電解質層に用いる高分子
としては、例えばポリエチレンオキシド(PEO)、ポ
リプロピレンオキシド(PPO)及びそれらの共重合体
系高分子で、分子内に架橋性の炭素―炭素の二重結合を
持った原料高分子を用いてラジカル重合法で合成した高
分子が利用できるがこれに限られるわけではない。この
種のポリアルキレンオキシド系高分子は、LiBF4、Li
PF6、LiN(SO CF2、LiN(SO22
52などのリチウム塩をよく溶解できるうえ、架橋構造
とすることで機械的特性もよい。
Polymer used for the polymer electrolyte layer in the present invention
For example, polyethylene oxide (PEO), polyethylene
Lipropylene oxide (PPO) and copolymers thereof
-Based polymer with a crosslinkable carbon-carbon double bond in the molecule
Highly synthesized by radical polymerization method using the raw material polymer
Molecules are available, but are not limited to. this
The kind of polyalkylene oxide polymer is LiBFFour, Li
PF6, LiN (SO TwoCFThree)2, LiN (SO2C2F
Five)2Can dissolve lithium salts such as
The mechanical properties are also good.

【0014】本発明に使用するバイポーラ電極を構成す
るためには、上記のような原料高分子と、負極活物質、
導電助材、リチウム塩、溶媒と少量のアゾビスイソブチ
ロニトリル(AIBN)等の熱重合開始剤からスラリー
を調製し、これを集電体に塗布して加熱して電極層を作
製し、更に別の正極層をこの集電体の他方の面に同様に
して形成する。正極層と負極層の形成の順序は逆でもよ
い。
In order to form the bipolar electrode used in the present invention, the above-mentioned raw material polymer, the negative electrode active material,
A slurry is prepared from a conductive auxiliary material, a lithium salt, a solvent and a small amount of a thermal polymerization initiator such as azobisisobutyronitrile (AIBN), and the slurry is applied to a current collector and heated to form an electrode layer, Another positive electrode layer is similarly formed on the other surface of the current collector. The order of forming the positive electrode layer and the negative electrode layer may be reversed.

【0015】本発明で用いることのできる集電体,
としては、ニッケル材(負極側)とアルミニウム材
(正極側)から圧延加工で製造したクラッド材の箔が
好ましく使える。また、ニッケル箔にアルミニウムを溶
射した材料、蒸着した材料も使用することができる。材
料の表面状態によりロールプレスをかけて用いてもよ
い。アルミニウム箔にニッケルをめっきして用いてもよ
い。さらにニッケルのかわりにニッケル合金を用いても
よい。この種の多層構造の材料の他、一枚のステンレス
の箔を集電体として用いることもできる。また、用いる
正極活物質の反応電位が低ければニッケル箔でもよい。
ここで、集電体の負極側の面の材質はニッケル、及びス
テンレスなどのニッケル系合金であることが必要であ
る。
A current collector that can be used in the present invention,
As the foil, a foil of a clad material manufactured by rolling from a nickel material (negative electrode side) and an aluminum material (positive electrode side) can be preferably used. Also, a material obtained by spraying aluminum on a nickel foil or a material obtained by vapor deposition can be used. Depending on the surface condition of the material, roll pressing may be used. The aluminum foil may be plated with nickel before use. Further, a nickel alloy may be used instead of nickel. In addition to this type of material having a multi-layer structure, a single stainless steel foil can be used as a current collector. Further, nickel foil may be used as long as the positive electrode active material used has a low reaction potential.
Here, the material of the negative electrode side surface of the current collector needs to be nickel and a nickel-based alloy such as stainless steel.

【0016】正極活物質としては、例えばスピネルLiMn
2O4があるがこれに限られるわけではない。スピネルLiM
n2O4の他、溶液系のリチウムイオン電池で使用される遷
移金属とリチイウムの複合酸化物なら使用できるが、微
粒子の粒径は電池の電極抵抗を低減するために通常の溶
液タイプのリチウムイオン電池で使用されるものより小
さいものを使用するのがよい。この他、LiFePO4などの
遷移金属とリチウムのリン酸化合物、硫酸化合物も使用
することができる。
Examples of the positive electrode active material include spinel LiMn.
2 O 4 is available, but is not limited to this. Spinel LiM
In addition to n 2 O 4 , complex oxides of transition metals and lithium used in solution-type lithium-ion batteries can be used, but the particle size of the fine particles is the same as that of ordinary solution-type lithium in order to reduce the electrode resistance of the battery. It is better to use one that is smaller than that used in ion batteries. In addition to this, a phosphoric acid compound or a sulfuric acid compound of a transition metal such as LiFePO 4 and lithium can also be used.

【0017】負極活物質としては、溶液タイプのリチウ
ムイオン電池で用いられる材料を使用できるが、高分子
固体電解質での反応性の観点からは充放電でリチウムを
出し入れできる遷移金属酸化物あるいは、遷移金属とリ
チウムの複合酸化物がよく、チタンの酸化物、チタンと
リチウムとの複合酸化物が好ましく使用できる。
As the negative electrode active material, a material used in a solution type lithium ion battery can be used, but from the viewpoint of reactivity with a solid polymer electrolyte, a transition metal oxide or a transition metal oxide capable of taking lithium in and out by charge and discharge, or a transition metal oxide. A complex oxide of metal and lithium is preferable, and an oxide of titanium and a complex oxide of titanium and lithium can be preferably used.

【0018】高分子電解質膜は、前記と同様例えばポリ
エチレンオキシド(PEO)、ポリプロピレンオキシド
(PPO)及びそれらの共重合体系高分子で、分子内に
架橋性の炭素―炭素の二重結合を持った原料高分子とリ
チウム塩をNMPのような溶媒に溶解させてスペサーで
厚さを決めた光透過性のギャップに流し込み紫外線を照
射して架橋させて薄膜を作製できるがこの方法に限られ
るわけではない。放射線重合、電子線重合、熱重合法に
よっても高分子電解質膜を作製できる。紫外線重合の場
合には適当な光重合開始剤を用い、熱重合法の場合にも
熱重合開始剤を用いてもよい。溶解させるリチウム塩と
しては、LiBF4、LiPF6、LiN(SO2CF32、LiN(SO2C
2F52及びこれらの2種以上の混合物などを使用できる
が、これらに限られるわけではない。
The polymer electrolyte membrane is, for example, polyethylene oxide (PEO), polypropylene oxide (PPO) and their copolymer type polymers as described above, and has a crosslinkable carbon-carbon double bond in the molecule. A raw material polymer and a lithium salt are dissolved in a solvent such as NMP, poured into a light-transmitting gap whose thickness is determined by a spacer, and irradiated with ultraviolet rays to be crosslinked to form a thin film. However, the method is not limited to this method. Absent. The polymer electrolyte membrane can also be prepared by radiation polymerization, electron beam polymerization, or thermal polymerization. A suitable photopolymerization initiator may be used in the case of ultraviolet polymerization, and a thermal polymerization initiator may be used in the case of the thermal polymerization method. The lithium salt to be dissolved includes LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C
2 F 5 ) 2 and mixtures of two or more of these can be used, but are not limited to these.

【0019】以上のようにして作製したバイポーラ電極
と高分子電解質膜を高真空下で十分加熱乾燥してから、
それぞれを適当なサイズに複数個切りだし、それらを高
分子電解質膜を介在させて挟んで貼り合わせることによ
って積層電池を作製できる。
After the bipolar electrode and the polymer electrolyte membrane produced as described above are sufficiently heated and dried under high vacuum,
It is possible to manufacture a laminated battery by cutting out a plurality of each into an appropriate size and sandwiching them with a polymer electrolyte membrane interposed therebetween and adhering them.

【0020】(実施例)以下、本発明の実施例と比較例
を説明する。高分子電解質としては、文献の方法に従っ
て合成したポリエーテル形のネットワーク高分子原料を
用い(J.Electrochem.Soc.,145(1998)1521.)、リチウ
ム塩としては、LiN(SO2C2F5)2(以後これをBETIと
略する)を用いた。正極材料には、平均粒子径2μmの
スピネルLiMn2O4を用いた。ここでは、負極活物質にLi4
Ti5O12を用いるが、この二次粒子の平均粒径は10μm
で、0.2〜0.5μmの一次粒子がいくらかネッキングした
構造になっていた。
(Examples) Examples of the present invention and comparative examples will be described below. As the polymer electrolyte, a polyether type network polymer raw material synthesized according to the method in the literature was used (J. Electrochem. Soc., 145 (1998) 1521.), and as the lithium salt, LiN (SO 2 C 2 F 2 5 ) 2 (hereinafter abbreviated as BETI) was used. Spinel LiMn 2 O 4 having an average particle diameter of 2 μm was used as the positive electrode material. Here, the negative electrode active material is Li 4
Ti 5 O 12 is used, but the average particle size of the secondary particles is 10 μm.
The primary particles of 0.2 to 0.5 μm had some necking structure.

【0021】(実施例1)まず、高分子電解質膜の作製
は、次のように行った。上記の高分子原料を53重量%、
リチウム塩としてBETIを26重量%、光重合開始剤と
してベンジルジメチルケタールを高分子原料の0.1重量
%加えて、溶媒としてNMP(N-メチル-2-ピロリド
ン)を21重量%用いて溶液を調製し、100μm厚さのテ
フロン(登録商標)スペーサーを用いて、ガラス基板間
にこの粘性の高い溶液を満たし、紫外線を20分間照射
して光重合(架橋)した。膜を取り出して、真空容器に
入れて90℃にて12時間高真空下で加熱乾燥して溶媒
を除いた膜を作製した。得られた膜は、弾性にとみ、粘
着性が強かった。
Example 1 First, the polymer electrolyte membrane was prepared as follows. 53% by weight of the above polymer raw material,
26 wt% of BETI as a lithium salt, 0.1 wt% of benzyl dimethyl ketal as a photopolymerization initiator, and 21 wt% of NMP (N-methyl-2-pyrrolidone) as a solvent were used to prepare a solution. A 100 μm thick Teflon (registered trademark) spacer was used to fill the glass substrate with this highly viscous solution, and ultraviolet rays were irradiated for 20 minutes for photopolymerization (crosslinking). The film was taken out, put in a vacuum container, and heated and dried at 90 ° C. for 12 hours under high vacuum to prepare a film from which the solvent was removed. The obtained film had excellent elasticity and strong adhesiveness.

【0022】次に、Li4Ti5O12負極の作製を次のように
行った。この電極活物質28重量%、アセチレンブラック
3重量%、上記の高分子原料を17重量%、BETIを8
重量%、熱重合開始剤としてアゾビスイソブチロニトリ
ルを高分子原料の0.1重量%加え、これに溶媒としてN
MPを44重量%加えて十分に撹拌してスラリーを調製
し、ニッケル層とアルミニウムの層の厚さがそれぞれ20
μmのクラッド材上のニッケル層側にコーターで塗布し
て、真空乾燥機にて110℃で2時間以上加熱乾燥して負極
を作製した。
Next, a Li 4 Ti 5 O 12 negative electrode was prepared as follows. 28% by weight of this electrode active material, 3% by weight of acetylene black, 17% by weight of the above polymer raw material and 8% of BETI.
%, Azobisisobutyronitrile as a thermal polymerization initiator was added at 0.1% by weight of the polymer raw material, and N was added as a solvent to this.
Slurry was prepared by adding 44% by weight of MP and stirring well, and the thickness of the nickel layer and that of the aluminum layer were each 20
The nickel layer on the clad material having a thickness of μm was coated with a coater and dried by heating in a vacuum dryer at 110 ° C. for 2 hours or more to prepare a negative electrode.

【0023】次に、この電極の集電体のアルミニウム側
にLiMn2O4正極層を作製する。29重量%の平均粒径2μの
LiMn2O4、8.7重量%のアセチレンブラック、17重量%の
上記高分子原料、BETIを7.3重量%、熱重合開始剤
としてアゾビスイソブチロニトリルを高分子原料の0.1
重量%加え、これに溶媒としてNMPを41重量%加えて
十分に撹拌してスラリーを調製し、この電極の集電体の
アルミニウム側の上にコーターで塗布して、真空乾燥機
にて110℃で2時間以上加熱乾燥して正極を作製した。作
製したバイポーラ電極は、残留溶媒を十分に除くため使
用前に真空容器に入れて90℃にて12時間高真空下で
加熱乾燥した。
Next, a LiMn2O4 positive electrode layer is formed on the aluminum side of the current collector of this electrode. 29% by weight average particle size 2μ
LiMn 2 O 4 , 8.7% by weight of acetylene black, 17% by weight of the above polymer raw material, 7.3 wt% of BETI, and 0.1% of the polymer raw material of azobisisobutyronitrile as a thermal polymerization initiator.
% By weight, and 41% by weight of NMP as a solvent is added thereto, and the mixture is sufficiently stirred to prepare a slurry, which is coated on the aluminum side of the current collector of this electrode with a coater, and then 110 ° C. in a vacuum dryer. It was heated and dried for 2 hours or more to prepare a positive electrode. The produced bipolar electrode was placed in a vacuum container and heated and dried at 90 ° C. for 12 hours under high vacuum to sufficiently remove residual solvent.

【0024】電池の作製はアルゴン雰囲気のグローブボ
ックス内で行った。バイポーラ電極をφ17mm、電解質
膜をφ19mmで切りだし、これらを交互に重ねて貼り合
わせて(図面3のような断面構造にして)、正極側の端
は上記集電体に正極層のみを形成した電極を貼りつけ、
負極側の端は、負極層のみを形成した電極を貼りつけ、
両端からSUSのロッドで押し付けて5つの電池を直列
に接続した積層電池を構成し、充放電特性を23℃にて評
価した。充放電評価は、上限電圧13.5Vで、0.1C(正極
し込み容量換算)の定電流―定電圧で12時間充電し、0.1
Cにて定電流で5Vまで放電した。
The battery was manufactured in a glove box in an argon atmosphere. The bipolar electrode was cut out with a diameter of 17 mm and the electrolyte membrane was cut with a diameter of 19 mm, and these were alternately laminated and bonded (having a cross-sectional structure as shown in FIG. 3), and only the positive electrode layer was formed on the current collector at the end on the positive electrode side. Stick the electrodes,
The end on the negative electrode side is pasted with an electrode on which only the negative electrode layer is formed,
A laminated battery in which five batteries were connected in series by pressing with SUS rods from both ends was constructed, and charge / discharge characteristics were evaluated at 23 ° C. Charge and discharge is evaluated by charging with an upper limit voltage of 13.5V and a constant current of 0.1C (converted into the positive electrode capacity) -constant voltage for 12 hours.
It was discharged to 5 V with a constant current at C.

【0025】(実施例2)実施例1において、集電体を
厚さ20μmのニッケル箔上にアルミニウムを10μm溶
射して製造した集電体を用いた以外は実施例1と同様に
して電池を構成して、同様な評価を行った。
Example 2 A battery was prepared in the same manner as in Example 1 except that a current collector prepared by spraying aluminum on a nickel foil having a thickness of 20 μm by 10 μm was used. It was constructed and evaluated in the same manner.

【0026】(実施例3)実施例1において、集電体を
厚さ20μmのニッケル箔上にアルミニウムを2μm蒸着
して製造した集電体を用いた以外は実施例1と同様にし
て電池を構成して、同様な評価を行った。
(Example 3) A battery was prepared in the same manner as in Example 1 except that the current collector was prepared by vapor-depositing aluminum on a nickel foil having a thickness of 20 µm by 2 µm. It was constructed and evaluated in the same manner.

【0027】(実施例4)実施例1において、集電体を
厚さ20μmのSUS316Lにした以外は実施例1と同様
にして電池を構成して、同様な評価を行った。
Example 4 A battery was constructed in the same manner as in Example 1 except that the current collector was changed to SUS316L having a thickness of 20 μm, and the same evaluation was performed.

【0028】(比較例1)実施例1において、集電体を
厚さ20μmの銅の層と厚さ20μmのアルミニウムからな
るクラッド材の集電体を用いた以外は実施例1と同様に
して電池を構成して、同様な評価を行った。
(Comparative Example 1) In the same manner as in Example 1 except that a current collector made of a clad material composed of a copper layer having a thickness of 20 μm and aluminum having a thickness of 20 μm was used. A battery was constructed and the same evaluation was performed.

【0029】以上の実施例と比較例において得られた結
果を表1にまとめた。正極活物質層は、どの場合にも架
橋反応が良好に進行した。負極については、集電体の材
質を銅にした場合には負極活物質層が固まらず電池を構
成できなかった。他方、集電体の材質をニッケル及びニ
ッケル合金にした場合には、架橋反応が良好に進行し電
池を構成でき、充放電できることを確認できた。 (1)「正極の架橋性」、「負極の架橋性」の項目の判
断基準は、「加熱処理により架橋反応が進行し、活物質
が電極からばらけ落ちないこと。(実際に使用している
判定基準は、架橋後の電極をエタノール等の溶媒に浸漬
して、ガラス棒等でこすってもばらけないこと。)」 (2)「電池の充放電特性」の項は、10回以上安定に充
放電できること。」 (3)総合評価は、もちろん「正極の架橋性、負極の架
橋性、電池の充放電特性が全て〇であること。」 測定結果を表―1に示す。
The results obtained in the above Examples and Comparative Examples are summarized in Table 1. The cross-linking reaction proceeded well in all cases of the positive electrode active material layer. Regarding the negative electrode, when the material of the current collector was copper, the negative electrode active material layer was not solidified and the battery could not be constructed. On the other hand, when nickel and nickel alloy were used as the material of the current collector, it was confirmed that the crosslinking reaction proceeded satisfactorily and a battery could be constructed and charged and discharged. (1) The criteria for the items "crosslinkability of the positive electrode" and "crosslinkability of the negative electrode" are "the crosslinking reaction proceeds by the heat treatment and the active material does not fall off the electrode. (In actual use The criterion is that the electrode after cross-linking should be immersed in a solvent such as ethanol and rubbed with a glass rod etc.)) ”(2)“ Charge / discharge characteristics of battery ”is 10 times or more. Be able to charge and discharge stably. (3) Of course, in the comprehensive evaluation, "the crosslinkability of the positive electrode, the crosslinkability of the negative electrode, and the charge / discharge characteristics of the battery are all ◯." The measurement results are shown in Table-1.

【表1】 [Table 1]

【発明の効果】本発明によれば、1枚の集電体の両側に
正負極層を備えたバイポーラ電極を、電極(活物質)層
内部にも架橋して形成した高分子固体電解質を有する構
成とでき、それにより電極の反応性と強度を向上でき
る。このバイポーラ電極を用いることにより、単セル間
での液絡が起こらない充放電特性に優れたコンパクトな
バイポーラ積層電池を構成できるので、電池の高エネル
ギー密度化及び高出力密度化を図れ、産業に寄与すると
ころ大である。
EFFECTS OF THE INVENTION According to the present invention, a bipolar electrode having positive and negative electrode layers on both sides of one current collector is cross-linked also in the electrode (active material) layer to form a solid polymer electrolyte. Therefore, the reactivity and strength of the electrode can be improved. By using this bipolar electrode, it is possible to construct a compact bipolar laminated battery with excellent charge / discharge characteristics in which no liquid junction occurs between the single cells, so that it is possible to achieve high energy density and high power density of the battery, and to be used in the industry. It is a great place to contribute.

【図面の簡単な説明】[Brief description of drawings]

【図1】バイポーラ電極を表す断面図である。FIG. 1 is a cross-sectional view showing a bipolar electrode.

【図2】電極のエネルギー密度と高分子電解質相の体積
分率の関係を表す図である。
FIG. 2 is a diagram showing the relationship between the energy density of an electrode and the volume fraction of a polymer electrolyte phase.

【図3】バイポーラ積層電池を表す断面図である。FIG. 3 is a cross-sectional view showing a bipolar laminated battery.

【符号の説明】 正極集電体 正極 固体電解質 負極 負極集電体[Explanation of symbols]     Positive electrode collector     Positive electrode     Solid electrolyte     Negative electrode     Negative electrode current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 幸徳 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 大澤 康彦 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 5H017 AA03 AS03 BB06 EE04 EE05 HH01 HH03 HH08 5H029 AJ02 AJ03 AJ11 AK01 AK03 AL02 AL03 AM07 AM16 BJ06 BJ17 CJ06 DJ07 DJ16 DJ17 EJ01 5H050 AA02 AA08 AA14 BA18 CA01 CA09 CB02 CB03 DA04 DA06 FA03 FA17 FA19 GA08    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yukinori Takahashi             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation (72) Inventor Yasuhiko Osawa             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation F term (reference) 5H017 AA03 AS03 BB06 EE04 EE05                       HH01 HH03 HH08                 5H029 AJ02 AJ03 AJ11 AK01 AK03                       AL02 AL03 AM07 AM16 BJ06                       BJ17 CJ06 DJ07 DJ16 DJ17                       EJ01                 5H050 AA02 AA08 AA14 BA18 CA01                       CA09 CB02 CB03 DA04 DA06                       FA03 FA17 FA19 GA08

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1枚の集電体の片面に、架橋して形成し
た高分子固体電解質を有する正極層を形成し、他方の片
面に架橋して形成した高分子固体電解質を有する負極層
を形成し、この正負極層を有したバイポーラ電極を高分
子固体電解質層を介して複数個積層した構造を有するバ
イポーラ電池において、 集電体の少なくとも負極側の面がニッケルあるいはニッ
ケル合金から選ばれる材質であることを特徴とするバイ
ポーラ電池。
1. A positive electrode layer having a polymer solid electrolyte formed by crosslinking is formed on one surface of one current collector, and a negative electrode layer having a polymer solid electrolyte formed by crosslinking is formed on the other surface. In a bipolar battery having a structure in which a plurality of bipolar electrodes having the positive and negative electrode layers are laminated via a solid polymer electrolyte layer, at least the negative electrode side surface of the current collector is made of a material selected from nickel or nickel alloys. A bipolar battery characterized in that.
【請求項2】 請求項1に記載のバイポーラ電池におい
て、 負極の活物質が充放電でリチウムを出し入れできる遷移
金属酸化物あるいは、遷移金属とリチウムの複合酸化物
であることを特徴とするバイポーラ電池。
2. The bipolar battery according to claim 1, wherein the active material of the negative electrode is a transition metal oxide or a composite oxide of transition metal and lithium capable of taking lithium in and out by charging and discharging. .
【請求項3】 請求項2に記載のバイポーラ電池におい
て、 遷移金属がチタンであることを特徴とするバイポーラ電
池。
3. The bipolar battery according to claim 2, wherein the transition metal is titanium.
JP2001217578A 2001-07-18 2001-07-18 Bipolar battery Pending JP2003031261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001217578A JP2003031261A (en) 2001-07-18 2001-07-18 Bipolar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001217578A JP2003031261A (en) 2001-07-18 2001-07-18 Bipolar battery

Publications (1)

Publication Number Publication Date
JP2003031261A true JP2003031261A (en) 2003-01-31

Family

ID=19051868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001217578A Pending JP2003031261A (en) 2001-07-18 2001-07-18 Bipolar battery

Country Status (1)

Country Link
JP (1) JP2003031261A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424744A1 (en) * 2002-10-10 2004-06-02 Nissan Motor Co., Ltd. Stacked battery, assembled battery and vehicle
JP2004319362A (en) * 2003-04-18 2004-11-11 Nissan Motor Co Ltd Bipolar secondary battery
JP2004327242A (en) * 2003-04-24 2004-11-18 Nissan Motor Co Ltd Polymer secondary battery
JP2005050756A (en) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd Gel electrolyte battery
JP2005050755A (en) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd Non-aqueous electrolyte battery
JP2005078991A (en) * 2003-09-02 2005-03-24 Nissan Motor Co Ltd Nonaqueous electrolytic secondary battery
JP2005294168A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Electrode and battery using it
JP2006147405A (en) * 2004-11-22 2006-06-08 Nissan Motor Co Ltd Electrode for lithium ion secondary battery, and lithium ion secondary battery using it
JP2008504662A (en) * 2004-07-02 2008-02-14 コミツサリア タ レネルジー アトミーク Method for charging a lithium ion storage battery having a negative electrode
JP2009004363A (en) * 2007-05-24 2009-01-08 Nissan Motor Co Ltd Current collector for nonaqueous solvent secondary battery, and electrode and battery, using the current collector
WO2010032362A1 (en) * 2008-09-17 2010-03-25 Nissan Motor Co., Ltd. Bipolar electrode and production method thereof
JP2010277862A (en) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd Collector for bipolar battery
WO2014157125A1 (en) * 2013-03-29 2014-10-02 住友化学株式会社 Sodium secondary battery
US9017877B2 (en) 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
JP2016162489A (en) * 2015-02-26 2016-09-05 株式会社半導体エネルギー研究所 Flexible lithium ion storage battery and electronic apparatus
JP2020009771A (en) * 2019-08-08 2020-01-16 株式会社半導体エネルギー研究所 Lithium ion storage battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424744A1 (en) * 2002-10-10 2004-06-02 Nissan Motor Co., Ltd. Stacked battery, assembled battery and vehicle
JP2004319362A (en) * 2003-04-18 2004-11-11 Nissan Motor Co Ltd Bipolar secondary battery
JP2004327242A (en) * 2003-04-24 2004-11-18 Nissan Motor Co Ltd Polymer secondary battery
JP2005050756A (en) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd Gel electrolyte battery
JP2005050755A (en) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd Non-aqueous electrolyte battery
JP2005078991A (en) * 2003-09-02 2005-03-24 Nissan Motor Co Ltd Nonaqueous electrolytic secondary battery
JP2005294168A (en) * 2004-04-02 2005-10-20 Nissan Motor Co Ltd Electrode and battery using it
JP2008504662A (en) * 2004-07-02 2008-02-14 コミツサリア タ レネルジー アトミーク Method for charging a lithium ion storage battery having a negative electrode
JP2006147405A (en) * 2004-11-22 2006-06-08 Nissan Motor Co Ltd Electrode for lithium ion secondary battery, and lithium ion secondary battery using it
JP2009004363A (en) * 2007-05-24 2009-01-08 Nissan Motor Co Ltd Current collector for nonaqueous solvent secondary battery, and electrode and battery, using the current collector
US9017877B2 (en) 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
WO2010032362A1 (en) * 2008-09-17 2010-03-25 Nissan Motor Co., Ltd. Bipolar electrode and production method thereof
JP2010277862A (en) * 2009-05-28 2010-12-09 Nissan Motor Co Ltd Collector for bipolar battery
WO2014157125A1 (en) * 2013-03-29 2014-10-02 住友化学株式会社 Sodium secondary battery
JP2016162489A (en) * 2015-02-26 2016-09-05 株式会社半導体エネルギー研究所 Flexible lithium ion storage battery and electronic apparatus
JP2020009771A (en) * 2019-08-08 2020-01-16 株式会社半導体エネルギー研究所 Lithium ion storage battery

Similar Documents

Publication Publication Date Title
US7220516B2 (en) Bipolar battery with flexible insulation film
JP4038699B2 (en) Lithium ion battery
JP4674434B2 (en) Bipolar battery
JP4352475B2 (en) Solid electrolyte secondary battery
CN104704653A (en) Solid-state battery electrodes
US7462420B2 (en) Electrode with a phase-separated binder that includes a vinylidene fluoride binder polymer and a polyether polar polymer with a lithium salt
JP2004095400A (en) Bipolar battery and its control method
JP2003031261A (en) Bipolar battery
JP2009004181A (en) Electrode for battery
EP3033783A1 (en) Li-metal battery with microstructured solid electrolyte
JP2020526909A (en) Lithium metal battery
JPH10255842A (en) Lithium-polymer secondary battery
JP2004311108A (en) Total polymer electrolyte battery and manufacturing method
JP3879140B2 (en) Lithium polymer secondary battery
JP2006294272A (en) Secondary battery, battery pack, and vehicle mounting these
JP2000048639A (en) Composite structure gel electrolyte sheet laminated body
JP2004071405A (en) Bipolar battery
JP2003217594A (en) Electrode for ionic battery and production process thereof
JP4032931B2 (en) Bipolar battery
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JP2000003728A (en) Lithium secondary battery and manufacture thereof
JPH11283612A (en) Lithium secondary battery
JP2021077476A (en) Lithium ion battery
JP5135649B2 (en) Solid polymer electrolyte battery and method for producing solid polymer electrolyte
WO2015151145A1 (en) All-solid lithium secondary cell

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050830

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051116