JPH05139713A - Method and device for refining silicon - Google Patents

Method and device for refining silicon

Info

Publication number
JPH05139713A
JPH05139713A JP30593291A JP30593291A JPH05139713A JP H05139713 A JPH05139713 A JP H05139713A JP 30593291 A JP30593291 A JP 30593291A JP 30593291 A JP30593291 A JP 30593291A JP H05139713 A JPH05139713 A JP H05139713A
Authority
JP
Japan
Prior art keywords
gas
silicon
container
plasma
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30593291A
Other languages
Japanese (ja)
Inventor
Yasuhiko Sakaguchi
泰彦 阪口
Matao Araya
復夫 荒谷
Kenkichi Yushimo
憲吉 湯下
Hiroyuki Baba
裕幸 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30593291A priority Critical patent/JPH05139713A/en
Publication of JPH05139713A publication Critical patent/JPH05139713A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To reduce B content by ejecting plasma jet flow of an inert gas to a surface of a molten Si housed in a vessel made of a specific material and by blowing the inert gas from the bottom of the vessel. CONSTITUTION:The vessel such as a quartz crucible 2 made of SiO2 or mainly SiO2 is heated by supplying current to an induction heating coil 4 to melt a raw Si. And a plasma jet 7 generated by exciting a plasma generating gas 6 with a plasma torch 5 is ejected to the surface of the molten Si 1 to keep high temp. A bottom blowing gas 10 made by mixing an oxidizing gas such as O2 with the inert gas such as Ar is blown from the gas blowing opening 8 of the bottom of the quartz crucible 2 to stir the molten Si 1 and as a result, B is removed as an oxide and the high purity Si low in B content is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主に太陽電池に用いる
ボロン含有量の低い高純度シリコンの、製造方法及びそ
の装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-purity silicon having a low boron content mainly used in solar cells and an apparatus therefor.

【0002】[0002]

【従来の技術】太陽電池に使用するシリコン中の燐,ボ
ロン,炭素,鉄,アルミニウム,チタンなどの不純物
は、所要の半導体特性を確保するためには1ppmw以
下にする必要がある。また、太陽電池が広く利用される
ためには、このシリコンを安価に量産する必要がある。
2. Description of the Related Art Impurities such as phosphorus, boron, carbon, iron, aluminum, and titanium in silicon used for solar cells must be 1 ppmw or less in order to secure required semiconductor characteristics. Further, in order for solar cells to be widely used, it is necessary to mass-produce this silicon at low cost.

【0003】従来、太陽電池用シリコンとしては半導体
用のシリコンが用いられてきたが、高価なためにより安
価な製造法が検討されている。その中で、粗製シリコン
を原料としてこれを精製する方法がいろいろと提案され
ているが、ボロンはシリコンから最も除去しにくい元素
であるため、その方法は限られている。例えば、特開昭
63−218506号公報ではプラズマを用いて精製す
る方法が、また、本発明者らによる特願平2−3223
20号には、反応容器底部から酸化性ガスを含む混合ガ
スを吹き込んで原料シリコンを精製する方法が提案され
ている。
Conventionally, silicon for semiconductors has been used as silicon for solar cells, but a cheaper manufacturing method has been studied because it is expensive. Among them, various methods for purifying crude silicon as a raw material have been proposed, but the method is limited because boron is the element most difficult to remove from silicon. For example, in JP-A-63-218506, a method of purifying using plasma is disclosed in Japanese Patent Application No. 2-3223 by the present inventors.
No. 20 proposes a method of purifying raw material silicon by blowing a mixed gas containing an oxidizing gas from the bottom of a reaction vessel.

【0004】特開昭63−218506号公報に開示さ
れた方法は、シリカの容器に保持された溶融シリコンに
高温のプラズマを照射することによって、容器からシリ
コン中に供給される酸素とボロンとが反応して、ボロン
が酸化物として除去される方法である。さらに、プラズ
マガス中に酸素を添加するとシリコン浴中の酸素ポテン
シャルを高め、ボロンの除去を有利に進めることができ
る。しかし、ボロンの除去反応はプラズマフレームが浴
面にあたっている高温領域だけで進行し、さらに、添加
できる酸素量もガス中の0.05体積%が限界であり、
工業装置とした場合はプラズマ装置を多数取り付ける必
要がある。このため、電力の多量消費は避けられず精製
コストが高くなることや、反応が浴面で進むため、処理
量が大きくなると浴の撹拌が十分におこなえず反応が十
分に進まない、という問題があった。
In the method disclosed in Japanese Patent Laid-Open No. 63-218506, oxygen and boron supplied from the container into silicon are irradiated by irradiating molten silicon held in a silica container with high temperature plasma. It is a method of reacting and removing boron as an oxide. Furthermore, when oxygen is added to the plasma gas, the oxygen potential in the silicon bath can be increased and boron removal can be advantageously promoted. However, the boron removal reaction proceeds only in the high temperature region where the plasma flame contacts the bath surface, and the amount of oxygen that can be added is limited to 0.05% by volume in the gas.
If it is an industrial device, it is necessary to install a large number of plasma devices. Therefore, there is a problem that a large amount of electric power is unavoidable and the purification cost becomes high, and the reaction proceeds on the bath surface, so that when the treatment amount becomes large, the bath cannot be sufficiently stirred and the reaction does not proceed sufficiently. there were.

【0005】一方、特願平2−322320号に示した
方法は、底部にガス吹込み羽口を有するシリカの容器に
溶融シリコンを保持し、羽口からアルゴンなどの不活性
ガスを吹込むことによりシリコン浴を撹拌し、ボロンと
容器の酸素とを反応させボロンを速かに除去するもので
ある。この方法においても、不活性ガスに水蒸気,二酸
化炭素,酸素などの酸化性ガスを添加して酸素ポテンシ
ャルを高めると、ボロンの除去が有利に進行する。しか
し、容器底部からガスを吹込むだけの場合は、浴の撹拌
はプラズマ照射よりよいが、容器の耐久性の点から浴全
体の温度をプラズマ照射時の浴表面のように2000℃
以上にすることができず、1600〜1700℃でボロ
ン除去反応をさせるためにボロンの除去に時間がかかる
という問題があった。
On the other hand, the method disclosed in Japanese Patent Application No. 2-322320 is to hold molten silicon in a silica container having a gas blowing tuyere at the bottom and blow an inert gas such as argon from the tuyere. With this, the silicon bath is stirred to react boron with oxygen in the container to quickly remove boron. Also in this method, when the oxidizing gas such as steam, carbon dioxide or oxygen is added to the inert gas to increase the oxygen potential, the removal of boron proceeds advantageously. However, if only gas is blown from the bottom of the container, stirring the bath is better than plasma irradiation, but from the viewpoint of container durability, the temperature of the entire bath is 2000 ° C, like the surface of the bath during plasma irradiation.
However, there is a problem in that it takes time to remove boron because the boron removal reaction is performed at 1600 to 1700 ° C.

【0006】[0006]

【発明が解決しようとする課題】本発明は前記従来技術
の問題点を解決し、ボロン含有量の低い高純度のシリコ
ンを、短時間に、安価に、大量に製造する技術を提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the prior art and provides a technique for mass-producing high-purity silicon having a low boron content in a short time, at low cost. To aim.

【0007】[0007]

【課題を解決するための手段】本発明は前記課題を解決
するために、シリカあるいはシリカを主成分とする容器
内に溶融シリコンを保持し、該溶融シリコンの溶湯面に
不活性ガスのプラズマガスジェット流を噴射するととも
に、該容器の底部より不活性ガスを吹き込むことを特徴
とするシリコンの精製方法を提供するもので、プラズマ
ガス及び/又は容器の底部より吹き込むガスとして用い
る不活性ガスに、水蒸気、二酸化炭素又は酸素を添加す
ることが好ましく、また、本発明は上記方法を実施する
ために、溶融シリコンを保持するためのシリカあるいは
シリカを主成分とする容器と、該容器の外側から該容器
内の溶融シリコンに熱を与える加熱手段と、該容器内の
溶融シリコンの溶湯面にプラズマガスジェット流を噴射
するプラズマトーチと、該容器の底部にガスを吹き込む
羽口とを備えたことを特徴とするシリコンの精製装置を
提供するものである。
In order to solve the above-mentioned problems, the present invention holds molten silicon in a container containing silica or silica as a main component, and a plasma gas of an inert gas is provided on the molten metal surface of the molten silicon. A method for purifying silicon, which comprises injecting a jet stream and blowing an inert gas from the bottom of the container, wherein an inert gas used as a gas blown from the plasma gas and / or the bottom of the container is provided. It is preferable to add water vapor, carbon dioxide or oxygen, and in order to carry out the above-mentioned method, the present invention comprises silica or a silica-based container for holding molten silicon, and the container from the outside of the container. A heating means for applying heat to the molten silicon in the container, and a plasma toe for injecting a plasma gas jet stream onto the molten metal surface of the molten silicon in the container. If, there is provided a purifying apparatus of the silicon, characterized in that a tuyere for blowing a gas at the bottom of the vessel.

【0008】[0008]

【作用】図2にボロン酸化物の蒸気圧の温度による影響
を示す。1600℃(1873K)ではBOの蒸気圧は
10-7atmであるのに対して2000℃(2273
K)では10-5atmとなり、高温ほどボロンが除去し
やすいことがわかる。本発明は、シリコン浴面に不活性
ガスによるプラズマガスジェット流を噴射することによ
って浴面を高温に保持するとともに、容器底部から不活
性ガスを吹込むことによってシリコン浴の撹拌を促進す
る。この結果、高温のシリコン浴面がボロン除去の反応
領域となり、底部からのガス吹込みによる撹拌によって
酸素供給源となるシリカあるいはシリカを主成分とする
容器からの酸素のシリコンへの溶け込みを容易にし、さ
らに、反応領域となるシリコン浴面への酸素の供給が促
進され、その結果、ボロンの除去が有利となる。
The effect of temperature on the vapor pressure of boron oxide is shown in FIG. At 1600 ° C (1873K), the vapor pressure of BO is 10 -7 atm, while at 2000 ° C (2273K).
K) is 10 −5 atm, which shows that the higher the temperature, the easier boron is removed. The present invention maintains the bath surface at a high temperature by injecting a plasma gas jet flow of an inert gas onto the silicon bath surface, and promotes agitation of the silicon bath by blowing an inert gas from the bottom of the container. As a result, the high-temperature silicon bath surface becomes the reaction area for boron removal, and the stirring by blowing gas from the bottom facilitates the dissolution of oxygen into the silicon from the silica or silica-based container that serves as the oxygen supply source. Furthermore, the supply of oxygen to the reaction surface of the silicon bath surface is promoted, and as a result, the removal of boron becomes advantageous.

【0009】さらに、ブラズマ発生用や容器底部吹込用
の不活性ガスに、水蒸気,二酸化炭素又は酸素を添加す
ると、シリコン浴内の酸素ポテンシャルが増大する。こ
の場合も、浴面温度が高いこと及びシリコン浴の撹拌が
大きいことは、酸素のシリコンへの溶解を促進しシリコ
ン浴中の酸素ポテンシャルを大きくする。この結果、ボ
ロン除去が有利に進む。
Further, when steam, carbon dioxide or oxygen is added to the inert gas for generating plasma or blowing the bottom of the container, the oxygen potential in the silicon bath increases. Also in this case, the high bath surface temperature and the large agitation of the silicon bath promote the dissolution of oxygen in silicon and increase the oxygen potential in the silicon bath. As a result, boron removal proceeds advantageously.

【0010】これらの結果より、本発明によれば原料シ
リコンからのボロンの除去を迅速に行うことができる。
本発明方法において、不活性ガスとしては例えばアルゴ
ンが好適に用いられ、水蒸気,二酸化炭素,酸素は2種
以上混合して不活性ガスに添加することができ、これ等
のガスの添加量は原料シリコンの純度等の操作条件を勘
案して適宜決定される。
From these results, according to the present invention, boron can be rapidly removed from the raw material silicon.
In the method of the present invention, for example, argon is preferably used as the inert gas, and two or more kinds of water vapor, carbon dioxide, and oxygen can be mixed and added to the inert gas. It is appropriately determined in consideration of operating conditions such as the purity of silicon.

【0011】また、本発明装置における加熱手段として
は、例えば誘導加熱コイルが好適に用いられる。
An induction heating coil is preferably used as the heating means in the apparatus of the present invention.

【0012】[0012]

【実施例】図1に本発明のシリコン精製装置の実施例の
一部断面縦断面概要図を示す。図1において、溶融シリ
コン1は石英るつぼ2内に保持され、るつぼの外周が断
熱ライニング3で囲まれており、断熱ライニングの外側
にシリコンを溶融状態で保持するための誘導加熱コイル
4が装着されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic view of a partial cross section of an embodiment of a silicon refining apparatus of the present invention. In FIG. 1, molten silicon 1 is held in a quartz crucible 2, the outer periphery of the crucible is surrounded by a heat insulating lining 3, and an induction heating coil 4 for holding the silicon in a molten state is attached to the outside of the heat insulating lining. ing.

【0013】溶融シリコン1の上方にプラズマトーチ5
が備えられており、プラズマ発生用ガス6を励起しプラ
ズマジェット7を発生させ、溶融シリコン1の浴面に噴
射する。プラズマ発生用ガスには、アルゴンなどの不活
性ガスに必要に応じて水蒸気,二酸化炭素,酸素の酸化
性ガスが添加される。石英るつぼ2の底部にはガス吹込
み羽口8が設けられ、底部吹込みガス導入口9を通して
羽口から溶融シリコン内に底部吹込みガス10が吹込ま
れる。吹込まれるガスには、アルゴンなどの不活性ガス
に必要に応じて、水蒸気,二酸化炭素,酸素の酸化性ガ
スを添加したものを用いる。
A plasma torch 5 is provided above the molten silicon 1.
Is provided, the plasma generating gas 6 is excited to generate a plasma jet 7, and the plasma jet 7 is injected onto the bath surface of the molten silicon 1. As the plasma generating gas, an oxidizing gas such as water vapor, carbon dioxide, and oxygen is added to an inert gas such as argon, if necessary. A gas blowing tuyere 8 is provided at the bottom of the quartz crucible 2, and a bottom blowing gas 10 is blown from the tuyere into the molten silicon through the bottom blowing gas inlet 9. As the gas to be blown, an inert gas such as argon to which an oxidizing gas such as water vapor, carbon dioxide, and oxygen is added is used, if necessary.

【0014】上記シリコン精製装置を用い、原料シリコ
ン8kgを石英るつぼ内で誘導加熱により1550℃に
加熱溶解し、30kWのアークプラズマトーチでプラズ
マ発生用ガスにアルゴン15リットル/minを含有す
るガス用いてプラズマジェットを発生させ、シリコン浴
表面から50mmの位置より吹付けた。一方、底部羽口
よりアルゴン25リットル/minを含有するガスを吹
込んだ。
Using the above-mentioned silicon refining apparatus, 8 kg of raw material silicon was heated and melted at 1550 ° C. by induction heating in a quartz crucible, and a 30 kW arc plasma torch was used to generate a plasma containing gas containing 15 l / min of argon. A plasma jet was generated and sprayed from a position 50 mm from the surface of the silicon bath. On the other hand, a gas containing 25 l / min of argon was blown from the tuyere at the bottom.

【0015】原料として用いたシリコン中のボロン含有
量は25ppmwで、ボロン含有量が1ppmwになる
まで処理した。表1に比較例及び実施例における処理時
間を示す。
The boron content in silicon used as a raw material was 25 ppmw, and the silicon was treated until the boron content reached 1 ppmw. Table 1 shows the processing time in the comparative example and the example.

【0016】[0016]

【表1】 [Table 1]

【0017】〔比較例〕プラズマ噴射のみを行なったの
が比較例1〜4で、比較例1はプラズマ発生用ガスにア
ルゴンを用い、比較例2〜4はアルゴンにそれぞれ9%
(容積%、以下同じ)の水蒸気、0.05%の酸素、4
%の二酸化炭素を添加したときの結果である。
[Comparative Example] In Comparative Examples 1 to 4, only plasma injection was performed. In Comparative Example 1, argon was used as a plasma generating gas, and in Comparative Examples 2 to 4, argon was 9% each.
(Volume%, same below), 0.05% oxygen, 4
The results are obtained by adding% carbon dioxide.

【0018】石英るつぼ底部からガス吹込みのみを行っ
たのが比較例5〜8で、比較例5は吹込み用ガスにアル
ゴンを用い、比較例6〜8はアルゴンにそれぞれ5%の
水蒸気、0.03%の酸素、2%の二酸化炭素を添加し
たときの結果である。 〔実施例1〕プラズマ発生用ガス及び底部吹込み用ガス
にアルゴンを用いた。比較例1や比較例5に比べて処理
時間が1/2以下に低減できた。 〔実施例2〜5〕プラズマ発生用ガス、及び/又は底部
吹込み用ガスのアルゴンに水蒸気を添加した。水蒸気添
加によりボロン除去速度はより大きくなることがわか
る。また、水蒸気の添加量を15%にしてもシリコン浴
面に酸化物の膜はできなかった。 〔実施例6〜9〕実施例6,7は酸素を添加、実施例
8,9では二酸化炭素を添加した。これらのガスの添加
によりボロンの除去速度は大きくなることがわかった。
In Comparative Examples 5 to 8, only gas was blown from the bottom of the quartz crucible. In Comparative Example 5, argon was used as the blowing gas, and in Comparative Examples 6 to 8, argon was 5% water vapor, respectively. It is a result when adding 0.03% oxygen and 2% carbon dioxide. [Example 1] Argon was used as the plasma generating gas and the bottom blowing gas. The processing time could be reduced to 1/2 or less as compared with Comparative Examples 1 and 5. Examples 2 to 5 Water vapor was added to the plasma generating gas and / or the bottom blowing gas, argon. It can be seen that the boron removal rate becomes higher by adding steam. Even if the amount of water vapor added was 15%, no oxide film was formed on the silicon bath surface. [Examples 6 to 9] Oxygen was added in Examples 6 and 7, and carbon dioxide was added in Examples 8 and 9. It was found that the addition rate of these gases increases the removal rate of boron.

【0019】また、ボロン含有量を25ppmwから1
ppmwまで低減するのに、比較例1ではプラズマ電力
消費が750kWhであるのに対し実施例1では290
kWhに低減した。
Further, the boron content is 25 ppmw to 1
Although the plasma power consumption is 750 kWh in Comparative Example 1 while it is reduced to ppmw, it is 290 in Example 1.
reduced to kWh.

【0020】[0020]

【発明の効果】本発明により、安価な粗製シリコンを出
発原料としてボロン含有量の低い高純度シリコンを短時
間で安価に量産することができ、従来の高価な半導体用
シリコンを用いていた太陽電池の低コスト化が可能とな
る。これによって太陽電池の利用を大きく進展させるこ
とができ、社会的にも多大の貢献をもたらす。
According to the present invention, high-purity silicon having a low boron content can be mass-produced at low cost in a short time using inexpensive crude silicon as a starting material, and a solar cell using conventional expensive silicon for semiconductors. It is possible to reduce the cost. As a result, the use of solar cells can be greatly advanced, and a great social contribution will be brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の実施例を示す一部断面縦断面概要
図である。
FIG. 1 is a schematic view of a vertical cross-section of a partial cross section showing an embodiment of the device of the present invention.

【図2】ボロン酸化物の蒸気圧の温度に対する影響を示
すグラフである。
FIG. 2 is a graph showing the effect of vapor pressure of boron oxide on temperature.

【符号の説明】[Explanation of symbols]

1 溶融シリコン 2 石英るつぼ 3 断熱ライニング 4 誘導加熱コイル 5 プラズマトーチ 6 プラズマ発生用ガス 7 プラズマジェット 8 ガス吹込み羽口 9 底部吹込み用ガス導入口 10 底部吹込ガス 1 Molten Silicon 2 Quartz Crucible 3 Insulation Lining 4 Induction Heating Coil 5 Plasma Torch 6 Plasma Generating Gas 7 Plasma Jet 8 Gas Blowing Tuyers 9 Bottom Blowing Gas Inlet 10 Bottom Blowing Gas

フロントページの続き (72)発明者 湯下 憲吉 千葉市川崎町1番地 川崎製鉄株式会社技 術研究本部内 (72)発明者 馬場 裕幸 千葉市川崎町1番地 川崎製鉄株式会社技 術研究本部内Front page continuation (72) Inventor Kenkichi Yushita 1 Kawasaki-cho, Chiba City Inside the Technical Research Division, Kawasaki Steel Co., Ltd. (72) Inventor Hiroyuki Baba 1 Kawasaki-cho, Chiba City Inside the Technical Research Division

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シリカあるいはシリカを主成分とする容
器内に溶融シリコンを保持し、該溶融シリコンの溶湯面
に不活性ガスのプラズマガスジェット流を噴射するとと
もに、該容器の底部より不活性ガスを吹き込むことを特
徴とするシリコンの精製方法。
1. A molten silicon is held in silica or a container containing silica as a main component, and a plasma gas jet stream of an inert gas is jetted to a molten metal surface of the molten silicon, and an inert gas is introduced from the bottom of the container. A method for purifying silicon, which comprises blowing.
【請求項2】 プラズマガスとして用いる不活性ガス
に、水蒸気、二酸化炭素又は酸素を添加することを特徴
とする請求項1記載のシリコンの精製方法。
2. The method for purifying silicon according to claim 1, wherein water vapor, carbon dioxide or oxygen is added to the inert gas used as the plasma gas.
【請求項3】 容器の底部より吹き込むガスとして用い
る不活性ガスに、水蒸気、二酸化炭素又は酸素を添加す
ることを特徴とする請求項1又は2記載のシリコンの精
製方法。
3. The method for purifying silicon according to claim 1, wherein steam, carbon dioxide or oxygen is added to an inert gas used as a gas blown from the bottom of the container.
【請求項4】 溶融シリコンを保持するためのシリカあ
るいはシリカを主成分とする容器と、該容器の外側から
該容器内の溶融シリコンに熱を与える加熱手段と、該容
器内の溶融シリコンの溶湯面にプラズマガスジェット流
を噴射するプラズマトーチと、該容器の底部にガスを吹
き込む羽口とを備えたことを特徴とするシリコンの精製
装置。
4. A container for holding molten silicon or a container containing silica as a main component, a heating means for applying heat to the molten silicon in the container from the outside of the container, and a molten metal of the molten silicon in the container. An apparatus for purifying silicon, comprising: a plasma torch for injecting a plasma gas jet stream on a surface thereof; and a tuyere for blowing gas at the bottom of the container.
JP30593291A 1991-11-21 1991-11-21 Method and device for refining silicon Pending JPH05139713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30593291A JPH05139713A (en) 1991-11-21 1991-11-21 Method and device for refining silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30593291A JPH05139713A (en) 1991-11-21 1991-11-21 Method and device for refining silicon

Publications (1)

Publication Number Publication Date
JPH05139713A true JPH05139713A (en) 1993-06-08

Family

ID=17951034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30593291A Pending JPH05139713A (en) 1991-11-21 1991-11-21 Method and device for refining silicon

Country Status (1)

Country Link
JP (1) JPH05139713A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
JP2009062275A (en) * 2008-12-24 2009-03-26 Showa Denko Kk Purification method of silicon
US7732012B2 (en) 2004-06-22 2010-06-08 Shin-Etsu Film Co., Ltd Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method
KR100981134B1 (en) * 2008-03-25 2010-09-10 한국생산기술연구원 A high-purity silicon ingot with solar cell grade, a system and method for manufacturing the same by refining a low-purity scrap silicon
WO2011034172A1 (en) * 2009-09-18 2011-03-24 株式会社アルバック Silicon purification method and silicon purification apparatus
CN102249250A (en) * 2011-06-24 2011-11-23 武汉大学 Method for purifying silicon dioxide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
US7732012B2 (en) 2004-06-22 2010-06-08 Shin-Etsu Film Co., Ltd Method for manufacturing polycrystalline silicon, and polycrystalline silicon for solar cells manufactured by the method
KR100981134B1 (en) * 2008-03-25 2010-09-10 한국생산기술연구원 A high-purity silicon ingot with solar cell grade, a system and method for manufacturing the same by refining a low-purity scrap silicon
JP2009062275A (en) * 2008-12-24 2009-03-26 Showa Denko Kk Purification method of silicon
WO2011034172A1 (en) * 2009-09-18 2011-03-24 株式会社アルバック Silicon purification method and silicon purification apparatus
CN102482105A (en) * 2009-09-18 2012-05-30 株式会社爱发科 Silicon purification method and silicon purification apparatus
US8778143B2 (en) 2009-09-18 2014-07-15 Ulvac, Inc. Silicon purification method and silicon purification device
CN102482105B (en) * 2009-09-18 2015-01-21 株式会社爱发科 Silicon purification method and silicon purification apparatus
CN102249250A (en) * 2011-06-24 2011-11-23 武汉大学 Method for purifying silicon dioxide

Similar Documents

Publication Publication Date Title
JP3205352B2 (en) Silicon purification method and apparatus
KR100275973B1 (en) Method for removing boron from metallurgical grade silicon and apparatus
JP4433610B2 (en) Method and apparatus for purifying silicon
JPH04193706A (en) Refining method for silicon
JP3848816B2 (en) High-purity metal purification method and apparatus
JP2002029727A (en) Process and device for producing silicon for solar cell
JPH05139713A (en) Method and device for refining silicon
JP2846408B2 (en) Silicon purification method
JP2010100508A (en) Production method of high purity silicon
JPH05262512A (en) Purification of silicon
JPH1149510A (en) Method for refining metal silicon and apparatus therefor
JPH07267624A (en) Purification of silicon and apparatus therefor
JP2004125246A (en) MELTING METHOD OF HIGH PURITY Si AND MELTER USED THEREFOR
JPH05246706A (en) Method for purifying silicon and device therefor
JP2856839B2 (en) Silicon purification method
US9352970B2 (en) Method for producing silicon for solar cells by metallurgical refining process
JPH04338108A (en) Method and device for refining silicon
JPH10130011A (en) Removing method of boron from metal silicon
JPH10120412A (en) Purification of metal silicon
KR20100099396A (en) Apparatus and method for refining of high purity silicon
US7815882B2 (en) Method and apparatus for refining boron-containing silicon using an electron beam
JPH02267110A (en) Lance for decarburizing metal silicon and decarburization
JPH06115922A (en) Method for purifying silicon
JPH10212113A (en) Method for removing boron from metal silicon
JP2000007318A (en) Removal of boron from metallic silicon and apparatus therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020409