JPH05141468A - Damping force adjustable type hydraulic shock absorber - Google Patents

Damping force adjustable type hydraulic shock absorber

Info

Publication number
JPH05141468A
JPH05141468A JP33148791A JP33148791A JPH05141468A JP H05141468 A JPH05141468 A JP H05141468A JP 33148791 A JP33148791 A JP 33148791A JP 33148791 A JP33148791 A JP 33148791A JP H05141468 A JPH05141468 A JP H05141468A
Authority
JP
Japan
Prior art keywords
damping force
cylinder
chamber
oil liquid
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33148791A
Other languages
Japanese (ja)
Inventor
Osamu Matsumoto
治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP33148791A priority Critical patent/JPH05141468A/en
Publication of JPH05141468A publication Critical patent/JPH05141468A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To automatically adjust damping force of a base valve in response to damping force of the damping force generating mechanism of a piston. CONSTITUTION:A main oil-liquid passage 9 on the side of contraction that communicates a cylinder lower chamber 2b and a reservoir chamber 6a and a bypass passage 10 are provided in the valve main body 8 of a base valve mechanism 7, and a spool valve mechanism 14 that opens/closes the bypass passage 10 is also provided. Oil-liquid in the cylinder lower chamber 2b is pressurized by sliding of a piston fitted to a cylinder 2, and that pressure is transmitted to a spool 16 by a pressure inlet hole 17. Since the spool 16 becomes to locate at a valve opening position as shown in the drawing by a spring 19 to open the bypass passage 10 when the pressure in the cylinder lower chamber 2b is low, damping force of the base valve is reduced. When the pressure of the cylinder lower chamber 26 is not less than that specified, since the spool 16 moves by that pressure withstanding energized force of the spring 19 and the bypass passage 10 is closed, damping force of the base valve is raised by the main oil-liquid passage 9 and a damping force generating mechanism 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の車両の懸架
装置に装着される減衰力調整式油圧緩衝器に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a damping force adjustable hydraulic shock absorber mounted on a suspension system of a vehicle such as an automobile.

【0002】[0002]

【従来の技術】自動車等の車両の懸架装置に装着される
油圧緩衝器には、路面状況、走行状況等に応じて乗り心
地や操縦安定性をよくするために減衰力を適宜調整でき
るようにした減衰力調整式油圧緩衝器がある。
2. Description of the Related Art In a hydraulic shock absorber mounted on a suspension system of a vehicle such as an automobile, a damping force can be appropriately adjusted in order to improve ride comfort and steering stability in accordance with road surface conditions, running conditions and the like. There is a damping force adjustable hydraulic shock absorber.

【0003】この種の油圧緩衝器としては、例えば実開
昭58−191448号公報に開示されたものがある。
これは、油液が封入されたシリンダに、ピストンロッド
を連結したピストンが摺動可能に嵌装されており、ピス
トンによってシリンダ内がシリンダ上室およびシリンダ
下室の2室に区画されている。シリンダの外周部には油
液およびガスが封入されたリザーバ室が設けられてお
り、シリンダ下室の底部に設けられたベースバルブ機構
によってシリンダ下室とリザーバ室とが連通されてい
る。そして、ピストンには、ピストンロッドの伸び、縮
み行程時ともに減衰力を発生する減衰力発生機構および
この減衰力発生機構力の減衰力を大きな減衰力を発生す
るハード特性と小さな減衰力を発生するソフト特性とに
切換える減衰力調整機構が設けられている。また、ベー
スバルブ機構には、縮み行程時のみ減衰力を発生する減
衰力発生機構が設けられている。
An example of this type of hydraulic shock absorber is disclosed in Japanese Utility Model Laid-Open No. 58-191448.
In this, a piston in which a piston rod is connected is slidably fitted in a cylinder in which an oil liquid is sealed, and the inside of the cylinder is partitioned by the piston into two chambers, an upper cylinder chamber and a lower cylinder chamber. A reservoir chamber in which oil liquid and gas are sealed is provided on the outer peripheral portion of the cylinder, and the lower cylinder chamber and the reservoir chamber are connected by a base valve mechanism provided at the bottom of the lower cylinder chamber. In the piston, a damping force generating mechanism that generates a damping force during the expansion and contraction strokes of the piston rod, a damping characteristic of this damping force generating mechanism force, a hard characteristic that generates a large damping force, and a small damping force are generated. A damping force adjusting mechanism for switching to soft characteristics is provided. In addition, the base valve mechanism is provided with a damping force generating mechanism that generates a damping force only during the compression stroke.

【0004】この構成により、伸び行程時は、シリンダ
上室の油液が加圧されてピストンの減衰力発生機構を通
ってシリンダ下室へ流れることにより減衰力が発生す
る。このとき、ピストンロッドがシリンダ内から退室し
た分の油液がリザーバ室からベースバルブ機構を通って
ほとんど抵抗なくシリンダ下室へ流れる。縮み行程時
は、シリンダ下室の油液が加圧されてピストンの減衰力
発生機構を通ってシリンダ上室へ流れることにより減衰
力が発生する。このとき、ピストンロッドがシリンダ内
に侵入した分の油液がシリンダ下室からベースバルブ機
構の減衰力発生機構を通ってリザーバ室へ流れることに
より減衰力が発生する。このように、伸び行程時にはピ
ストンの減衰力発生機構により減衰力を発生し、縮み行
程時にはピストンの減衰力発生機構およびベースバルブ
機構の減衰力発生機構により減衰力を発生する。また、
減衰力特性の切換えは、減衰力調整機構によりピストン
の減衰力発生機構の減衰力を切換えることによって行
う。
With this configuration, during the extension stroke, the oil liquid in the cylinder upper chamber is pressurized and flows through the piston's damping force generating mechanism to the cylinder lower chamber to generate a damping force. At this time, the oil liquid corresponding to the piston rod leaving the cylinder flows from the reservoir chamber to the lower chamber of the cylinder through the base valve mechanism with almost no resistance. During the compression stroke, the oil liquid in the cylinder lower chamber is pressurized and flows through the piston damping force generating mechanism to the cylinder upper chamber, thereby generating a damping force. At this time, a damping force is generated by flowing the oil corresponding to the piston rod entering the cylinder from the cylinder lower chamber to the reservoir chamber through the damping force generating mechanism of the base valve mechanism. Thus, the damping force generation mechanism of the piston generates the damping force during the extension stroke, and the damping force generation mechanism of the piston and the damping force generation mechanism of the base valve mechanism generate the damping force during the contraction stroke. Also,
The damping force characteristics are switched by switching the damping force of the damping force generating mechanism of the piston by the damping force adjusting mechanism.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記従来の
減衰力調整式油圧緩衝器では、ピストンの減衰力発生機
構および減衰力調整機構の減衰力に応じてベースバルブ
機構の減衰力発生機構の減衰力を設定する必要がある。
すなわち、ピストンの減衰力発生機構および減衰力調整
機構(特にハード特性時)の減衰力に対してベースバル
ブ機構の減衰力発生機構の減衰力が小さすぎると、縮み
行程時にシリンダ下室の油液がピストンロッドのシリン
ダ内への侵入分以上にリザーバ室へ流れてしまうのでピ
ストンの減衰力発生機構および減衰力調整機構により充
分な減衰力を発生させることができない。また、シリン
ダ上室が負圧となり安定した減衰力が得られない。一
方、この点を改善するためベースバルブ機構の減衰力発
生機構の減衰力を大きくするとピストンの減衰力調整機
構の減衰力をソフト特性として小さくしても油圧緩衝器
の減衰力をあまり小さくることができない。すなわち、
ベースバルブ機構の減衰力発生機構の減衰力特性が固定
されているので、縮み行程時の発生減衰力をそれ以下と
することができず、ハード特性時とソフト特性時の発生
減衰力の調整範囲を広くすることができないという問題
がある。
In the conventional damping force adjusting hydraulic shock absorber described above, the damping force of the base valve mechanism is damped according to the damping force of the piston damping force generating mechanism and the damping force adjusting mechanism. You need to set the force.
That is, if the damping force of the damping force generating mechanism of the base valve mechanism is too small compared to the damping force of the damping force generating mechanism of the piston and the damping force adjusting mechanism (especially when the characteristic is hard), the oil liquid in the cylinder lower chamber during the compression stroke is reduced. Flows into the reservoir chamber more than the amount of penetration of the piston rod into the cylinder, so that a sufficient damping force cannot be generated by the damping force generating mechanism and damping force adjusting mechanism of the piston. Further, the upper chamber of the cylinder becomes a negative pressure and a stable damping force cannot be obtained. On the other hand, if the damping force of the damping force generation mechanism of the base valve mechanism is increased to improve this point, the damping force of the hydraulic shock absorber will be too small even if the damping force of the damping force adjustment mechanism of the piston is reduced as a soft characteristic. I can't. That is,
Since the damping force characteristics of the damping force generation mechanism of the base valve mechanism are fixed, the damping force generated during the compression stroke cannot be reduced below that, and the adjustment range of the generated damping force during hard characteristics and soft characteristics There is a problem that it cannot be widened.

【0006】本発明は、以上の点に鑑みてなされたもの
であり、縮み行程時に、ピストンの減衰力調整機構の減
衰力に応じてベースバルブ機構の減衰力発生機構の減衰
力を自動的に調整することができる減衰力調整式油圧緩
衝器を提供することを目的とする。
The present invention has been made in view of the above points. During the compression stroke, the damping force of the damping force generating mechanism of the base valve mechanism is automatically adjusted according to the damping force of the damping force adjusting mechanism of the piston. An object is to provide a damping force adjustable hydraulic shock absorber that can be adjusted.

【0007】[0007]

【課題を解決するための手段】本発明の減衰力調整式油
圧緩衝器は、上記の課題を解決するために、油液を封入
したシリンダと、該シリンダに摺動可能に嵌装され前記
シリンダ内を2室に区画する、ピストンロッドが連結さ
れたピストンと、該ピストンに設けられた減衰力調整機
構を有する第1の減衰力発生機構と、油液およびガスを
封入したリザーバ室と、前記シリンダ内の一方の室と前
記リザーバ室とを連通させる主油液通路を有するベース
バルブ機構と、前記主油液通路内の油液の流動を制御し
て減衰力を発生させる第2の減衰力発生機構と、前記ベ
ースバルブ機構に設けられ、前記シリンダ内の一方の室
と前記リザーバ室とを連通させるバイパス通路と、前記
シリンダ内の一方の室の圧力が所定以上のとき前記バイ
パス通路を閉鎖または絞る弁機構とを備えてなることを
特徴とする。
In order to solve the above-mentioned problems, a damping force adjusting hydraulic shock absorber of the present invention includes a cylinder in which an oil liquid is sealed, and a cylinder slidably fitted in the cylinder. A piston to which a piston rod is connected, which divides the interior into two chambers, a first damping force generating mechanism having a damping force adjusting mechanism provided in the piston, a reservoir chamber in which oil liquid and gas are sealed, and A base valve mechanism having a main oil liquid passage that connects one chamber in the cylinder and the reservoir chamber, and a second damping force that controls the flow of the oil liquid in the main oil liquid passage to generate a damping force. A bypass passage provided in the generating mechanism and the base valve mechanism for communicating one chamber in the cylinder with the reservoir chamber, and closing the bypass passage when the pressure in one chamber in the cylinder is equal to or higher than a predetermined pressure. Well Characterized by comprising a valve mechanism which is squeezing.

【0008】[0008]

【作用】このように構成したことにより、縮み行程時に
おいて、シリンダ内の一方の室圧力が小さい場合には、
ベースバルブ機構の弁機構が開いてシリンダ内の一方の
室の油液がバイパス通路を通って小さな抵抗でリザーバ
室へ流れ、シリンダ内の一方の室の圧力が所定以上の場
合には、ベースバルブ機構の弁機構がバイパス通路を閉
鎖または絞ってシリンダ内の一方の室の油液がベースバ
ルブ機構の第2の減衰力発生機構を通ってリザーバ室へ
流れるため、ピストンの第1の減衰力発生機構の減衰力
に応じてベースバルブ機構の第2の減衰力発生機構の減
衰力が自動的に切換わる。
By virtue of this construction, when one of the chamber pressures in the cylinder is small during the compression stroke,
If the valve mechanism of the base valve mechanism opens and the oil liquid in one chamber in the cylinder flows through the bypass passage to the reservoir chamber with a small resistance, and if the pressure in one chamber in the cylinder exceeds a certain level, the base valve Since the valve mechanism of the mechanism closes or throttles the bypass passage and the oil liquid in one chamber in the cylinder flows through the second damping force generation mechanism of the base valve mechanism to the reservoir chamber, the first damping force generation of the piston is generated. The damping force of the second damping force generating mechanism of the base valve mechanism is automatically switched according to the damping force of the mechanism.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。図1は本実施例の要部の縦断面図であ
り、図3は本実施例の全体を模式的に示す縦断面図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a vertical cross-sectional view of an essential part of this embodiment, and FIG. 3 is a vertical cross-sectional view schematically showing the whole of this embodiment.

【0010】図3に示すように、本発明の減衰力調整式
油圧緩衝器1は、シリンダ2に、このシリンダ2内をシ
リンダ上室2aおよびシリンダ下室2bの2室に区画するピ
ストン3が摺動可能に嵌装されていおり、ピストン3に
は、一端がシリンダ2の外部まで延びるピストンロッド
4が連結されている。シリンダ2の外周に内筒5が設け
られ、さらに、内筒5の外周に外筒6が設けられてお
り、シリンダ2と内筒5との間にシリンダ上室2aに連通
する油液通路5aが形成され、内筒5と外筒6との間にリ
ザーバ室6aが形成されている。シリンダ2、内筒5およ
び外筒6の下端部には、シリンダ下室2bとリザーバ室と
を連通させるベースバルブ機構7が設けられている。そ
して、シリンダ2内には油液が封入されており、リザー
バ室6a内には油液およびガスが封入されている。
As shown in FIG. 3, the damping force adjusting hydraulic shock absorber 1 of the present invention includes a cylinder 2 having a piston 3 which divides the cylinder 2 into an upper cylinder chamber 2a and a lower cylinder chamber 2b. A piston rod 4 is slidably fitted to the piston 3 and has one end extending to the outside of the cylinder 2. An inner cylinder 5 is provided on the outer circumference of the cylinder 2, and an outer cylinder 6 is further provided on the outer circumference of the inner cylinder 5, and an oil passage 5a communicating between the cylinder 2 and the inner cylinder 5 and communicating with the cylinder upper chamber 2a. And a reservoir chamber 6a is formed between the inner cylinder 5 and the outer cylinder 6. At the lower ends of the cylinder 2, the inner cylinder 5, and the outer cylinder 6, a base valve mechanism 7 that connects the cylinder lower chamber 2b and the reservoir chamber is provided. The cylinder 2 is filled with oil liquid, and the reservoir chamber 6a is filled with oil liquid and gas.

【0011】ピストン3には、従来技術と同様に、ピス
トンロッド4の伸び行程時に、ピストン3の摺動にとも
ないシリンダ上室2aの油液をシリンダ下室2bへ流し、そ
の油液の流れに流通抵抗を作用させることによって減衰
力を発生させ、また、縮み行程時に、ピストン3の摺動
にともないシリンダ下室2bの油液をシリンダ上室2aへ流
し、その油液の流れに流通抵抗を作用させることによっ
て減衰力を発生させる減衰力発生機構3Aおよびこれらの
流通抵抗を変化させることにより前記減衰力発生機構の
減衰力を調整する減衰力調整機構3bとからなる第1の減
衰力発生機構3Cが設けられている。
In the piston 3, as in the prior art, during the extension stroke of the piston rod 4, the oil liquid in the cylinder upper chamber 2a is made to flow to the cylinder lower chamber 2b as the piston 3 slides, and the oil liquid is made to flow. A damping force is generated by applying a flow resistance, and the oil liquid in the cylinder lower chamber 2b is caused to flow to the cylinder upper chamber 2a as the piston 3 slides during the compression stroke, and the flow resistance of the oil liquid is changed. A first damping force generation mechanism including a damping force generation mechanism 3A that generates a damping force when actuated and a damping force adjustment mechanism 3b that adjusts the damping force of the damping force generation mechanism by changing the flow resistances thereof. 3C is provided.

【0012】ベースバルブ機構7は、図1に示すよう
に、そのバルブ本体8がシリンダ2および内筒5の下端
部に嵌合されており、バルブ本体8には、シリンダ下室
2bとリザーバ室6aとを連通する縮み側主油液通路9、バ
イパス通路10および伸び側油液通路11が設けられてい
る。バルブ本体8のリザーバ室6a側の端部には、縮み側
主油液通路9のシリンダ下室2bからリザーバ室6aへの油
液の流れに流通抵抗を作用させることにより減衰力を発
生させるディスクバルブおよびオリフィスからなる(第
2の)減衰力発生機構12が設けられている。バルブ本体
8のシリンダ下室2b側の端部には、伸び側油液通路11の
リザーバ室6aからシリンダ下室2bへの油液の流れを許容
し、シリンダ下室2bからリザーバ室6aへの油液の流れを
阻止する逆止弁13が設けられている。バイパス通路10の
途中にはこのバイパス通路10を開閉するスプール弁機構
14の弁シリンダ15が設けられており、弁シリンダ15には
弁シリンダ15内を摺動してバイパス通路10を開閉するス
プール16が嵌装されている。弁シリンダ15内のスプール
によって区画された一端側の室15a は、圧力導入孔17を
介してシリンダ下室2bに連通されており、他端側の室15
b は、オリフィス通路18およびシリンダ2と内筒5との
間に形成された油液通路5aを介してシリンダ上室2aに連
通されている。また、弁シリンダ15の室15b には、弁シ
リンダ15に嵌装されたスプール16を図1に示す開弁位置
側へ付勢するばね19が設けられており、シリンダ下室2b
の圧力が所定以上となったとき、弁シリンダの室15a 、
室15b 間の圧力差によってスプール16がばね19の付勢力
に抗して図2に示す閉弁位置へ移動するようになってい
る。なお、図中、20は減衰力発生機構12および逆止弁13
をバルブ本体8に取付けるためのピンである。
As shown in FIG. 1, the base valve mechanism 7 has a valve body 8 fitted to the lower ends of the cylinder 2 and the inner cylinder 5, and the valve body 8 has a cylinder lower chamber.
A contraction-side main oil liquid passage 9, a bypass passage 10 and an extension-side oil liquid passage 11 are provided to connect the 2b and the reservoir chamber 6a. At the end of the valve body 8 on the side of the reservoir chamber 6a, a disc for generating a damping force by exerting a flow resistance on the flow of the oil liquid from the cylinder lower chamber 2b of the compression side main oil liquid passage 9 to the reservoir chamber 6a. A (second) damping force generating mechanism 12 including a valve and an orifice is provided. At the end of the valve body 8 on the cylinder lower chamber 2b side, the flow of the oil liquid from the reservoir chamber 6a of the extension side oil liquid passage 11 to the cylinder lower chamber 2b is allowed, and the oil flow from the cylinder lower chamber 2b to the reservoir chamber 6a is allowed. A check valve 13 is provided to block the flow of oil liquid. A spool valve mechanism for opening and closing the bypass passage 10 is provided in the middle of the bypass passage 10.
Fourteen valve cylinders 15 are provided, and a spool 16 that slides in the valve cylinder 15 to open and close the bypass passage 10 is fitted to the valve cylinder 15. The chamber 15a on one end side, which is partitioned by the spool in the valve cylinder 15, communicates with the cylinder lower chamber 2b via the pressure introduction hole 17, and the chamber 15a on the other end side.
The b is communicated with the cylinder upper chamber 2a through an orifice passage 18 and an oil liquid passage 5a formed between the cylinder 2 and the inner cylinder 5. Further, the chamber 15b of the valve cylinder 15 is provided with a spring 19 for urging the spool 16 fitted in the valve cylinder 15 toward the valve opening position side shown in FIG.
When the pressure exceeds a predetermined value, the valve cylinder chamber 15a,
Due to the pressure difference between the chambers 15b, the spool 16 moves against the biasing force of the spring 19 to the valve closing position shown in FIG. In the figure, 20 is a damping force generating mechanism 12 and a check valve 13.
Is a pin for attaching to the valve body 8.

【0013】以上のように構成した本実施例の作用につ
いて次に説明する。減衰力調整式油圧緩衝器1は、ピス
トンロッド4の伸び行程時は、シリンダ上室2aの油液が
加圧されてピストン3の第1の減衰力発生機構3Cを通っ
てシリンダ下室へ流れることにより減衰力が発生する。
このとき、ピストンロッド4がシリンダ上室2a内から退
室した分の油液がリザーバ室6aからベースバルブ機構7
の伸び側油液通路11を通ってシリンダ下室2bへ流れる。
ピストンロッド4の縮み行程時は、シリンダ下室2bの油
液が加圧されてピストン3の第1の減衰力発生機構3Cを
通ってシリンダ上室2aへ流れることにより減衰力が発生
する。このとき、ピストンロッド4がシリンダ2内に侵
入した分の油液がシリンダ下室2bからベースバルブ機構
7の縮み側主油液通路9またはバイパス油液通路10を通
ってリザーバ室6aへ流れる。
The operation of this embodiment having the above-mentioned structure will be described below. In the damping force adjusting hydraulic shock absorber 1, during the extension stroke of the piston rod 4, the oil liquid in the cylinder upper chamber 2a is pressurized and flows into the cylinder lower chamber through the first damping force generating mechanism 3C of the piston 3. As a result, a damping force is generated.
At this time, the oil liquid corresponding to the piston rod 4 leaving the inside of the cylinder upper chamber 2a flows from the reservoir chamber 6a to the base valve mechanism 7a.
Flows to the cylinder lower chamber 2b through the extension side oil liquid passage 11.
During the compression stroke of the piston rod 4, the oil liquid in the cylinder lower chamber 2b is pressurized and flows to the cylinder upper chamber 2a through the first damping force generating mechanism 3C of the piston 3 to generate a damping force. At this time, the oil liquid corresponding to the piston rod 4 entering the cylinder 2 flows from the cylinder lower chamber 2b to the reservoir chamber 6a through the contraction side main oil liquid passage 9 or the bypass oil liquid passage 10 of the base valve mechanism 7.

【0014】ピストン3の第1の減衰力発生機構3Cの減
衰力をソフト特性として小さく設定した場合、ピストン
ロッド4の縮み行程時にはシリンダ下室2bの油液が加圧
されるが、第1の減衰力発生機構3Cの流通抵抗が小さい
ためシリンダ下室2bの圧力はあまり高くならず、また、
シリンダ下室2bとシリンダ上室2aとの圧力差も小さい。
したがって、圧力導入孔17により弁シリンダ15の室15a
に伝えられるシリンダ下室2bの圧力が小さいのでスプー
ル16はばね19により図1に示す開弁位置となっておりバ
イパス油液通路10が開いている。よって、ピストンロッ
ド4がシリンダ2内に侵入した分の油液がシリンダ下室
2bからバイパス油液通路10を通って小さな抵抗でリザー
バ室6aへ流れるためピストン3の第1の減衰力発生機構
3Cの減衰力とともに充分小さい減衰力が発生する。
When the damping force of the first damping force generating mechanism 3C of the piston 3 is set to a small value as a soft characteristic, the oil liquid in the cylinder lower chamber 2b is pressurized during the compression stroke of the piston rod 4, but Since the flow resistance of the damping force generation mechanism 3C is small, the pressure in the cylinder lower chamber 2b does not become too high, and
The pressure difference between the cylinder lower chamber 2b and the cylinder upper chamber 2a is also small.
Therefore, the pressure introducing hole 17 allows the chamber 15a of the valve cylinder 15 to
Since the pressure in the lower cylinder chamber 2b transmitted to the cylinder 16 is small, the spool 16 is in the valve open position shown in FIG. 1 by the spring 19 and the bypass oil passage 10 is open. Therefore, the oil liquid corresponding to the piston rod 4 entering the cylinder 2 is
The first damping force generating mechanism of the piston 3 for flowing from 2b to the reservoir chamber 6a through the bypass oil liquid passage 10 with a small resistance
A sufficiently small damping force is generated together with the damping force of 3C.

【0015】一方、ピストン3の第1の減衰力発生機構
3Cの減衰力をハード特性として大きく設定した場合、ピ
ストンロッド4の縮み行程時にはシリンダ下室2bの油液
が加圧されるが、第1の減衰力発生機構3Cの流通抵抗が
大きいためシリンダ下室2bの圧力が所定以上となり、ま
た、シリンダ下室2bとシリンダ上室2aとの圧力差が大き
くなる。したがって、圧力導入孔17により弁シリンダ15
の室15a に伝えられるシリンダ下室2bの圧力が大きく、
油液通路5aおよびオリフィス通路18により室15b に伝え
られるシリンダ上室2aの圧力が小さく、室15a 、室15b
間の圧力差が大きいのでスプール弁16がばね19の付勢力
に抗して図2に示す閉弁位置に移動してバイパス通路10
が閉じる。よって、ピストンロッド4がシリンダ2内に
侵入した分の油液がシリンダ下室2bから縮み側主油液通
路9を通ってリザーバ室6aへ流れ、この油液の流れに対
して減衰力発生機構12の流通抵抗が作用して大きな減衰
力が発生する。このようにして、ピストン3の第1の減
衰力発生機構3Cおよびベースバルブ機構7の減衰力発生
機構12により充分大きな減衰力が発生する。
On the other hand, the first damping force generating mechanism of the piston 3
If the damping force of 3C is set to a large value as a hard characteristic, the oil liquid in the cylinder lower chamber 2b is pressurized during the compression stroke of the piston rod 4, but the flow resistance of the first damping force generating mechanism 3C is large, The pressure in the chamber 2b exceeds a predetermined value, and the pressure difference between the cylinder lower chamber 2b and the cylinder upper chamber 2a becomes large. Therefore, the pressure introducing hole 17 allows the valve cylinder 15
The pressure in the cylinder lower chamber 2b transmitted to the chamber 15a of
The pressure in the cylinder upper chamber 2a transmitted to the chamber 15b by the oil liquid passage 5a and the orifice passage 18 is small, and the chambers 15a, 15b
Since the pressure difference between them is large, the spool valve 16 moves to the valve closing position shown in FIG.
Closes. Therefore, the oil liquid corresponding to the piston rod 4 entering the cylinder 2 flows from the cylinder lower chamber 2b through the contraction side main oil liquid passage 9 to the reservoir chamber 6a, and a damping force generation mechanism for the oil liquid flow is generated. The flow resistance of 12 acts and a large damping force is generated. In this way, a sufficiently large damping force is generated by the first damping force generating mechanism 3C of the piston 3 and the damping force generating mechanism 12 of the base valve mechanism 7.

【0016】以上のように、縮み行程時に、シリンダ下
室2b内の油液の圧力に応じてスプール弁機構14でバイパ
ス通路10を開閉することにより、ピストン3の第1の減
衰力発生機構の減衰力に応じてベースバルブ機構7の減
衰力を自動的に切換えることができる。
As described above, by opening and closing the bypass passage 10 by the spool valve mechanism 14 according to the pressure of the oil liquid in the cylinder lower chamber 2b during the compression stroke, the first damping force generating mechanism of the piston 3 The damping force of the base valve mechanism 7 can be automatically switched according to the damping force.

【0017】なお、本実施例では、スプール弁機構14
は、油液通路5aおよびオリフィス通路18を介してシリン
ダ上室2aの圧力を弁シリンダ15の室15b に導入し、圧力
導入孔17を介してシリンダ下室2bの圧力を弁シリンダ15
の室15a に導入し、室15a と室15b との圧力差によりス
プール16を移動させるようにしているが、油液通路5aお
よびオリフィス通路18を省略してシリンダ下室2b側の圧
力およびばね19の付勢力によってスプールを移動させる
ようにしてもよい。また、バイパス通路10の開閉は、本
実施例のスプール弁機構14のほか、シリンダ下室2bの油
圧に応じて開閉する、または、バイパス油液通路10の流
路面積を変化させて絞るように作用するその他の弁機構
を用いて行うこともできる。
In this embodiment, the spool valve mechanism 14
Introduces the pressure in the cylinder upper chamber 2a into the chamber 15b of the valve cylinder 15 through the oil liquid passage 5a and the orifice passage 18, and the pressure in the cylinder lower chamber 2b through the pressure introduction hole 17 into the valve cylinder 15b.
Although the spool 16 is moved by the pressure difference between the chamber 15a and the chamber 15b, the oil liquid passage 5a and the orifice passage 18 are omitted and the pressure and the spring 19 on the cylinder lower chamber 2b side are omitted. The spool may be moved by the urging force of. In addition to opening and closing the bypass passage 10, in addition to the spool valve mechanism 14 of the present embodiment, the bypass passage 10 is opened or closed according to the hydraulic pressure of the lower cylinder chamber 2b, or the flow passage area of the bypass oil liquid passage 10 is changed to throttle. It can also be done using other valve mechanisms that operate.

【0018】[0018]

【発明の効果】本発明の減衰力調整式油圧緩衝器は、以
上詳述したように、ベースバルブ機構に、第2の減衰力
発生機構を有する主油液通路と、バイイパス通路と、シ
リンダ内の油液の圧力に応じてバイパス通路を開閉また
は絞る弁機構とを設けたことにより、縮み行程時に、シ
リンダ内の一方の室の圧力に応じて弁機構でバイパス通
路を開閉または絞ることによりベースバルブ機構側の減
衰力を自動的に切換えることができる。その結果、ピス
トンの第1の減衰力発生機構の減衰力に応じてベースバ
ルブ機構側の減衰力が自動的に適当に切換わるので安定
した減衰力を発生させることができ、また、減衰力の調
整範囲を広くすることができるという優れた効果を奏す
る。
As described in detail above, the damping force adjusting hydraulic shock absorber of the present invention has a base valve mechanism having a main oil liquid passage having a second damping force generating mechanism, a bypass passage, and a cylinder inside. By providing a valve mechanism that opens and closes or throttles the bypass passage according to the pressure of the oil liquid in the base, the valve mechanism opens and closes or throttles the bypass passage according to the pressure in one chamber in the cylinder during the compression stroke. The damping force on the valve mechanism side can be automatically switched. As a result, the damping force on the base valve mechanism side is automatically and appropriately switched according to the damping force of the first damping force generating mechanism of the piston, so that a stable damping force can be generated, and the damping force It has an excellent effect that the adjustment range can be widened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部の縦断面図である。FIG. 1 is a vertical cross-sectional view of a main part of an embodiment of the present invention.

【図2】図1の装置においてスプール弁機構が閉弁した
状態を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a state where the spool valve mechanism is closed in the apparatus of FIG.

【図3】図1の装置全体を模式的に示す縦断面図であ
る。
FIG. 3 is a vertical sectional view schematically showing the entire apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 減衰力調整式油圧緩衝器 2 シリンダ 2a シリンダ上室 2b シリンダ下室 3 ピストン 3c 第1の減衰力発生機構 4 ピストンロッド 6a リザーバ室 7 ベースバルブ機構 9 主油液通路 10 バイパス通路 12 (第2の)減衰力発生機構 14 スプール弁機構 1 Damping force adjustable hydraulic shock absorber 2 Cylinder 2a Cylinder upper chamber 2b Cylinder lower chamber 3 Piston 3c First damping force generating mechanism 4 Piston rod 6a Reservoir chamber 7 Base valve mechanism 9 Main oil passage 10 Bypass passage 12 (Second ) Damping force generation mechanism 14 Spool valve mechanism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 油液を封入したシリンダと、該シリンダ
に摺動可能に嵌装され前記シリンダ内を2室に区画す
る、ピストンロッドが連結されたピストンと、該ピスト
ンに設けられた減衰力調整機構を有する第1の減衰力発
生機構と、油液およびガスを封入したリザーバ室と、前
記シリンダ内の一方の室と前記リザーバ室とを連通させ
る主油液通路を有するベースバルブ機構と、前記主油液
通路内の油液の流動を制御して減衰力を発生させる第2
の減衰力発生機構と、前記ベースバルブ機構に設けら
れ、前記シリンダ内の一方の室と前記リザーバ室とを連
通させるバイパス通路と、前記シリンダ内の一方の室の
圧力が所定以上のとき前記バイパス通路を閉鎖または絞
る弁機構とを備えてなることを特徴とする減衰力調整式
油圧緩衝器。
1. A cylinder in which an oil liquid is sealed, a piston, which is slidably fitted in the cylinder and divides the inside of the cylinder into two chambers, to which a piston rod is connected, and a damping force provided to the piston. A first damping force generating mechanism having an adjusting mechanism; a reservoir chamber in which oil liquid and gas are sealed; and a base valve mechanism having a main oil liquid passage for communicating one chamber in the cylinder with the reservoir chamber, Second for controlling the flow of the oil liquid in the main oil liquid passage to generate a damping force
Damping force generating mechanism, a bypass passage provided in the base valve mechanism for communicating one chamber in the cylinder with the reservoir chamber, and the bypass when the pressure in one chamber in the cylinder is not less than a predetermined value. A damping force adjusting hydraulic shock absorber, comprising: a valve mechanism that closes or throttles a passage.
JP33148791A 1991-11-20 1991-11-20 Damping force adjustable type hydraulic shock absorber Pending JPH05141468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33148791A JPH05141468A (en) 1991-11-20 1991-11-20 Damping force adjustable type hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33148791A JPH05141468A (en) 1991-11-20 1991-11-20 Damping force adjustable type hydraulic shock absorber

Publications (1)

Publication Number Publication Date
JPH05141468A true JPH05141468A (en) 1993-06-08

Family

ID=18244194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33148791A Pending JPH05141468A (en) 1991-11-20 1991-11-20 Damping force adjustable type hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JPH05141468A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638927A (en) * 1995-09-18 1997-06-17 General Motors Corporation Suspension damper
US6793049B2 (en) * 2001-11-19 2004-09-21 Tenneco Automotive Operating Company, Inc. Acceleration sensitive damping for automotive dampers
CN100447443C (en) * 2006-12-07 2008-12-31 佛山市南海华捷五金制品有限公司 Durable automatic resetting oil pressure damper
US20160025181A1 (en) * 2013-08-26 2016-01-28 Tenneco Automotive Operating Company Inc. Shock absorber with frequency dependent passive valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5638927A (en) * 1995-09-18 1997-06-17 General Motors Corporation Suspension damper
US6793049B2 (en) * 2001-11-19 2004-09-21 Tenneco Automotive Operating Company, Inc. Acceleration sensitive damping for automotive dampers
CN100447443C (en) * 2006-12-07 2008-12-31 佛山市南海华捷五金制品有限公司 Durable automatic resetting oil pressure damper
US20160025181A1 (en) * 2013-08-26 2016-01-28 Tenneco Automotive Operating Company Inc. Shock absorber with frequency dependent passive valve
US9638280B2 (en) * 2013-08-26 2017-05-02 Tenneco Automotive Operating Company Inc. Shock absorber with frequency dependent passive valve

Similar Documents

Publication Publication Date Title
JP4587089B2 (en) Damping force adjustable hydraulic shock absorber
JP2003166585A (en) Attenuating force adjustable hydraulic damper
JPH084818A (en) Damping force adjusting type oil pressure buffer
JPH06147252A (en) Hydraulic buffer
JP3306526B2 (en) Damping force adjustable hydraulic shock absorber
JPH0579526A (en) Damping force adjusting type hydraulic buffer
JPH05141468A (en) Damping force adjustable type hydraulic shock absorber
JP2003194133A (en) Damping-force-adjustable hydraulic shock absorber
JP2002295566A (en) Damping force adjustable hydraulic shock absorber
JP2003278819A (en) Damping force adjusting hydraulic shock absorber
JPH109327A (en) Damping force regulating type hydraulic shock absorber
JP4048507B2 (en) Damping force adjustable hydraulic shock absorber
JPS6227726Y2 (en)
JP4318071B2 (en) Hydraulic shock absorber
JP2601904Y2 (en) Hydraulic shock absorber valve structure
JPH0154202B2 (en)
JP2002286078A (en) Attenuation force adjustment type hydraulic buffer
JP2002168281A (en) Damping force adjusting type hydraulic buffer
JP3650898B2 (en) Damping force adjustable hydraulic shock absorber
KR0143808B1 (en) Shock absorber
JPH10259843A (en) Damping force-adjusted hydraulic shock absorber
JPH1061710A (en) Damping force adjusting hydraulic shock absorber
JP2651821B2 (en) Suspension device
JP3265386B2 (en) Damping force adjustable hydraulic shock absorber
JPH04157224A (en) Hydraulic shockabsorber