JP2793958B2 - Method for producing titanium-based sintered body by metal powder injection molding method - Google Patents

Method for producing titanium-based sintered body by metal powder injection molding method

Info

Publication number
JP2793958B2
JP2793958B2 JP6046838A JP4683894A JP2793958B2 JP 2793958 B2 JP2793958 B2 JP 2793958B2 JP 6046838 A JP6046838 A JP 6046838A JP 4683894 A JP4683894 A JP 4683894A JP 2793958 B2 JP2793958 B2 JP 2793958B2
Authority
JP
Japan
Prior art keywords
powder
less
sintered body
titanium
oxygen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6046838A
Other languages
Japanese (ja)
Other versions
JPH0790318A (en
Inventor
木 日出夫 鈴
谷 敏 夫 前
田 純 一 太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6046838A priority Critical patent/JP2793958B2/en
Publication of JPH0790318A publication Critical patent/JPH0790318A/en
Application granted granted Critical
Publication of JP2793958B2 publication Critical patent/JP2793958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、金属粉末射出成形法に
よるチタン(Ti)系焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium (Ti) sintered body by a metal powder injection molding method.

【0002】[0002]

【従来の技術】TiおよびTi合金は比強度が大きく、
しかも耐食性に優れた特性を有するため、航空機用材料
や化学装置の耐食材料、スポーツ用品、時計、眼鏡等に
用いられている。しかしながら、鍛造や切削の加工性が
劣るため、その製造方法が問題とされ、粉末冶金法によ
るTiおよびTi合金の製造が注目されている。粉末冶
金の中でも、寸法精度が優れ、複雑な形状の部品が製造
可能な金属粉末射出成形法によるTiおよびTi合金の
製造に対する要望が高くなっている。
2. Description of the Related Art Ti and Ti alloy have a large specific strength.
In addition, since it has excellent corrosion resistance, it is used for materials for aircraft, corrosion-resistant materials for chemical devices, sporting goods, watches, glasses, and the like. However, since the processability of forging and cutting is inferior, its manufacturing method has been a problem, and the production of Ti and Ti alloys by powder metallurgy has attracted attention. Among powder metallurgy, there is an increasing demand for the production of Ti and a Ti alloy by a metal powder injection molding method which has excellent dimensional accuracy and can produce a component having a complicated shape.

【0003】TiおよびTi合金の製造において特に重
要な点は、脆化を防ぐため、炭素、酸素等の固溶元素の
含有量を極力下げることにある。金属粉末射出成形法で
は、金属粉末と有機バインダーを混練して、成形、脱バ
インダー(脱脂)、焼結というプロセスを経るが、活性
なTi粉末を用いた場合にはバインダー中の酸素とTi
粉末とが反応して脱バインダー後に酸素量が増大してし
まう。金属粉末射出成形法によるFe系合金やステンレ
ス鋼の製造においては、焼結時の炭素と酸素との反応に
よって脱バインダー後に残留する炭素、酸素を取り除く
ことが可能であるが、TiおよびTi合金においては、
Tiの炭化物および酸化物が安定なために、焼結時に炭
素と酸素の反応によって酸素を取り除くことは不可能で
あり、そのため脱バインダー後の酸素はそのまま焼結体
の酸素として残る。このため酸素量の低いTi合金焼結
体を製造するために粉末の表面にNi,Co,Cu,A
g,Auなどの金属種を被覆することにより酸素の増加
を抑制する方法がある。また、Ti製のケースの中に焼
結用試料を入れ、焼結するといった方法が、特開平3−
267306号公報に開示されている。
A particularly important point in the production of Ti and Ti alloys is to minimize the content of solid-solution elements such as carbon and oxygen in order to prevent embrittlement. In the metal powder injection molding method, a metal powder and an organic binder are kneaded, and a process of molding, debinding (degreasing), and sintering is performed. When an active Ti powder is used, oxygen and Ti in the binder are used.
The reaction with the powder causes an increase in the amount of oxygen after debinding. In the production of Fe alloys and stainless steels by metal powder injection molding, carbon and oxygen remaining after debinding can be removed by the reaction between carbon and oxygen during sintering. Is
Since the carbides and oxides of Ti are stable, it is impossible to remove oxygen by the reaction between carbon and oxygen during sintering, so that oxygen after debinding remains as oxygen in the sintered body. Therefore, in order to produce a Ti alloy sintered body having a low oxygen content, Ni, Co, Cu, A
There is a method of suppressing an increase in oxygen by coating a metal species such as g or Au. A method of putting a sintering sample in a Ti case and sintering is disclosed in
No. 267306.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記の方
法では、Ti粉末を他の金属で被覆するため、工程が複
雑となり、コストアップが避けられないという問題があ
った。本発明はTi系粉末に特別な処理を施すことな
く、酸素の増加が抑制された焼結体とし、優れた物性の
TiおよびTi合金焼結体を容易に製造する方法を提供
することを目的としている。
However, in the above method, since the Ti powder is coated with another metal, the process is complicated, and there is a problem that the cost is unavoidable. An object of the present invention is to provide a method for easily producing a Ti and Ti alloy sintered body having excellent physical properties, with a sintered body in which an increase in oxygen is suppressed without performing a special treatment on a Ti-based powder. And

【0005】[0005]

【課題を解決するための手段】すなわち、本発明のTi
系焼結体の製造方法は、粉末冶金と射出成形法を組み合
わせた加工法である金属粉末射出成形法を用いた方法で
あって、比表面積が0.01m2/gを超えて0.15m2/g
以下であり、かつ、酸素含有量が0.4wt%以下であ
るチタン及びチタン合金粉末をバインダーと混練し射出
成形して成形体とし、得られた成形体を減圧下もしくは
非酸化性雰囲気下に500℃以下で脱バインダー処理し
た後、脱バインダー処理した成形体を真空下もしくは非
酸化性雰囲気下に1150〜1400℃で焼結すること
を特徴とする金属射出成形法によるチタン系焼結体の製
造方法である。
Means for Solving the Problems That is, according to the present invention, Ti
The method of producing a sintered body is a method using a metal powder injection molding method, which is a processing method combining powder metallurgy and an injection molding method, and has a specific surface area exceeding 0.01 m 2 / g and 0.15 m 2 / g
Or less, and titanium and a titanium alloy powder having an oxygen content of 0.4 wt% or less are kneaded with a binder and injection molded to obtain a molded body, and the obtained molded body is subjected to reduced pressure or a non-oxidizing atmosphere. After the binder is removed at 500 ° C. or lower, the molded body subjected to the binder removal is sintered at 1150 to 1400 ° C. in a vacuum or a non-oxidizing atmosphere at a temperature of 1150 to 1400 ° C. It is a manufacturing method.

【0006】また、本発明の製造方法は、比表面積が
0.01m2/gを超えて0.15m2/g以下であり、かつ、
酸素含有量が0.4wt%以下であるチタンまたはチタ
ン合金粉末と、平均粒径50μm以下で酸素含有量が1
wt%以下であるTi以外の金属粉末またはTiを含ま
ない合金粉末を50wt%以下混合した粉末を用いるこ
とを特徴とする。
[0006] In the production method of the present invention, the specific surface area is more than 0.01 m 2 / g and 0.15 m 2 / g or less;
A titanium or titanium alloy powder having an oxygen content of 0.4 wt% or less, and an oxygen content of 1 having an average particle size of 50 μm or less;
It is characterized in that a powder obtained by mixing a metal powder other than Ti in an amount of 50 wt% or less or an alloy powder containing no Ti in an amount of 50 wt% or less is used.

【0007】さらに、本発明の製造方法は、比表面積が
0.01m2/gを超えて0.15m2/g以下であり、かつ、
酸素含有量が0.4wt%以下、平均粒径40μm以
下、タップによる粉末充填率が60vol%以上のチタ
ンまたはチタン合金粉末を用い、バインダー添加率を4
0vol%以下にして混練した、混合物を射出成形して
得られた成形体を用いることを特徴とする。
Further, in the production method of the present invention, the specific surface area is more than 0.01 m 2 / g and 0.15 m 2 / g or less, and
Using a titanium or titanium alloy powder having an oxygen content of 0.4 wt% or less, an average particle diameter of 40 μm or less, and a powder filling rate of 60 vol% or more by tapping, and a binder addition rate of 4
It is characterized in that a molded product obtained by injection molding a mixture kneaded at 0 vol% or less is used.

【0008】ここで、本発明の製造方法は、チタンまた
はチタン合金粉末がガスアトマイズ粉末であることが好
ましい。
Here, in the production method of the present invention, the titanium or titanium alloy powder is preferably a gas atomized powder.

【0009】[0009]

【作用】以下に本発明の製造方法の詳細を説明する。The details of the production method of the present invention will be described below.

【0010】本発明において原料とするTiまたはTi
合金粉末としては、水素化脱水素粉(HDH粉)および
ガスアトマイズ粉が好ましく使用される。さらに本発明
におけるTi粉末としては、金属チタンの粉末ばかりで
なく、粉末冶金法に広く使用されているチタン系合金粉
末および混合粉末も用いられる。Ti系合金粉末として
は、Ti−6wt%Al−4wt%V、Ti−0.2w
t%Pd等が例示される。Ti以外の金属粉末としては
Al粉末、V粉末、Mo粉末、Cr粉末、Sn粉末、P
d粉末、Zr粉末が、また、Ti以外の合金粉末として
は、Al−V粉末、Zr−Al粉末等があり、これらの
少量をTiと混合してもよい。
In the present invention, Ti or Ti used as a raw material
As the alloy powder, hydrodehydrogenated powder (HDH powder) and gas atomized powder are preferably used. Further, as the Ti powder in the present invention, not only titanium metal powder but also titanium alloy powder and mixed powder widely used in powder metallurgy are used. As Ti-based alloy powders, Ti-6 wt% Al-4 wt% V, Ti-0.2 w
t% Pd and the like are exemplified. Metal powders other than Ti include Al powder, V powder, Mo powder, Cr powder, Sn powder, and P powder.
d powder and Zr powder, and alloy powders other than Ti include Al-V powder and Zr-Al powder, and a small amount of these may be mixed with Ti.

【0011】これらのTi以外の金属あるいはTiを含
まない合金粉末は、平均粒径50μm以下、酸素含有量
1wt%以下、添加量は50wt%以下とする。平均粒
径が50μm超では均一な合金化が困難となる。また、
酸素含有量が1wt%超では焼結体の特性が劣化する。
さらに、これらのTi以外の金属あるいはTiを含まな
い合金粉末の添加量が50wt%を越えると均一な合金
化が困難となる。好ましくは、平均粒径40μm以下、
酸素含有量0.7wt%以下、添加量は40wt%以下
とする。平均粒径30μm以下、酸素含有量0.5wt
%以下、添加量は20wt%以下の粉末を用いることが
特に好ましい。
The alloy powder containing no metal other than Ti or Ti does not have an average particle diameter of 50 μm or less, an oxygen content of 1 wt% or less, and an addition amount of 50 wt% or less. If the average particle size exceeds 50 μm, it is difficult to form a uniform alloy. Also,
If the oxygen content exceeds 1 wt%, the characteristics of the sintered body deteriorate.
Furthermore, if the amount of the alloy powder containing no metal other than Ti or containing Ti exceeds 50 wt%, it is difficult to form a uniform alloy. Preferably, the average particle size is 40 μm or less,
The oxygen content is 0.7 wt% or less, and the addition amount is 40 wt% or less. Average particle size 30μm or less, oxygen content 0.5wt
% Or less, and it is particularly preferable to use a powder having an addition amount of 20 wt% or less.

【0012】本発明におけるTiまたはTi合金粉末
は、その比表面積がBET法により測定して0.01m2
/gを超え0.15m2/g以下のものであり、好ましくは
0.025〜0.14m2/gとされる。比表面積が0.0
1m2/g以下では粉末の粒径が大きくなるため焼結密度が
十分上がらず、比表面積が0.15m2/gを超えると酸素
との反応による焼結体の酸素量が増大する。粉末の比表
面積を小さくするために、Ti粉末に機械的な球状化処
理等を施したものを用いてもよい。
The Ti or Ti alloy powder according to the present invention has a specific surface area of 0.01 m 2 as measured by the BET method.
/ g is intended to exceed following 0.15 m 2 / g, and preferably from 0.025~0.14m 2 / g. Specific surface area is 0.0
1m sintered density does not increase sufficiently for the particle size of the powder is increased by 2 / g or less and a specific surface area of the oxygen content of the sintered body is increased due to reaction with oxygen exceeds 0.15 m 2 / g. In order to reduce the specific surface area of the powder, a powder obtained by subjecting a Ti powder to a mechanical sphering treatment or the like may be used.

【0013】本発明におけるTiまたはTi合金粉末の
酸素含有量は、0.4wt%以下でなければならない。
TiまたはTi合金粉末の酸素はそのまま焼結体の酸素
として残るので、TiまたはTi合金粉末の酸素量が
0.4wt%を超えると焼結体の酸素量も0.4wt%
を超えて焼結体の延性が大きく低下する。好ましくは、
酸素含有量は、0.3wt%以下とする。
[0013] The oxygen content of the Ti or Ti alloy powder in the present invention must be 0.4 wt% or less.
Since the oxygen of the Ti or Ti alloy powder remains as it is as the oxygen of the sintered body, when the oxygen amount of the Ti or Ti alloy powder exceeds 0.4 wt%, the oxygen amount of the sintered body also becomes 0.4 wt%
If it exceeds, the ductility of the sintered body is greatly reduced. Preferably,
The oxygen content is 0.3 wt% or less.

【0014】次に、さらに焼結体特性を向上させるため
には、以下のような粉末の粒径および粉末のタップ充填
率を持つ粉末を用いることが望ましい。まず、本発明で
使用するTiまたはTi合金粉末はタップによる粉末充
填率が60vol%以上の粉末とする。通常このような
充填率が得られる粉末は、球状あるいは球に近い形状の
粉末であり、現在市販されている球状Ti粉末としては
ガスアトマイズ粉末およびプラズマ回転電極法による粉
末があるが、プラズマ回転電極法による粉末は粒径が1
00μm以上と大きいため、射出成形が困難である。こ
れに対してガスアトマイズ粉末は分級により、平均粒径
数十μmの粉末を得ることができる。この粉末は充填性
に優れることから、射出成形に必要な有機バインダー量
の低減が可能となる。これによりバインダー体積を40
%以下に抑えることができ、脱脂焼結時のC,Oの増加
が低下し、引っ張り特性に優れるTiまたはTi合金焼
結体を得ることができる。
Next, in order to further improve the characteristics of the sintered body, it is desirable to use a powder having the following particle diameter and tap filling rate of the powder. First, the Ti or Ti alloy powder used in the present invention has a powder filling rate of 60 vol% or more by tapping. Usually, the powder that can provide such a filling factor is a spherical or nearly spherical powder, and currently commercially available spherical Ti powders include gas atomized powder and powder obtained by a plasma rotating electrode method. Has a particle size of 1
Since it is as large as 00 μm or more, injection molding is difficult. On the other hand, the gas atomized powder can be classified to obtain a powder having an average particle size of several tens of μm. Since this powder has excellent filling properties, the amount of the organic binder required for injection molding can be reduced. This allows the binder volume to be reduced to 40
% Or less, the increase in C and O during degreasing and sintering is reduced, and a Ti or Ti alloy sintered body having excellent tensile properties can be obtained.

【0015】バインダー量が40vol%を越えると脱
脂焼結時のC,Oの増加が大きくなり、伸びが劣化す
る。好ましくは、粉末充填率(タップ時)が65%以
上、バインダー量は10%以上35%以下に抑えること
が望ましい。また、TiまたはTi合金粉末の平均粒径
は、好ましくは40μm以下とする。平均粒径が40μ
m以下であると成形性がよい。好ましくは、平均粒径で
20〜35μmとする。以上のTiまたはTi合金粉末
はバインダーと混練され、射出成形されて成形体とされ
る。この際のバインダーには、一般の金属射出成形法に
使用される有機バインダーが用いられる。
If the amount of the binder exceeds 40 vol%, the increase of C and O during degreasing and sintering becomes large, and the elongation is deteriorated. Preferably, it is desirable that the powder filling rate (at the time of tapping) be 65% or more and the binder amount be 10% or more and 35% or less. The average particle diameter of the Ti or Ti alloy powder is preferably set to 40 μm or less. Average particle size is 40μ
If it is less than m, moldability is good. Preferably, the average particle size is 20 to 35 μm. The above-mentioned Ti or Ti alloy powder is kneaded with a binder, and is injection-molded to obtain a molded body. As the binder at this time, an organic binder used in a general metal injection molding method is used.

【0016】TiまたはTi合金粉末、またはTi以外
の金属粉末あるいはTiを含まない合金粉末とバインダ
ーとの混練は加圧ニーダー、プラストミル、ロールミ
ル、バンバリーミキサー、単軸スクリュー混練機、2軸
スクリュー混練機などせん断作用による混練を行う混練
機が使用でき、これら2種以上を組み合わせて混練して
もよい。混練順序はいずれの順序でもよく、Tiおよび
Ti合金粉末とすべてのバインダー成分を同時に混練し
てもよく、また、すべてのバインダー成分を先に混練し
た後にTiおよびTi合金粉末を投入して混練しても良
い。またTiおよびTi合金粉末とバインダーのある成
分を先に混練して後から残りのバインダー成分を加えて
も良い。バインダーと混練されたTiおよびTi合金粉
末の成形は一般的な熱可塑性プラスチック用射出成形機
を用いて行うことができる。射出方式はプランジャ式、
プランジャプリプラ式、スクリュプリプラ式、インライ
ンスクリュ式のいずれでもよい。
The kneading of a binder with Ti or a Ti alloy powder, a metal powder other than Ti, or an alloy powder containing no Ti, and a binder is performed using a pressure kneader, a plast mill, a roll mill, a Banbury mixer, a single screw kneader, or a twin screw kneader. For example, a kneader that performs kneading by a shearing action can be used, and kneading may be performed by combining two or more of these. The kneading order may be any order, and the Ti and Ti alloy powder and all the binder components may be kneaded at the same time. May be. Alternatively, the remaining binder component may be added after kneading the Ti and Ti alloy powder and a certain component of the binder first. The molding of the Ti and Ti alloy powder kneaded with the binder can be carried out using a general thermoplastic injection molding machine. Injection method is plunger type,
Any of a plunger pre-plasticizer type, screw pre-plasticizer type, and in-line screw type may be used.

【0017】射出成形により得られた形成体は、次いで
脱バインダーされる。この脱バインダーは酸化を防ぐた
めに、減圧中あるいは非酸化性雰囲気中で500℃以下
での熱分解法により行う。脱バインダー温度が500℃
を超えると、雰囲気からの酸化により酸素量が増大す
る。減圧雰囲気は、1〜10-5Torrが好ましく、非
酸化性雰囲気としては、窒素、アルゴン、窒素+アルゴ
ン雰囲気が例示される。望ましい脱バインダー温度は、
300〜400℃の範囲である。
The formed body obtained by injection molding is then debindered. This binder removal is performed by a thermal decomposition method at 500 ° C. or less in a reduced pressure or in a non-oxidizing atmosphere in order to prevent oxidation. Debinding temperature is 500 ℃
If it exceeds, the amount of oxygen increases due to oxidation from the atmosphere. The reduced pressure atmosphere is preferably 1 to 10 -5 Torr, and examples of the non-oxidizing atmosphere include a nitrogen, argon, and nitrogen + argon atmosphere. Desirable debinding temperature is
It is in the range of 300 to 400 ° C.

【0018】脱バインダーされた成形体は焼結される。
この焼結も酸化を防ぐために、真空中あるいは非酸化性
雰囲気で1150〜1400℃で行う。焼結温度が11
50℃未満では焼結密度が十分に上がらず、1400℃
を超えると雰囲気からの酸化により酸素量が増大する。
減圧雰囲気は、0.1〜10-5Torrが好ましく、非
酸化性雰囲気としては、窒素、アルゴン、窒素+アルゴ
ン雰囲気が例示される。望ましい焼結温度は、1200
〜1350℃の範囲である。
The debindered compact is sintered.
This sintering is also performed at 1150-1400 ° C. in a vacuum or a non-oxidizing atmosphere to prevent oxidation. Sintering temperature is 11
If the temperature is lower than 50 ° C., the sintering density is not sufficiently increased, and 1400 ° C.
If it exceeds, the amount of oxygen increases due to oxidation from the atmosphere.
The reduced pressure atmosphere is preferably 0.1 to 10 -5 Torr, and examples of the non-oxidizing atmosphere include a nitrogen, argon, and nitrogen + argon atmosphere. The desired sintering temperature is 1200
1350 ° C.

【0019】このように、本発明に係る製造方法によれ
ば、得られるTi系焼結体は酸素含量が0.4wt%以
下となるために、チタンの優れた物性が損なわれること
のない焼結体となる。従って本発明によれば優れた物性
のTi系焼結体を容易に製造することが可能である。
As described above, according to the production method of the present invention, the obtained Ti-based sintered body has an oxygen content of 0.4% by weight or less, so that the excellent physical properties of titanium are not impaired. It becomes union. Therefore, according to the present invention, it is possible to easily produce a Ti-based sintered body having excellent physical properties.

【0020】[0020]

【実施例】以下に実施例をあげて本発明を更に詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0021】(実施例1)表1に示す比表面積、酸素含
有量、平均粒径および粉末充填率(タップ密度)を有す
るTi粉末(A〜J)を原料とした。各粉末は篩あるい
は空気分級機により表1に示した分級点で分級し、BE
T法により比表面積を測定されたものである。このTi
粉末を熱可塑性樹脂、ワックス、可塑材からなる有機バ
インダーを表2に示す量添加し、加圧ニーダーにより混
練して金属粉末射出成形用コンパウンドを作製した。こ
れらコンパウンドをインラインスクリュ式の射出成形機
を用いて55×10×3mmの抗折力試験片に成形し
た。成形体は窒素中で表2に示した温度まで48時間で
昇温することにより脱脂(脱バインダー)を行った。続
いて脱脂成形体をアルゴンガス中で表2に示した温度で
2時間保持し、焼結を行った。以上のようにして得られ
た本発明例1〜10及び比較例1〜7の焼結体の酸素
量、焼結密度比および抗折力(支点間距離25mmの3
点曲げ試験法で測定)、ビッカース硬度および引張り試
験における伸びを測定した。各々の測定結果を表2に示
す。
Example 1 Ti powders (A to J) having the specific surface area, oxygen content, average particle size and powder filling rate (tap density) shown in Table 1 were used as raw materials. Each powder was classified using a sieve or an air classifier at the classification points shown in Table 1, and BE
The specific surface area was measured by the T method. This Ti
The powder was added with an organic binder composed of a thermoplastic resin, a wax and a plasticizer in the amounts shown in Table 2, and kneaded with a pressure kneader to prepare a compound for metal powder injection molding. These compounds were molded into a 55 × 10 × 3 mm bending strength test piece using an inline screw type injection molding machine. The molded body was degreased (debindered) by raising the temperature in nitrogen for 48 hours to the temperature shown in Table 2. Subsequently, the degreased molded body was kept at a temperature shown in Table 2 for 2 hours in an argon gas to perform sintering. The oxygen content, the sintering density ratio, and the transverse rupture strength of the sintered bodies of Examples 1 to 10 of the present invention and Comparative Examples 1 to 7 obtained as described above (3 mm of the fulcrum distance of 25 mm).
Vickers hardness and elongation in a tensile test were measured. Table 2 shows the measurement results.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表2に示すように、本発明による焼結体は
Ti粉末の比表面積を0.01m2/gより大きくすること
により焼結密度が上昇している(本発明例1〜10)。
また比表面積を0.15m2/g以下にすることによりTi
粉末は低い酸素量を示す(比較例1〜4、本発明例1〜
10)。脱脂温度の影響では、脱脂温度が500℃を超
えると雰囲気からの酸化により焼結体の酸素量が増大し
ている(比較例5)。焼結温度の影響では1150℃未
満では焼結密度が上がっていない(比較例6)。140
0℃を超えると雰囲気からの酸化により焼結体の酸素量
が増大している(比較例7)。このように比表面積が
0.01m2/gを超え0.15m2/g以下かつ酸素量0.4
wt%以下のTi粉末を用い、非酸化性雰囲気で500
℃以下で脱脂、1150から1400℃で焼結すること
により、焼結体の酸素量は0.4wt%以下となり、こ
れに伴い抗折力は高い値を示し、硬度は低い値を示し、
脆性が改善されている(本発明例1〜10)。また、粉
末充填率が低く、バインダー量が40vol%を越える
場合、伸びの変化が見られた(本発明例4〜7)。
As shown in Table 2, in the sintered body according to the present invention, the sintering density is increased by increasing the specific surface area of the Ti powder to more than 0.01 m 2 / g (Examples 1 to 10 of the present invention). .
By setting the specific surface area to 0.15 m 2 / g or less, Ti
The powder shows a low oxygen content (Comparative Examples 1-4, inventive examples 1-
10). Regarding the effect of the degreasing temperature, when the degreasing temperature exceeds 500 ° C., the amount of oxygen in the sintered body increases due to oxidation from the atmosphere (Comparative Example 5). Under the influence of the sintering temperature, the sintering density did not increase below 1150 ° C. (Comparative Example 6). 140
When the temperature exceeds 0 ° C., the amount of oxygen in the sintered body increases due to oxidation from the atmosphere (Comparative Example 7). Thus, the specific surface area is more than 0.01 m 2 / g and 0.15 m 2 / g or less, and the oxygen content is 0.4
500 wt% or less in a non-oxidizing atmosphere using Ti powder
By degreasing at a temperature of 1 ° C. or less, and sintering at 1150 to 1400 ° C., the oxygen amount of the sintered body becomes 0.4 wt% or less, and accordingly, the transverse rupture strength shows a high value, and the hardness shows a low value.
The brittleness is improved (Examples 1 to 10 of the present invention). In addition, when the powder filling rate was low and the amount of the binder exceeded 40 vol%, changes in elongation were observed (Examples 4 to 7 of the present invention).

【0025】(実施例2)表1に示す比表面積および酸
素含有量を有するTi粉末(A〜J)と、平均粒径25
μmのAl−40V合金粉末とを、Ti粉末:Al−4
0V合金粉末=9:1(重量比)の割合でV型混合機に
より15分間混合して混合粉末を得た。この混合粉末を
用いて実施例1と同様に混練、成形を行い、窒素中で表
3に示した温度まで48時間で昇温することにより脱脂
を行い、続いてアルゴンガス中で表3に示した温度で2
時間保持し、焼結を行った。以上のようにして得られた
本発明例11〜20及び比較例8〜14の焼結体の酸素
量、焼結密度比および抗折力、硬度の測定結果を表3に
示す。
(Example 2) Ti powder (A to J) having a specific surface area and an oxygen content shown in Table 1, and an average particle size of 25
μm Al-40V alloy powder and Ti powder: Al-4
The mixture was mixed at a ratio of 0V alloy powder = 9: 1 (weight ratio) with a V-type mixer for 15 minutes to obtain a mixed powder. Using this mixed powder, kneading and molding were performed in the same manner as in Example 1, and degreasing was performed by raising the temperature to the temperature shown in Table 3 in nitrogen for 48 hours, and then shown in Table 3 in argon gas. At the temperature 2
After holding for a time, sintering was performed. Table 3 shows the measurement results of the oxygen content, the sintering density ratio, the transverse rupture strength, and the hardness of the sintered bodies of Inventive Examples 11 to 20 and Comparative Examples 8 to 14 obtained as described above.

【0026】[0026]

【表3】 [Table 3]

【0027】表3に示すように、本発明による焼結体は
Ti粉末の比表面積を0.01m2/gより大きくすること
により焼結密度が上昇している(本発明例11〜2
0)。また比表面積を0.15m2/g以下にすることによ
りTi粉末は低い酸素量を示す(比較例8〜11、本発
明例11〜20)。焼結温度の影響では1150℃未満
では焼結密度が上がっていない(比較例13)。140
0℃を超えると雰囲気からの酸化により焼結体の酸素量
が増大している(比較例14)。このように比表面積が
0.01m2/gを超え0.15m2/g以下かつ酸素量0.4
wt%以下のTi粉末を用い、非酸化性雰囲気で500
℃以下で脱脂、1150から1400℃で焼結すること
により、焼結体の酸素量は0.4wt%以下となり、こ
れに伴い抗折力は高い値を示し、硬度は低い値を示し、
脆性が改善されている(本発明例11〜20)。また、
粉末充填率が低く、バインダー量が40vol%を越え
る場合、伸びの変化が見られた(本発明例14〜1
7)。
As shown in Table 3, the sintered density of the sintered body according to the present invention is increased by increasing the specific surface area of the Ti powder to more than 0.01 m 2 / g (Examples 11 to 2 of the present invention).
0). By setting the specific surface area to 0.15 m 2 / g or less, the Ti powder shows a low oxygen content (Comparative Examples 8 to 11 and Inventive Examples 11 to 20). Under the influence of the sintering temperature, the sintering density was not increased below 1150 ° C. (Comparative Example 13). 140
If the temperature exceeds 0 ° C., the oxygen content of the sintered body increases due to oxidation from the atmosphere (Comparative Example 14). Thus, the specific surface area is more than 0.01 m 2 / g and 0.15 m 2 / g or less, and the oxygen content is 0.4
500 wt% or less in a non-oxidizing atmosphere using Ti powder
By degreasing at 1 ° C. or less, and sintering at 1150 to 1400 ° C., the oxygen content of the sintered body becomes 0.4 wt% or less, and accordingly, the transverse rupture strength shows a high value, and the hardness shows a low value.
The brittleness is improved (Examples 11 to 20 of the present invention). Also,
When the powder filling rate was low and the amount of the binder exceeded 40 vol%, a change in elongation was observed (Examples 14 to 1 of the present invention).
7).

【0028】(実施例3)表4に示す比表面積、酸素含
有量、平均粒径および粉末充填率(タップ密度)を有す
るTi合金粉末(K〜T)を原料とした。各粉末は篩あ
るいは空気分級機により表4に示した分級点で分級し、
BET法により比表面積を測定されたものである。この
Ti合金粉末を熱可塑性樹脂、ワックス、可塑材からな
る有機バインダーを表5に示す量添加し、加圧ニーダー
により混練して金属粉末射出成形用コンパウンドを作製
した。これらコンパウンドをインラインスクリュ式の射
出成形機を用いて55×10×3mmの抗折力試験片に
成形した。成形体は窒素中で表5に示した温度まで48
時間で昇温することにより脱脂を行った。続いて脱脂成
形体をアルゴンガス中で表5に示した温度で2時間保持
し、焼結を行った。以上のようにして得られた本発明例
21〜28及び比較例15〜18の焼結体の酸素量、焼
結密度比および抗折力(支点間距離25mmの3点曲げ
試験法で測定)、ビッカース硬度および引張り試験にお
ける伸びを測定した。各々の測定結果を表5に示す。
Example 3 Ti alloy powders (KT) having the specific surface area, oxygen content, average particle diameter and powder filling rate (tap density) shown in Table 4 were used as raw materials. Each powder is classified by a sieve or an air classifier at the classification points shown in Table 4,
The specific surface area was measured by the BET method. An organic binder composed of a thermoplastic resin, a wax, and a plasticizer was added to the Ti alloy powder in an amount shown in Table 5, and kneaded with a pressure kneader to prepare a metal powder injection molding compound. These compounds were molded into a 55 × 10 × 3 mm bending strength test piece using an inline screw type injection molding machine. The molded body was heated to a temperature shown in Table 5 in nitrogen for 48 hours.
Degreasing was performed by raising the temperature over time. Subsequently, the degreased molded body was held in an argon gas at the temperature shown in Table 5 for 2 hours to perform sintering. The oxygen content, the sintered density ratio and the transverse rupture strength of the sintered bodies of Examples 21 to 28 of the present invention and Comparative Examples 15 to 18 obtained as described above (measured by a three-point bending test method with a distance between supports of 25 mm). , Vickers hardness and elongation in a tensile test were measured. Table 5 shows the measurement results.

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【表5】 [Table 5]

【0031】表5に示すように、本発明による焼結体は
混合粉末中のTi含有粉末の比表面積を0.01m2/gよ
り大きくすることにより焼結密度が上昇している(本発
明例21〜28)。また比表面積を0.15m2/g以下に
することによりTi粉末は低い酸素量を示す(比較例1
5、16、本発明例21〜28)。バインダー量の影響
では、バインダー量が40vol%を越えると、脱脂温
度及び焼結温度が本発明の方法の温度範囲内であっても
酸素量が増加した(比較例15、16)。焼結温度の影
響では1150℃未満では焼結密度が上がっていない
(比較例17)。1400℃を超えると雰囲気からの酸
化により焼結体の酸素量が増大している(比較例1
8)。このように比表面積が0.01m2/gを超え0.1
5m2/g以下かつ酸素量0.4wt%以下のTi含有粉末
を用い、非酸化性雰囲気で500℃以下で脱脂、115
0から1400℃で焼結することにより、焼結体の酸素
量は0.4wt%以下となり、これに伴い抗折力は高い
値を示し、硬度は低い値を示し、脆性が改善されている
(本発明例21〜28)。
As shown in Table 5, the sintered density of the sintered body according to the present invention is increased by increasing the specific surface area of the Ti-containing powder in the mixed powder to more than 0.01 m 2 / g (the present invention). Examples 21 to 28). When the specific surface area is 0.15 m 2 / g or less, the Ti powder shows a low oxygen content (Comparative Example 1).
5, 16, invention examples 21 to 28). Regarding the effect of the binder amount, when the binder amount exceeded 40 vol%, the oxygen amount increased even when the degreasing temperature and the sintering temperature were within the temperature range of the method of the present invention (Comparative Examples 15 and 16). Under the influence of the sintering temperature, the sintering density was not increased below 1150 ° C. (Comparative Example 17). If the temperature exceeds 1400 ° C., the oxygen content of the sintered body increases due to oxidation from the atmosphere (Comparative Example 1).
8). Thus, the specific surface area exceeds 0.01 m 2 / g and 0.1
Using a Ti-containing powder of 5 m 2 / g or less and oxygen content of 0.4 wt% or less, degreasing at 500 ° C. or less in a non-oxidizing atmosphere, 115
By sintering at 0 to 1400 ° C., the oxygen content of the sintered body becomes 0.4 wt% or less, and accordingly, the transverse rupture shows a high value, the hardness shows a low value, and the brittleness is improved. (Invention Examples 21 to 28).

【0032】(実施例4)表6に示す比表面積および酸
素含有量を有するTi粉末(D1〜D8、K1〜K3)
に、表7に示す金属または合金粉末を添加合金粉末とし
て添加して、表6に示す混合粉合金組成となるように、
V型混合機により15分間混合して混合粉末を得た。こ
の混合粉末を用いて実施例1と同様に表8に示すバイン
ダー量で混練、成形を行い、窒素中で表8に示した温度
まで48時間で昇温することにより脱脂を行い、続いて
アルゴンガス中で表8に示した温度で2時間保持し、焼
結を行った。以上のようにして得られた本発明例29〜
37及び比較例19〜20の焼結体の酸素量、焼結密度
比および抗折力、硬度および伸びを測定した。各々の測
定結果を表8に示す。
Example 4 Ti powder (D1 to D8, K1 to K3) having the specific surface area and oxygen content shown in Table 6
Then, a metal or alloy powder shown in Table 7 was added as an additional alloy powder so that a mixed powder alloy composition shown in Table 6 was obtained.
The mixture was mixed by a V-type mixer for 15 minutes to obtain a mixed powder. Using this mixed powder, kneading and molding were carried out in the same manner as in Example 1 with the binder amount shown in Table 8, and the temperature was raised to the temperature shown in Table 8 in nitrogen for 48 hours to perform degreasing. The sintering was performed by maintaining the temperature in the gas at the temperature shown in Table 8 for 2 hours. Inventive Examples 29 to 29 obtained as described above
37 and the sintered bodies of Comparative Examples 19 to 20 were measured for oxygen content, sintering density ratio, transverse rupture strength, hardness and elongation. Table 8 shows the measurement results.

【0033】[0033]

【表6】 [Table 6]

【0034】 [0034]

【0035】[0035]

【表7】 [Table 7]

【0036】表8に示すように、本発明の焼結体は混合
粉末中のTi含有粉末の比表面積を0.01m2/gより大
きくすることにより焼結密度が上昇している(本発明例
29〜37)。また比表面積を0.15m2/g以下にする
ことによりTi粉末は低い酸素量を示す(比較例19〜
21、本発明例29〜37)。バインダー量の影響で
は、バインダー量が40vol%を越えると、脱脂温度
及び焼結温度が本発明の方法の温度範囲内であっても酸
素量が増加した(比較例19、20)。焼結温度の影響
では1150℃未満では焼結密度が上がっていない(比
較例20)。1400℃を超えると雰囲気からの酸化に
より焼結体の酸素量が増大している(比較例21)。こ
のように比表面積が0.01m2/gを超え0.15m2/g以
下かつ酸素量0.4wt%以下のTi含有粉末を用い、
バインダー量を40vol%以下とし、非酸化性雰囲気
で500℃以下で脱脂、1150から1400℃で焼結
することにより、焼結体の酸素量は0.4wt%以下と
なり、これに伴い抗折力は高い値を示し、硬度は低い値
を示し、脆性が改善されている(本発明例29〜3
7)。
As shown in Table 8, the sintered body of the present invention has an increased sintered density by increasing the specific surface area of the Ti-containing powder in the mixed powder to more than 0.01 m 2 / g (the present invention). Examples 29-37). By setting the specific surface area to 0.15 m 2 / g or less, the Ti powder shows a low oxygen content (Comparative Examples 19 to 20).
21, inventive examples 29 to 37). Regarding the effect of the binder amount, when the binder amount exceeded 40 vol%, the oxygen amount increased even when the degreasing temperature and the sintering temperature were within the temperature range of the method of the present invention (Comparative Examples 19 and 20). Under the influence of the sintering temperature, the sintering density did not increase below 1150 ° C. (Comparative Example 20). When the temperature exceeds 1400 ° C., the oxygen content of the sintered body increases due to oxidation from the atmosphere (Comparative Example 21). Thus, using a Ti-containing powder having a specific surface area of more than 0.01 m 2 / g and 0.15 m 2 / g or less and an oxygen content of 0.4 wt% or less,
By sintering at 1150 to 1400 ° C in a non-oxidizing atmosphere at a temperature of 500 ° C or less with a binder amount of 40% by volume or less, the oxygen content of the sintered body becomes 0.4% by weight or less, and accordingly the transverse rupture strength Indicates a high value, the hardness indicates a low value, and the brittleness is improved (Examples 29 to 3 of the present invention)
7).

【0037】[0037]

【発明の効果】本発明の方法によれば、酸素量の低いT
iおよびTi合金焼結体を容易に製造することが可能と
なり本発明はTiおよびTi合金の脆性改善に大きく寄
与するものである。
According to the method of the present invention, T having a low oxygen content is used.
The present invention makes it possible to easily produce i and Ti alloy sintered bodies, and the present invention greatly contributes to improvement of brittleness of Ti and Ti alloy.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−145704(JP,A) 特開 平2−54733(JP,A) (58)調査した分野(Int.Cl.6,DB名) B22F 1/00 - 3/26 C22C 1/04────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-145704 (JP, A) JP-A-2-54733 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B22F 1/00-3/26 C22C 1/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】比表面積が0.01m2/gを超えて0.15
m2/g以下であり、かつ、酸素含有量が0.4wt%以下
であるチタンまたはチタン合金の粉末をバインダーと混
練して射出成形して成形体とし、得られた成形体を減圧
下もしくは非酸化性雰囲気下で500℃以下で加熱し脱
バインダー処理した後、脱バインダー処理した成形体を
真空下もしくは非酸化性雰囲気下に1150〜1400
℃で焼結することを特徴とする金属粉末射出成形法によ
るチタン系焼結体の製造方法。
(1) a specific surface area of more than 0.01 m 2 / g and 0.15
m 2 / g or less, and a titanium or titanium alloy powder having an oxygen content of 0.4 wt% or less is kneaded with a binder and injection-molded to obtain a molded body. After heating at 500 ° C. or lower in a non-oxidizing atmosphere to remove the binder, the molded article subjected to the binder removal is subjected to vacuum or in a non-oxidizing atmosphere at 1150 to 1400.
A method for producing a titanium-based sintered body by metal powder injection molding, characterized by sintering at ℃.
【請求項2】比表面積が0.01m2/gを超えて0.15
m2/g以下であり、かつ、酸素含有量が0.4wt%以下
であるチタンまたはチタン合金粉末と、平均粒径50μ
m以下で酸素含有量が1wt%以下であるTi以外の他
の金属粉末またはTiを含まない合金粉末を50wt%
以下混合した粉末を用いることを特徴とする請求項1記
載のチタン系焼結体の製造方法。
(2) The specific surface area exceeds 0.01 m 2 / g to 0.15
a titanium or titanium alloy powder having an m 2 / g or less and an oxygen content of 0.4 wt% or less, and an average particle diameter of 50 μm.
50% by weight of a metal powder other than Ti or an alloy powder not containing Ti having an oxygen content of 1% by weight or less at m or less.
The method for producing a titanium-based sintered body according to claim 1, wherein a powder mixed below is used.
【請求項3】比表面積が0.01m2/gを超えて0.15
m2/g以下であり、かつ、酸素含有量が0.4wt%以
下、平均粒径40μm以下、タップによる粉末充填率が
60vol%以上のチタンまたはチタン合金粉末を用
い、バインダー添加率を40vol%以下にして混練し
た混合物を射出成形して得られた成形体を用いることを
特徴とする請求項1記載のチタン系焼結体の製造方法。
3. The method according to claim 1, wherein the specific surface area exceeds 0.01 m 2 / g to 0.15
m 2 / g or less, an oxygen content of 0.4 wt% or less, an average particle diameter of 40 μm or less, and a powder filling rate by a tap of 60 vol% or more. 2. The method for producing a titanium-based sintered body according to claim 1, wherein a molded body obtained by injection-molding the kneaded mixture is used.
【請求項4】チタンまたはチタン合金粉末がガスアトマ
イズ粉末であることを特徴とする請求項1〜3のいずれ
かに記載のチタン系焼結体の製造方法。
4. The method for producing a titanium-based sintered body according to claim 1, wherein the titanium or titanium alloy powder is a gas atomized powder.
JP6046838A 1993-06-25 1994-03-17 Method for producing titanium-based sintered body by metal powder injection molding method Expired - Fee Related JP2793958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6046838A JP2793958B2 (en) 1993-06-25 1994-03-17 Method for producing titanium-based sintered body by metal powder injection molding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15481993 1993-06-25
JP5-154819 1993-06-25
JP6046838A JP2793958B2 (en) 1993-06-25 1994-03-17 Method for producing titanium-based sintered body by metal powder injection molding method

Publications (2)

Publication Number Publication Date
JPH0790318A JPH0790318A (en) 1995-04-04
JP2793958B2 true JP2793958B2 (en) 1998-09-03

Family

ID=26386978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6046838A Expired - Fee Related JP2793958B2 (en) 1993-06-25 1994-03-17 Method for producing titanium-based sintered body by metal powder injection molding method

Country Status (1)

Country Link
JP (1) JP2793958B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511167A1 (en) * 1995-03-28 1996-10-10 Obe Werk Kg Spring hinge for glasses
JP2001049304A (en) 1999-08-04 2001-02-20 Hitachi Metals Ltd Titanium base injection molded sintered body and its production
JP2002206124A (en) * 2001-01-04 2002-07-26 Sumitomo Metal Mining Co Ltd METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
KR100508471B1 (en) * 2002-12-10 2005-08-17 주식회사 에스엠코퍼레이션 Method for manufacturing titanium material
KR100725209B1 (en) * 2005-12-07 2007-06-04 박영석 Powder injection molding method for forming article comprising titanium and titanium coating method
KR100749395B1 (en) * 2006-01-04 2007-08-14 박영석 Powder injection molding product, titanium coating product, sprayer for titanium coating and paste for titanium coating
US7883662B2 (en) 2007-11-15 2011-02-08 Viper Technologies Metal injection molding methods and feedstocks
JP2010059456A (en) * 2008-09-02 2010-03-18 Seiko Epson Corp Titanium sintered compact and method of producing the same
US8124187B2 (en) 2009-09-08 2012-02-28 Viper Technologies Methods of forming porous coatings on substrates
KR101383586B1 (en) * 2013-10-15 2014-04-09 (주)엠아이디 Method for manufacturing gold color ceramics sintered body
JP6054553B2 (en) * 2014-01-10 2016-12-27 勝義 近藤 Oxygen solid solution titanium material, oxygen solid solution titanium powder material, and method for producing oxygen solid solution titanium powder material
CN109454226A (en) * 2018-11-08 2019-03-12 江苏精研科技股份有限公司 A kind of preparation method of TC11 alloy components

Also Published As

Publication number Publication date
JPH0790318A (en) 1995-04-04

Similar Documents

Publication Publication Date Title
JP3952006B2 (en) Raw material powder for sintering or granulated powder for sintering and sintered body thereof
JP2793958B2 (en) Method for producing titanium-based sintered body by metal powder injection molding method
KR100768700B1 (en) Fabrication method of alloy parts by metal injection molding and the alloy parts
JP3856294B2 (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
JP7278704B2 (en) Powder titanium alloy composition and articles formed therefrom
EP1382700B1 (en) Improved oxidation resistant molybdenum alloy
JPH09309715A (en) Composite carbide powder and production thereof
US9334550B2 (en) Method of controlling the carbon or oxygen content of a powder injection
JP2901175B2 (en) Titanium orthodontic parts
JP2943026B2 (en) Method for producing titanium-based alloy and titanium-based sintered alloy
JP2000017301A (en) Production of high density titanium sintered compact
JPH07166273A (en) Powder metallurgical product of injection molded copper
JPH06240381A (en) Production of ti alloy sintered compact by injection-molding of metal powder
JP3001541B1 (en) Prealloy powder and method for producing sintered Ti alloy using the same
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JP2786303B2 (en) Method for producing sintered alloy with excellent corrosion resistance and machinability
JPH10317009A (en) Production of stainless sintered body
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JPS61201750A (en) Sintered hard alloy
JP2000328154A (en) MANUFACTURE OF Ti.Al INTERMETALIC COMPOUND HEAT RESISTANT MATERIAL HAVING HIGH CREEP RUPTURE STRENGTH, POWDER OF Ti.Al INTERMETALLIC COMPOUND, AND ITS MANUFACTURE
JP3499142B2 (en) Manufacturing method of iron-based structural materials
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JPH11158567A (en) Manufacture of sintered body of copper-nickel-iron -chromium alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980526

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees