JPH051342A - Production of titanium alloy and sintered titanium alloy - Google Patents

Production of titanium alloy and sintered titanium alloy

Info

Publication number
JPH051342A
JPH051342A JP3177738A JP17773891A JPH051342A JP H051342 A JPH051342 A JP H051342A JP 3177738 A JP3177738 A JP 3177738A JP 17773891 A JP17773891 A JP 17773891A JP H051342 A JPH051342 A JP H051342A
Authority
JP
Japan
Prior art keywords
titanium
alloy
iron
cobalt
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3177738A
Other languages
Japanese (ja)
Other versions
JP2943026B2 (en
Inventor
Shuhei Maeda
修平 前田
Fumikazu Yugawa
文和 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP3177738A priority Critical patent/JP2943026B2/en
Publication of JPH051342A publication Critical patent/JPH051342A/en
Application granted granted Critical
Publication of JP2943026B2 publication Critical patent/JP2943026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a titanium alloy, as a metallic biomaterial and further a substitute material for Ti-6Al-4V alloy, which is free from aluminum and contains small amounts of additive elements safe in living body, such as zirconium, iron, and cobalt, and also has superior corrosion resistance and high strength. CONSTITUTION:The alloy is a ternary-system titanium alloy composed of a material consisting of titanium, 2-20wt.% zirconium, and 2-6wt.% iron or cobalt. The method for producing this alloy has a mixing and compacting stage where respective powders of elements as simple substances, that is, 2-20wt.% zirconium 2 and 2-6wt.% iron 4 or cobalt 3 or prescribed amounts of alloy powder among these metals are mixed with titanium 1 to form a green compact 5, a sintering stage where this green compact 5 is sintered, and further, preferably, an HIP stage where hot isostatic treatment is done.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチタン系焼結合金および
その製造方法にかかるもので、とくにアルミニウム、お
よび生体内で毒性を示す危険性のある元素を含まず、な
おかつ強度および耐腐食特性にすぐれたチタン系焼結合
金およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium-based sintered alloy and a method for producing the same, and in particular, it does not contain aluminum and elements which may be toxic in vivo, and has strength and corrosion resistance. The present invention relates to an excellent titanium-based sintered alloy and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、一般の構造用部材、化学プラ
ント、航空宇宙用部材、その他各種部材に最も一般的に
使用されているチタン系の材料は、溶製法による純チタ
ン、およびTi−6Al−4V合金であるが、チタン系
材料はその加工性が悪く、単価が高いために、上記溶製
法による場合には、歩留まりの低さによるコスト高が問
題である。
2. Description of the Related Art Conventionally, titanium-based materials most commonly used for general structural members, chemical plants, aerospace members, and various other members are pure titanium produced by a melting method and Ti-6Al. Although it is a -4V alloy, the titanium-based material is poor in workability and has a high unit price. Therefore, in the case of the above melting method, there is a problem of high cost due to low yield.

【0003】上記純チタンは、その強度が低いために高
強度化が望まれている。
Since the above-mentioned pure titanium has low strength, it is desired to have high strength.

【0004】また、Ti−6Al−4V合金は、一般構
造材料としては理想的な特性を有するが、生体内構造材
料としてこれを用いた場合には、バナジウムの生体内へ
の溶出による悪影響、およびアルミニウムによる生体内
での耐食性劣化の危険性があり、生体内での安全性が危
惧されている。
Further, Ti-6Al-4V alloy has ideal characteristics as a general structural material, but when it is used as an in-vivo structural material, adverse effects due to elution of vanadium into the living body, and There is a risk of deterioration of corrosion resistance in vivo due to aluminum, and safety in vivo is a concern.

【0005】なお、特開昭60−221539号などの
ように、チタンに鉄、コバルト、ニッケル、パラジウム
を添加したチタン焼結合金もあるが、強度、靱性の面
で、過酷な環境下で使用する構造用部材としては実用に
供することは困難であるとともに、生体に有害なパラジ
ウムを含むために、上記Ti−6Al−4V合金と同様
に生体内での安全性が危惧される。
Although there is a titanium sintered alloy in which iron, cobalt, nickel, and palladium are added to titanium as in JP-A-60-221539, it is used in a harsh environment in terms of strength and toughness. It is difficult to put it into practical use as a structural member to be used, and since it contains palladium harmful to the living body, the safety in the living body is concerned like the Ti-6Al-4V alloy.

【0006】[0006]

【発明が解決しようとする課題】本発明は以上のような
諸問題にかんがみなされたもので、とくに生体用金属材
料として、さらにTi−6Al−4V合金の代替え材料
として、アルミニウムを含まず、なおかつ生体内で安全
なジルコニウム、鉄、コバルトなどの添加元素を少量含
んだ、耐食特性が良好で、高強度のチタン系合金および
その製造方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and in particular, does not contain aluminum as a biometallic material and as a substitute material for Ti-6Al-4V alloy, and It is an object of the present invention to provide a titanium alloy containing a small amount of additional elements such as zirconium, iron and cobalt, which are safe in vivo, have good corrosion resistance and high strength, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、ニア
ネットシェイプによる歩留まりの向上を期待可能である
こと、および偏析のない微細均質組織が可能であること
などの特徴を有する粉末冶金法の特徴を生かし、チタン
の基地(matrix)に、生体内で安全なジルコニウ
ム、鉄、コバルトなどの添加元素を少量含ませることに
着目したもので、第一の発明は、チタンと、2〜20重
量%のジルコニウムと、2〜6重量%の鉄あるいはコバ
ルトとからなる材料による三元素系のチタン系合金であ
る。第二の発明は、チタンに、2〜20重量%のジルコ
ニウム、および2〜6重量%の鉄あるいはコバルトの元
素単体の粉末、あるいはこれら金属相互間の合金粉末を
所定量混合して圧粉体とする混合圧粉工程と、この圧粉
体を焼結する焼結工程とを有するチタン系焼結合金の製
造方法である。第三の発明は、チタンに、2〜20重量
%のジルコニウム、および2〜6重量%の鉄あるいはコ
バルトの元素単体の粉末、あるいはこれら金属相互間の
合金粉末を所定量混合して圧粉体とする混合圧粉工程
と、この圧粉体を焼結して焼結体とする焼結工程と、こ
の焼結体を熱間静水圧処理するHIP工程とを有するチ
タン系焼結合金の製造方法である。
Means for Solving the Problems That is, the present invention is characterized by the powder metallurgical method having the features that the yield can be expected to be improved by the near net shape and that a fine homogeneous structure without segregation is possible. In order to make the matrix of titanium contain a small amount of additive elements such as zirconium, iron and cobalt which are safe in vivo, the first invention is titanium and 2 to 20% by weight. Is a three-element titanium-based alloy made of a material consisting of zirconium and 2 to 6% by weight of iron or cobalt. A second aspect of the present invention is a powder compact obtained by mixing titanium with 2 to 20% by weight of zirconium and 2 to 6% by weight of elemental powder of iron or cobalt, or an alloy powder between these metals in a predetermined amount. And a sintering step of sintering the green compact, the method for producing a titanium-based sintered alloy. A third aspect of the present invention is a powder compact obtained by mixing titanium with 2 to 20% by weight of zirconium and 2 to 6% by weight of a powder of elemental element of iron or cobalt, or an alloy powder between these metals in a predetermined amount. Of a titanium-based sintered alloy, which includes a mixed compacting step of :, a sintering step of sintering the compact into a sintered body, and a HIP step of hot isostatically treating the sintered body. Is the way.

【0008】以下、図面にもとづき本発明をより具体的
に説明する。図1は製造工程を概略的に示した説明図で
あって、図示のように、純チタン粉末1に、ジルコニウ
ム粉末2、およびコバルト粉末3あるいは鉄粉末4を混
合し、圧粉することにより圧粉体5とする。
The present invention will be described more specifically below with reference to the drawings. FIG. 1 is an explanatory view schematically showing the manufacturing process. As shown in the figure, pure titanium powder 1 is mixed with zirconium powder 2 and cobalt powder 3 or iron powder 4 and pressed to obtain a powder. Powder 5 is used.

【0009】この圧粉体5を焼結処理して焼結体6とす
ることにより、チタン系合金とすることができる。
A titanium-based alloy can be obtained by sintering the green compact 5 to form a sintered body 6.

【0010】さらにこの焼結体6を熱間等方圧加圧(H
IP)処理して、HIP処理体7とすることにより、ほ
ぼ100%の密度に稠密化し、チタン系合金とすること
ができる。
Further, the sintered body 6 is hot isostatically pressed (H
By performing the IP) treatment to form the HIP-treated body 7, the titanium-based alloy can be densified to a density of almost 100%.

【0011】したがって、本発明によるチタン系合金な
いしはチタン系焼結合金は、Ti−Zr−Co系、ある
いはTi−Zr−Fe系の合金となる。
Therefore, the titanium-based alloy or the titanium-based sintered alloy according to the present invention is a Ti-Zr-Co-based or Ti-Zr-Fe-based alloy.

【0012】上記純チタン粉末の平均粒径は、149μ
m以下である。上記ジルコニウム粉末の平均粒径は、4
〜5μmである。上記コバルト粉末の平均粒径は、1.
4μmである。上記鉄粉末の平均粒径は、4〜5μmで
ある。
The average particle size of the pure titanium powder is 149 μm.
m or less. The average particle size of the zirconium powder is 4
~ 5 μm. The average particle size of the cobalt powder is 1.
It is 4 μm. The average particle size of the iron powder is 4 to 5 μm.

【0013】ジルコニウムの添加量としては、ジルコニ
ウムがチタン内に完全に固溶して特定の化合物を析出さ
せることがないため、とくに上限はないが、ジルコニウ
ム粉末の価格がチタン粉末に比べて格段に高価であるた
め、実用的には20重量%くらいまでが適当で、好まし
くは2〜20重量%である。
The amount of zirconium added has no particular upper limit because zirconium does not completely form a solid solution in titanium and precipitates a specific compound, but the price of zirconium powder is significantly higher than that of titanium powder. Since it is expensive, it is practically suitable up to about 20% by weight, preferably 2 to 20% by weight.

【0014】コバルトあるいは鉄の添加量は、稠密化処
理であるHIP処理を行う温度において、チタンが(α
+β)二相混合領域である必要があることから、実用的
には、HIP処理温度が室温〜800℃で、コバルトお
よび鉄ともに0〜6重量%くらいまで、好ましくは2〜
6重量%である。
The amount of cobalt or iron added is such that titanium (α
+ Β) Since it is necessary to be in a two-phase mixed region, practically, the HIP treatment temperature is room temperature to 800 ° C., and both cobalt and iron are about 0 to 6% by weight, preferably 2 to
6% by weight.

【0015】圧粉処理の圧力条件は、2〜6ton/c
2である。
The pressure condition for the powder compaction is 2 to 6 ton / c.
m 2 .

【0016】焼結処理の条件は、真空雰囲気中におい
て、温度1100〜1300℃で、処理時間1〜4時間
である。
The conditions for the sintering treatment are a temperature of 1100 to 1300 ° C. and a treatment time of 1 to 4 hours in a vacuum atmosphere.

【0017】HIP処理条件は、温度700〜800
℃、圧力1000Kgf/cm2で、処理時間1〜4時
間である。ただし、HIP処理条件には特別の限定はな
いが、HIP処理温度と、コバルトあるいは鉄の添加量
との間には互いに関連性があり、コバルトあるいは鉄の
添加量が0〜6重量%で、HIP処理温度は室温〜80
0℃である。
The HIP processing condition is that the temperature is 700 to 800.
° C., at a pressure 1000 kgf / cm 2, a processing time 1-4 hours. However, the HIP treatment condition is not particularly limited, but there is a mutual relation between the HIP treatment temperature and the amount of cobalt or iron added, and the amount of cobalt or iron added is 0 to 6% by weight, HIP processing temperature is room temperature to 80
It is 0 ° C.

【0018】[0018]

【作用】本発明によるチタン系焼結合金の製造方法にお
いては、チタンに、ジルコニウムと、コバルトあるいは
鉄という安価でしかも生体内でまったく毒性を示さない
添加元素とを粉末冶金法により添加し、焼結処理し、さ
らに好ましくはHIP処理による稠密化により、Ti−
6Al−4V合金に匹敵する静的機械特性および耐食性
を有する材料を製造することができるとともに、Ti−
6Al−4V合金とは異なって生体内での危険性もない
チタン系焼結合金とすることが可能である。
In the method for producing a titanium-based sintered alloy according to the present invention, zirconium and an additive element such as cobalt or iron, which is inexpensive and has no toxicity in the living body, is added to titanium by a powder metallurgy method, followed by firing. Binder treatment, and more preferably by densification by HIP treatment, Ti-
A material having static mechanical properties and corrosion resistance comparable to 6Al-4V alloy can be produced and Ti-
Unlike the 6Al-4V alloy, it is possible to use a titanium-based sintered alloy that is not dangerous in vivo.

【0019】具体的に述べると、チタンと全率固溶する
ジルコニウムをチタンに添加することにより、チタン基
地を強化することができる。
More specifically, the titanium matrix can be strengthened by adding zirconium, which forms a solid solution with titanium, to titanium.

【0020】また、コバルトあるいは鉄は、チタンと共
析型の状態図をつくり、チタンのβ相安定型元素として
はたらく。
Further, cobalt or iron forms a phase diagram of eutectoid type with titanium and acts as a β phase stable element of titanium.

【0021】鉄は、チタン基地中のβ相を固溶強化す
る。コバルトは、高温域においてチタンがβ相であった
部分に微細な析出物を析出させることによる析出強化を
することができる。
Iron solid-solution strengthens the β phase in the titanium matrix. Cobalt can strengthen the precipitation by precipitating fine precipitates in the portion where titanium was in the β phase in the high temperature region.

【0022】かくして、チタンに、ジルコニウムと、コ
バルトあるいは鉄とを同時に添加した三元素合金とする
と、ジルコニウムおよびコバルトあるいは鉄は互いにチ
タンに対する強化効果を損なうことなく、有効に作用す
るため、互いに少量の添加により、チタン本来の延性を
損なうことなく、その強度および耐食性を強化すること
ができる。
Thus, in the case of a ternary alloy in which zirconium and cobalt or iron are added to titanium at the same time, zirconium and cobalt or iron work effectively without impairing the strengthening effect on titanium, so that a small amount of each other is added. By adding titanium, its strength and corrosion resistance can be enhanced without impairing the original ductility of titanium.

【0023】[0023]

【実施例】つぎに本発明の実施例を説明する。試料の組
成としては、Ti−Zr−Fe系について示すと、純T
i、Ti−4重量%Zr、Ti−4重量%Fe、および
Ti−4重量%Zr−4重量%Feの四種類であり、そ
れぞれ上述した原料粉末を秤量し、混合したのち、4t
on/cm2の圧力で圧縮し、圧粉体とした。
EXAMPLES Next, examples of the present invention will be described. As for the composition of the sample, when the Ti-Zr-Fe system is shown, pure T
i, Ti-4 wt% Zr, Ti-4 wt% Fe, and Ti-4 wt% Zr-4 wt% Fe. The above-mentioned raw material powders are weighed and mixed, and then 4t.
It was compressed at a pressure of on / cm 2 to obtain a green compact.

【0024】得られた圧粉体を温度1250℃で2時
間、真空焼結し、そののち金属容器に真空封入して、温
度800℃、圧力1000Kgf/cm2で、4時間、
HIP処理した。
The obtained green compact was vacuum-sintered at a temperature of 1250 ° C. for 2 hours and then vacuum-sealed in a metal container at a temperature of 800 ° C. and a pressure of 1000 Kgf / cm 2 for 4 hours.
HIP treated.

【0025】得られた合金から引張り試片を切り出し、
引張り試験および伸び試験を行った結果を図2の表に示
す。
A tensile test piece was cut out from the obtained alloy,
The results of the tensile test and the elongation test are shown in the table of FIG.

【0026】このように、ジルコニウム、鉄、各々の単
体でも最大引張り強度および伸びについて強化効果はあ
るが、Ti−Zr−Fe系と三元素とすることにより、
さらなる強化が可能であり、最大引張り強度88Kgf
/mm2、伸び10%以上というTi−6Al−4V合
金の強度に十分匹敵する特性が得られた。
As described above, although zirconium and iron alone have the effect of strengthening the maximum tensile strength and elongation, by using the Ti-Zr-Fe system and the three elements,
Can be further strengthened and has maximum tensile strength of 88 kgf
/ Mm 2 and an elongation of 10% or more were obtained, which were properties sufficiently comparable to the strength of the Ti-6Al-4V alloy.

【0027】[0027]

【発明の効果】以上のように本発明によれば、チタン系
合金として、チタンにジルコニウム、鉄、コバルトなど
を添加した焼結合金とし、またHIP処理も施すことに
より、Ti−6Al−4V合金の強度に十分匹敵する特
性を有するとともに、生体内用材料としても安全な材料
を製造することができる。
As described above, according to the present invention, a Ti-6Al-4V alloy is obtained by using a titanium-based alloy as a sintered alloy in which zirconium, iron, cobalt, etc. are added to titanium, and by applying HIP treatment. It is possible to manufacture a material which has properties sufficiently comparable to the strength of 1. and is safe as an in-vivo material.

【0028】[0028]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるチタン系焼結合金の製造方法にお
ける製造工程を概略的に示した説明図である。
FIG. 1 is an explanatory view schematically showing manufacturing steps in a method for manufacturing a titanium-based sintered alloy according to the present invention.

【図2】本発明の実施例によるTi−Zr−Fe系合金
の最大引張り強度および伸びを示す表である。
FIG. 2 is a table showing maximum tensile strengths and elongations of Ti—Zr—Fe alloys according to examples of the present invention.

【符号の説明】[Explanation of symbols]

1 純チタン粉末 2 ジルコニウム粉末 3 コバルト粉末 4 鉄粉末 5 圧粉体 6 焼結体 7 HIP処理体 1 Pure titanium powder 2 Zirconium powder 3 Cobalt powder 4 Iron powder 5 green compact 6 Sintered body 7 HIP processing body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 チタンと、2〜20重量%のジルコニ
ウムと、2〜6重量%の鉄あるいはコバルトとからなる
材料による三元素系のチタン系合金。
1. A ternary titanium-based alloy made of a material comprising titanium, 2 to 20% by weight of zirconium, and 2 to 6% by weight of iron or cobalt.
【請求項2】 チタンに、2〜20重量%のジルコニ
ウム、および2〜6重量%の鉄あるいはコバルトの元素
単体の粉末、あるいはこれら金属相互間の合金粉末を所
定量混合して圧粉体とする混合圧粉工程と、この圧粉体
を焼結する焼結工程とを有するチタン系焼結合金の製造
方法。
2. A powder compact is obtained by mixing titanium with 2 to 20% by weight of zirconium and 2 to 6% by weight of a powder of elemental element of iron or cobalt, or an alloy powder between these metals in a predetermined amount. A method for producing a titanium-based sintered alloy, comprising: a mixed compacting step of: and a sintering step of sintering the compact.
【請求項3】 チタンに、2〜20重量%のジルコニ
ウム、および2〜6重量%の鉄あるいはコバルトの元素
単体の粉末、あるいはこれら金属相互間の合金粉末を所
定量混合して圧粉体とする混合圧粉工程と、この圧粉体
を焼結して焼結体とする焼結工程と、この焼結体を熱間
静水圧処理するHIP工程とを有するチタン系焼結合金
の製造方法。
3. Titanium is mixed with a predetermined amount of powder of elemental element of 2 to 20% by weight of zirconium and 2 to 6% by weight of iron or cobalt, or alloy powder between these metals to obtain a green compact. A method for producing a titanium-based sintered alloy, which comprises: a mixed compacting step for performing the sintering, a sintering step for sintering the compact to obtain a sintered body, and a HIP step for subjecting the sintered body to hot isostatic pressing. .
JP3177738A 1991-06-24 1991-06-24 Method for producing titanium-based alloy and titanium-based sintered alloy Expired - Lifetime JP2943026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177738A JP2943026B2 (en) 1991-06-24 1991-06-24 Method for producing titanium-based alloy and titanium-based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177738A JP2943026B2 (en) 1991-06-24 1991-06-24 Method for producing titanium-based alloy and titanium-based sintered alloy

Publications (2)

Publication Number Publication Date
JPH051342A true JPH051342A (en) 1993-01-08
JP2943026B2 JP2943026B2 (en) 1999-08-30

Family

ID=16036261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177738A Expired - Lifetime JP2943026B2 (en) 1991-06-24 1991-06-24 Method for producing titanium-based alloy and titanium-based sintered alloy

Country Status (1)

Country Link
JP (1) JP2943026B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148567A (en) * 1991-11-25 1993-06-15 Nkk Corp High density powder titanium alloy for sintering
JPH06346168A (en) * 1993-06-03 1994-12-20 Sumitomo Metal Mining Co Ltd Ti or ti-fe injection-molded and sintered alloy and its production
EP1878808A1 (en) * 2005-04-08 2008-01-16 Sumitomo Metal Industries, Ltd. Ti ALLOY, Ti ALLOY MEMBER AND METHOD FOR PRODUCING SAME
WO2017077922A1 (en) * 2015-11-02 2017-05-11 勝義 近藤 Oxygen-solid-soluted titanium sintered compact and method for producing same
WO2017077923A1 (en) * 2015-11-02 2017-05-11 勝義 近藤 Nitrogen-solid-soluted titanium sintered compact and method for producing same
CN112143937A (en) * 2020-09-29 2020-12-29 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti-Zr-Co alloy and preparation method thereof
CN112195365A (en) * 2020-09-29 2021-01-08 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti-Zr-Fe alloy and preparation method thereof
CN115948676A (en) * 2022-12-13 2023-04-11 西安九洲生物材料有限公司 Self-adaptive implant for bone insufficiency, titanium-zirconium-iron alloy and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224727A (en) * 1984-04-24 1985-11-09 Haruyuki Kawahara Ti-zr sintered alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224727A (en) * 1984-04-24 1985-11-09 Haruyuki Kawahara Ti-zr sintered alloy

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148567A (en) * 1991-11-25 1993-06-15 Nkk Corp High density powder titanium alloy for sintering
JPH06346168A (en) * 1993-06-03 1994-12-20 Sumitomo Metal Mining Co Ltd Ti or ti-fe injection-molded and sintered alloy and its production
EP1878808A1 (en) * 2005-04-08 2008-01-16 Sumitomo Metal Industries, Ltd. Ti ALLOY, Ti ALLOY MEMBER AND METHOD FOR PRODUCING SAME
EP1878808A4 (en) * 2005-04-08 2010-04-14 Sumitomo Metal Ind Ti ALLOY, Ti ALLOY MEMBER AND METHOD FOR PRODUCING SAME
US9243309B2 (en) 2005-04-08 2016-01-26 Nippon Steel & Sumitomo Metal Corporation Ti alloy and Ti alloy member having Zr and Hf, or Zr and Nb, or Zr, Hf, and Nb for hydrogen embrittlement resistance
WO2017077923A1 (en) * 2015-11-02 2017-05-11 勝義 近藤 Nitrogen-solid-soluted titanium sintered compact and method for producing same
WO2017077922A1 (en) * 2015-11-02 2017-05-11 勝義 近藤 Oxygen-solid-soluted titanium sintered compact and method for producing same
US10807164B2 (en) 2015-11-02 2020-10-20 Hi-Lex Corporation Nitrogen solid solution titanium sintered compact and method for producing same
US11213889B2 (en) 2015-11-02 2022-01-04 Katsuyoshi Kondoh Oxygen solid solution titanium material sintered compact and method for producing same
US11802324B2 (en) 2015-11-02 2023-10-31 Hi-Lex Corporation Nitrogen solid solution titanium sintered compact and method for producing same
CN112143937A (en) * 2020-09-29 2020-12-29 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti-Zr-Co alloy and preparation method thereof
CN112195365A (en) * 2020-09-29 2021-01-08 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti-Zr-Fe alloy and preparation method thereof
CN112195365B (en) * 2020-09-29 2022-02-15 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti-Zr-Fe alloy and preparation method thereof
CN115948676A (en) * 2022-12-13 2023-04-11 西安九洲生物材料有限公司 Self-adaptive implant for bone insufficiency, titanium-zirconium-iron alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2943026B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
US4917858A (en) Method for producing titanium aluminide foil
GB2311997A (en) Oxide-dispersed powder metallurgically produced alloys.
JPS62156240A (en) Powder metallurgical production of copper-nickel-tin spinodal alloy
JPS60224727A (en) Ti-zr sintered alloy
Ishijima et al. Microstructure and bend ductility of W-0.3 mass% TiC alloys fabricated by advanced powder-metallurgical processing
JP2943026B2 (en) Method for producing titanium-based alloy and titanium-based sintered alloy
US5000910A (en) Method of manufacturing intermetallic compound
JP2793958B2 (en) Method for producing titanium-based sintered body by metal powder injection molding method
JP2737498B2 (en) Titanium alloy for high density powder sintering
US3009809A (en) Sintering of iron-aluminum base powders
JPH0593233A (en) Aluminum-modified titanium/titanium alloy microcomposite material
EP0270230A2 (en) Nickel-base powder metallurgy article
JP5170560B2 (en) Method to improve ductility and strength of lightweight heat-resistant intermetallic compound by adding third element particles
JP2551285B2 (en) Titanium alloy for high density powder sintering
US20050163646A1 (en) Method of forming articles from alloys of tin and/or titanium
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JP2852414B2 (en) Particle-reinforced titanium-based composite material and method for producing the same
JP2737487B2 (en) Method for producing titanium alloy for high-density powder sintering
JP4517088B2 (en) Method to improve ductility and strength of lightweight heat-resistant intermetallic compound by adding third element particles
JPH06212324A (en) Tic grain dispersed sintered ti alloy and its production
JPS62263940A (en) Heat treatment of ti-fe sintered alloy
JP3499142B2 (en) Manufacturing method of iron-based structural materials
JPS624804A (en) Production of titanium alloy by element powder mixing method
EP0953653A1 (en) Method for producing forged iron-nickel-base superalloys
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound