JPS60224727A - Ti-zr sintered alloy - Google Patents

Ti-zr sintered alloy

Info

Publication number
JPS60224727A
JPS60224727A JP8111984A JP8111984A JPS60224727A JP S60224727 A JPS60224727 A JP S60224727A JP 8111984 A JP8111984 A JP 8111984A JP 8111984 A JP8111984 A JP 8111984A JP S60224727 A JPS60224727 A JP S60224727A
Authority
JP
Japan
Prior art keywords
alloy
powder
less
sintered
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8111984A
Other languages
Japanese (ja)
Inventor
Haruyuki Kawahara
川原 春幸
Tsunahiro Miura
三浦 維四
Osamu Okuno
奥野 攻
Koichi Imai
弘一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8111984A priority Critical patent/JPS60224727A/en
Publication of JPS60224727A publication Critical patent/JPS60224727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the titled alloy superior in mechanical property, corrosion resistance, heat resistance or conformity with living body by mixing a specified compsn. quantity of Zr powder to Ti powder, press forming these and sintering said body. CONSTITUTION:Zr powder or if necessary, Zr alloy powder is mixed with Ti powder or if necessary, Ti alloy powder, these are press formed and sintered to Ti-Zr sintered alloy. The alloy is composed of 5-90wt% Zr, preferably, 30- 70%, furthermore 40-60%, if necessary >= one kind among <=16% Al, <=26% V, <=22% Sn, <=16% Mn, <=30% Mo, <=10% Ta, <=30% Pd, >=2% Ni, <=1% Si, <=6% Cu, <=2% Nb, <=30% Fe, <=30% Cr, <=9% Co, <=20% Pt and the balance Ti with inevitable impurities, press formed, sintered easily, light quality, superior in various properties and nontoxic against living body.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は機械、機器等の構成材料ならびに医療用材料と
しても好適なTi−Zr系焼結合金に関し、さらに詳し
くは、焼結が容易で、機械的性質および耐食・耐熱性に
すぐれたTi−Zr系焼結合金、ならびに生体えの適合
性のよい多孔性Ti−Zr系焼結合金に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a Ti-Zr based sintered alloy that is suitable as a constituent material for machines, equipment, etc. and as a medical material. The present invention relates to a Ti-Zr based sintered alloy with excellent mechanical properties and corrosion and heat resistance, and a porous Ti-Zr based sintered alloy with good compatibility with living organisms.

〔発明の背景〕[Background of the invention]

近年、軽くて強靭で、そのうえ耐熱性ならびに耐食性の
すぐれた特性をもっT1およびTi合金は、たとえば、
航空機、車輌および深海艇用構造材料、または化学装置
、公害防止機器および海水利用装置用耐食材料、あるい
は電解用電極、通信機器、光学器機および医療用部材等
、多くの産業分野で利用されるようになり、現在さらに
TiおよびT1合金の特性を生かすための新しい用途開
発が積極的に行なわれつつある。
In recent years, T1 and Ti alloys, which are light and strong and have excellent heat resistance and corrosion resistance, have been developed, for example.
It is used in many industrial fields, such as structural materials for aircraft, vehicles, and deep-sea boats, corrosion-resistant materials for chemical equipment, pollution prevention equipment, and seawater utilization equipment, electrodes for electrolysis, communication equipment, optical equipment, and medical components. Currently, new applications are being actively developed to take advantage of the properties of Ti and T1 alloys.

しかしながら、TiおよびT1合金は溶解ならびに鋳造
が容易でなく、特に小物の溶解、鋳造についてはむすか
しく、そのうえ成形加工が非常に困難であるという問題
点がある。この問題を解決するために、消耗電極式アー
ク溶解法、電子ビーム溶解法、あるいはプラズマ・ビー
ム溶解法等の特殊溶解法の開発、および加工分野におい
ては、恒温鍛造法、超塑性成形方法などの加工方法の改
善、ならびに材料の製造分野においては、粉末冶金法に
よるTIおよびTi合金の製造方法の研究開発か活発に
行なわれている。このなかで、特に鋳塊製造工程を経な
いで、Ti粉末と母合金粉末あるいは添加合金粉末を混
合して、かなり自由にT1合金成分の調整ができ、目的
とする所望の性質をそなえたTi合金を容易に製造する
ことか可能な粉末冶金法は、次世代技術として大いに注
目を集めている。
However, Ti and T1 alloys are not easy to melt and cast, and it is particularly difficult to melt and cast small items, and furthermore, there are problems in that they are extremely difficult to mold. In order to solve this problem, special melting methods such as consumable electrode arc melting, electron beam melting, or plasma beam melting have been developed, and in the processing field, methods such as isothermal forging and superplastic forming have been developed. In the field of improving processing methods and producing materials, active research and development is being carried out on methods for producing TI and Ti alloys using powder metallurgy. Among these, it is possible to adjust the T1 alloy composition quite freely by mixing Ti powder and master alloy powder or additive alloy powder without going through the ingot manufacturing process, and it is possible to produce Ti that has the desired properties. Powder metallurgy, which allows easy production of alloys, is attracting a lot of attention as a next-generation technology.

本発明者らは先に、上述の粉末冶金法によって、特に生
体組織の接着性がよく、生体組織に近い弾性係数を有し
、生体えの適合性のすぐれた、純T1゜Ti−PL、 
Ti−PdおよびTi −Mo系の生体修復用の多孔性
焼結体の発明(特公昭57−10163号)を完成させ
て特許出願をしている。しかし、上記の発明における純
TiおよびT1合金粉末は、粉末の焼結性が弱く、した
がって焼結体を成形してもその機械的強度が低いために
、生体への適合性の点ではすぐれているものの、生体修
復用材料として用いる範囲が限定され、生体への適合性
が狭いという問題点かあった。
The present inventors have previously developed pure T1°Ti-PL, which has particularly good adhesion to living tissue, has an elastic modulus close to that of living tissue, and is excellent in compatibility with living organisms, using the powder metallurgy method described above.
He has completed the invention of Ti-Pd and Ti-Mo based porous sintered bodies for biological repair (Japanese Patent Publication No. 10163/1983) and has filed a patent application. However, the pure Ti and T1 alloy powders in the above invention have poor sinterability, and therefore have low mechanical strength even when formed into a sintered body, so they are not excellent in compatibility with living organisms. However, there were problems in that the scope of its use as a material for biological repair was limited and its compatibility with living organisms was narrow.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来のT1およびTi合金粉
末の焼結性が弱いという問題点を改善するために、Ti
またはT1合金粉末にZr粉末を添加することにより、
焼結が極めて容易で、機械的性質および耐食・耐熱性の
すぐれた、新規なTi−Zr系焼結合金、ならびに生体
への適合性のすぐれた多孔質Ti−Zr系焼結合金を提
供するにある。
An object of the present invention is to improve the problem of the weak sinterability of the conventional T1 and Ti alloy powders mentioned above.
Or by adding Zr powder to T1 alloy powder,
To provide a novel Ti-Zr-based sintered alloy that is extremely easy to sinter and has excellent mechanical properties, corrosion resistance, and heat resistance, and a porous Ti-Zr-based sintered alloy that is highly compatible with living organisms. It is in.

〔発明の概要〕[Summary of the invention]

要するに本発明は、公知である通常の方法によって製造
された、TiおよびTi合金系粉末にZr粉末を添加し
て、成形ならびに焼結して、Zrを5〜90重量%(以
下単にチという)含有させることによって、T1合金の
もつ本来の特性を損なわずに、機械的強度、特に引張強
さおよび圧縮強度が大きく、耐食・耐熱性にすぐれたT
i −Zr系焼結合金、ならびに生体への適合性のよい
多孔質Ti−Zr系燻焼合金ある。
In short, the present invention adds Zr powder to Ti and Ti alloy powder produced by a known conventional method, and molds and sinters the powder to form a powder containing 5 to 90% by weight of Zr (hereinafter simply referred to as "Chi"). By including T1, it has high mechanical strength, especially tensile strength and compressive strength, and excellent corrosion and heat resistance without impairing the original properties of T1 alloy.
There are i-Zr based sintered alloys and porous Ti-Zr based sintered alloys which are highly compatible with living organisms.

本発明者らは、T1およびT1合金粉末にZr粉末を添
加して焼結すると、(1)合金粉末間の拡散が促進され
、かつT1とZrの強固な固溶体が形成されること、(
2)およびZr粉末は軟質の金属であるために、加圧成
形時にその成形体の密度が高くなり、したがって焼結体
の密度が上昇するという、二つの相剰効果とによって、
引張強さならびに圧縮強度の大きな、強固なTi−Zr
系焼結合金が得られることを、研究の過程で知見し本発
明を完成するに至った。そして本発明者らは、Tiまた
はT1合金粉末に40〜70%のZr粉末を含有させた
焼結体の密度は、真密度に対して95%以上のものが得
られ、これは溶解法によって製造されたT1合金に匹敵
する強度があることを実験の結果確認している。
The present inventors found that when Zr powder is added to T1 and T1 alloy powder and sintered, (1) diffusion between the alloy powders is promoted and a strong solid solution of T1 and Zr is formed;
2) and Zr powder is a soft metal, so the density of the compact increases during pressure molding, and therefore the density of the sintered body increases.
Strong Ti-Zr with high tensile and compressive strength
In the course of research, it was discovered that a system sintered alloy could be obtained, and the present invention was completed. The present inventors have found that the density of a sintered body containing 40 to 70% Zr powder in Ti or T1 alloy powder is 95% or more of the true density, and this is due to the melting method. Experiments have confirmed that it has strength comparable to the manufactured T1 alloy.

本発明によるTi−Zr系焼結合金の原料であるT1な
らびにTi合金粉末は、TiまたはT1合金から公知の
金属粉末製造方法、すなわち、還元法、噴霧法、電解法
、熱分解法、機械的粉砕法または合金化法あるいは蒸発
凝縮法によって製造されるものであってもよい。そして
、T1またはT1合金粉末の種類としては、純゛r1金
属、およびTiのα合金系では、Ti−5A/−2,5
Sn、 Ti−2,5Cu等、αリッチα−β合金系で
は、Ti−8A/−I Mo−IV、Ti−11sn−
2,25AI!−5Zr−IMo−0,25Si、Ti
Ti−6Ae−2Sn−4Zr−2,Ti−6A/−2
Sn−4Zr−2Mo、Tl −5Al −5Sn−2
Zr−2Mo−0,25Si、Ti−6Aj?−2Nb
−ITa−Q8Mo、Ti−6AI!−2Sn−1,5
Zr−IMo−0,35Bi−0,lSi、 Ti−6
A/−5Zr −0,5Mo−0,23i、Ti−5,
5A/−3,5Sn−3Zr−I Nb −0,3Mo
 −0,3Si、およびTl 5A/−6Sn−2Zr
−IMo−0,25Si等、T1のα−β合金系では、
TI−8Mn 、 Ti−3AI!−2,5V、Ti 
−6Al−4V、Ti−6A/−6V−2Sn、 Ti
−7Aj?−4Mo、 Ti−6A/−2Sn−4Zr
−6MO1Ti −6AI!−2Sn −2Zr−2M
o−2Cr−0,25Si、Ti−10V−2Fe−3
A/、 Ti−4AI!−2Sn−4Mo−0,5Si
、Ti−4AI!−4Sn−4Mo−Q、5SiS T
i−5A/−2Sn−2Zr−4M。
T1 and Ti alloy powder, which are the raw materials for the Ti-Zr sintered alloy according to the present invention, can be produced using known metal powder manufacturing methods from Ti or T1 alloy, such as reduction method, spraying method, electrolytic method, pyrolysis method, mechanical method, etc. It may be manufactured by a crushing method, an alloying method, or an evaporation condensation method. As for the type of T1 or T1 alloy powder, pure r1 metal and Ti α alloy type include Ti-5A/-2,5
In α-rich α-β alloy systems such as Sn, Ti-2,5Cu, etc., Ti-8A/-I Mo-IV, Ti-11sn-
2,25 AI! -5Zr-IMo-0,25Si,Ti
Ti-6Ae-2Sn-4Zr-2, Ti-6A/-2
Sn-4Zr-2Mo, Tl-5Al-5Sn-2
Zr-2Mo-0,25Si, Ti-6Aj? -2Nb
-ITa-Q8Mo, Ti-6AI! -2Sn-1,5
Zr-IMo-0,35Bi-0,lSi, Ti-6
A/-5Zr-0,5Mo-0,23i, Ti-5,
5A/-3,5Sn-3Zr-I Nb-0,3Mo
-0,3Si, and Tl 5A/-6Sn-2Zr
-In T1 α-β alloy systems such as IMo-0,25Si,
TI-8Mn, Ti-3AI! -2,5V, Ti
-6Al-4V, Ti-6A/-6V-2Sn, Ti
-7Aj? -4Mo, Ti-6A/-2Sn-4Zr
-6MO1Ti -6AI! -2Sn -2Zr-2M
o-2Cr-0,25Si, Ti-10V-2Fe-3
A/, Ti-4AI! -2Sn-4Mo-0,5Si
, Ti-4AI! -4Sn-4Mo-Q, 5SiS T
i-5A/-2Sn-2Zr-4M.

−4Cr、 Ti−4,5Aj?−5Mo−]、5Cr
、およびTi−5Az’−2Cr−IFe等、Tiのβ
合金系では、Ti−13V−]lCr−3A/、Ti−
8Mo−8V−2Fe−3A/S Ti−3A/−8V
−6Cr−4Mo−4Zr、Ti−11,5Mo−6Z
r−4,5Sn、Ti−11V−11Zr−2N!−2
Sn、 Ti−15Mo−5Zr、およびTi−15M
-4Cr, Ti-4,5Aj? -5Mo-], 5Cr
, and Ti-5Az'-2Cr-IFe, etc., β of Ti
In the alloy system, Ti-13V-]lCr-3A/, Ti-
8Mo-8V-2Fe-3A/S Ti-3A/-8V
-6Cr-4Mo-4Zr, Ti-11,5Mo-6Z
r-4,5Sn, Ti-11V-11Zr-2N! -2
Sn, Ti-15Mo-5Zr, and Ti-15M
.

−5Zr−3M等をあげることができるが、必要によっ
ては上記以外の池の元素を含むT1合金粉末を使用して
もよい。
-5Zr-3M etc., but if necessary, T1 alloy powder containing elements other than those mentioned above may be used.

また、T1または11合金粉末に添加するZr粉末もT
iの場合と同様に、純ZrまたはZr合金から製造され
た粉末でよ<、TlまたはZr以外の他の添加元素(N
i、 Co、 Pd、 Pt等)についても、その純金
属または合金から製造された粉末を使用することができ
る。
In addition, Zr powder added to T1 or 11 alloy powder is also T.
As in the case of i, the powder manufactured from pure Zr or Zr alloy may be used, and other additive elements other than Tl or Zr (N
Powders made from pure metals or alloys thereof can also be used for the metals (I, Co, Pd, Pt, etc.).

第1図に、本発明によるT1粉末とZr粉末を添加して
、成形し焼結した場合のTi−Zr系焼結合金のZr含
有量(重量%)と圧縮強度(MPa・・・メガパスカル
)の関係を示す。第2図は、第1図のT巨Zr系合金に
おけるZr含有量(重量%)と引張強さくMPa)との
関係を示すグラフである。
Figure 1 shows the Zr content (wt%) and compressive strength (MPa...megapascal) of a Ti-Zr based sintered alloy that is formed and sintered by adding T1 powder and Zr powder according to the present invention. ). FIG. 2 is a graph showing the relationship between Zr content (weight %) and tensile strength (MPa) in the T giant Zr alloy shown in FIG.

第3図オヨび第4図は、Ti−6A/−4VおよびTi
−15Mo−5Zr合金粉末に、それぞれZr粉末を加
えて加圧成形し焼結した場合のZr含有量(重量%)と
引張強さく MPa )との関係を示す。
Figure 3 and Figure 4 show Ti-6A/-4V and Ti
The relationship between Zr content (weight %) and tensile strength (MPa) when Zr powder is added to -15Mo-5Zr alloy powder, pressure molded, and sintered is shown.

図から明らかなごとく、本発明によるTi −Zr系焼
結合金は、Zrの含有量の増加とともに急速に機械的性
質の改善が見られ、添加の効果のある好ましい範囲は5
〜90チである。そして、より顕著な圧縮強さならびに
引張強度を得るためのより好ましい範囲は30〜70チ
であり、機械的強度がピークに達する最も好ましいZr
添加の範囲は40〜60チである。
As is clear from the figure, the mechanical properties of the Ti-Zr sintered alloy according to the present invention rapidly improve as the Zr content increases, and the preferable range in which the addition is effective is 5.
~90chi. A more preferable range for obtaining more significant compressive strength and tensile strength is 30 to 70 inches, and the most preferable range is Zr at which the mechanical strength reaches its peak.
The addition range is 40 to 60 inches.

〔発明の実施例〕[Embodiments of the invention]

次に本発明に関する実施例を二三あげ、さらに詳細に説
明する。
Next, a few examples relating to the present invention will be given and explained in more detail.

(実施例1) 純Tiおよび純Zrの球形粉を、公知の回転電極法(R
EP ) ニよッテ製造し、420〜500μmの大き
さの球形粉を篩にかけ選別した。このTiおよびZ「の
球形粉は、■形混合器によって十分に混合するとともに
、添加するZr球形粉は、焼結合金中のZr含有量とし
て5〜90%の範囲まで変化させた。
(Example 1) Pure Ti and pure Zr spherical powders were prepared using a known rotating electrode method (R
EP) Niyotte was produced, and spherical powder with a size of 420 to 500 μm was sieved and sorted. The spherical powders of Ti and Z were thoroughly mixed in a ■-shaped mixer, and the Zr spherical powder added was varied within the range of 5 to 90% as the Zr content in the sintered alloy.

次に、この所定量のZr球形粉を含有するTi球形粉と
の混合物を、アルミナ製の型に入れて約ioo。
Next, a mixture of a predetermined amount of Zr spherical powder and Ti spherical powder was placed in an alumina mold and heated to about 100 ml.

℃の温度で、真空度約1O−5Torrの高真空中で焼
結した。そしてアルミナの型から取り出した試料を、再
び約1400°Cの温度で、3〜24hr、高真空中で
焼結した。試料の圧縮試験は、インストロン(In5t
r−on)型の万能試験機を用いて、クロスヘッドスピ
ードQ、5mm/minで行なった。試験片の大きさは
、4φX8mmである。この多孔性Ti−Zr焼結合金
の表面と断面は、走査型電子顕微鏡(SEM)とX線マ
イクロアナライザ(EPMA)で観察し分析した。
It was sintered at a temperature of 0.degree. C. in a high vacuum with a degree of vacuum of about 10@-5 Torr. Then, the sample taken out from the alumina mold was sintered again in a high vacuum at a temperature of about 1400°C for 3 to 24 hours. The compression test of the sample was performed using an Instron (In5t
The test was carried out using a universal testing machine (R-ON) type at a crosshead speed Q of 5 mm/min. The size of the test piece is 4φ×8mm. The surface and cross section of this porous Ti-Zr sintered alloy were observed and analyzed using a scanning electron microscope (SEM) and an X-ray microanalyzer (EPMA).

ポロシティ(多孔率)と空孔径は画像解析装置で測定し
た。
Porosity and pore diameter were measured using an image analysis device.

第1図に、Zr含有量(重量%)と圧縮強度(MPa)
との関係を示す。本実施例による多孔性Ti−Zr合金
の圧縮強度は、Z[の含有量の増加と共に急速に増加し
、そして50〜60%Zrでピークを示し、圧縮強度は
最大となる。この組成での圧縮強度は、多孔性綿Tiあ
るいは純Zr焼結合金の4〜8倍であり、人間の骨の2
倍以上の値を示す。また、Zrを50〜60チ含有する
多孔性Ti −Zr焼結合金のヤング率は、圧縮テスト
の結果から4゜6〜7.4GPa(ギガパスカル)であ
った。そして圧縮破壊歪は7チ以上であった。
Figure 1 shows the Zr content (weight%) and compressive strength (MPa).
Indicates the relationship between The compressive strength of the porous Ti-Zr alloy according to the present example increases rapidly with the increase of the Z[ content, and shows a peak at 50-60% Zr, and the compressive strength becomes maximum. The compressive strength of this composition is 4 to 8 times that of porous cotton Ti or pure Zr sintered alloy, and 2 times that of human bone.
Indicates a value that is more than double. The Young's modulus of the porous Ti-Zr sintered alloy containing 50 to 60 Zr was 4°6 to 7.4 GPa (gigapascal) from the results of a compression test. The compressive fracture strain was 7 inches or more.

第2図に、Zr含有量(重量%)と引張強さくMPa)
Figure 2 shows the Zr content (weight%) and tensile strength (MPa).
.

との関係を示す。第1図に示した圧縮強度の変化と同様
な傾向を示し、Zrを5チ含有させても引張強さの上昇
が見られ、Zr含有量が30%付近を超えると顕著に引
張強さが上昇し、60%付近でピークに達する。
Indicates the relationship between The same trend as the change in compressive strength shown in Fig. 1 was observed, and an increase in tensile strength was observed even when 5% of Zr was added, and when the Zr content exceeded around 30%, the tensile strength significantly decreased. It increases and reaches its peak at around 60%.

第5図(a)は、Zr含有量が50%のときの多孔性T
i −Zr焼結合金の表面状態を示す顕微鏡写真であり
、第5図(blは、第5図fa)におけるTiとZrの
結合状態を示すスケッチ図である。第6図(alは第5
図+a)の多孔性Ti −Zr焼結合金の断面状態を示
す顕微鏡写真であり、第6図(blは第6図(a)にお
けるTiとZrの結合状態を示すスケッチ図である。図
から明らかなごと(、Ti粒子とZr粒子は拡散して固
溶体を形成し、強固に結合されており、その結果50〜
6096 Zrを含有する多孔性Ti −Zr焼結合金
の圧縮強度が最大になることがわかる。一方、T1とT
l。
Figure 5(a) shows the porous T when the Zr content is 50%.
It is a micrograph showing the surface state of the i-Zr sintered alloy, and is a sketch diagram showing the bonding state of Ti and Zr in FIG. 5 (bl is FIG. 5 fa). Figure 6 (al is the fifth
This is a micrograph showing the cross-sectional state of the porous Ti-Zr sintered alloy in Figure +a), and Figure 6 (bl is a sketch diagram showing the bonding state of Ti and Zr in Figure 6(a). From the figure As is clear (the Ti particles and Zr particles diffuse to form a solid solution and are strongly bonded, as a result, 50~
It can be seen that the compressive strength of the porous Ti-Zr sintered alloy containing 6096 Zr is maximized. On the other hand, T1 and T
l.

ZrとZrとの粒子間の結合は比較的ゆるやかである。The bond between Zr and Zr particles is relatively loose.

50%Zrを含有する多孔性Ti −Zr焼結合金の断
面の画像解析によれば、多孔率は28〜38チで、空孔
径は167〜204μmであった。このような大きな空
孔中には骨が非常によく成長することが期待され、Z「
が50〜60チ含有するTi −Zr焼結合金の機械的
性質ならびに多孔空孔構造から考えて、骨とインブラン
トの固定に対して非常に好適であることを示している。
According to image analysis of a cross section of a porous Ti-Zr sintered alloy containing 50% Zr, the porosity was 28 to 38 cm, and the pore diameter was 167 to 204 μm. It is expected that bones will grow very well in such large pores, and Z'
Considering the mechanical properties and porous structure of the Ti--Zr sintered alloy containing 50 to 60 Ti, it is shown to be very suitable for fixing bone and implants.

(実施例2) Ti−6A/−4V合金の粉末を回転電極法によって製
造し、−200メツシユの大きさの粉末を篩にかけ選別
した。それに、−200メツシユのZr粉末を所定量加
え、これを■型ミキサーに入れて十分に混合した。この
Ti −6AI!−4V合金粉末とZr粉末の混合粉を
、金型に入れて5t/ciの圧力で加圧成形してとり出
し、約1400℃の温度で、真空度1O−5To汀で、
1時間焼結した。第3図に、Zr含有量(重量%)と引
張強さくMPa)の関係を示す。図から明らかなごとく
、Zr含有量の増加と共に引張強さは急激に上昇し、5
〜90%Zr含有量の範囲においてZr添加の効果が現
れ、Z[含有量が20〜70%の範囲で、母合金である
Ti−6fiJ!−4V焼結合金の約3倍以上の引張強
さを示し、40〜60チでピークに達し、900 MP
a以上の引張強さが得られた。そしてZ[含有量40〜
70チのTi−Zr焼結合金の密度は、真密度に対して
95チ以上のものが得られ、これは溶解法によって作ら
れたTi−Zr合金に匹敵する引張強さのあることを発
明者らは確認している。その理由として、Ti −Zr
系焼結合金の密度は、Zrを添加することによって拡散
が促進されること、あるいはZrは軟かいため、成形時
に密度が上昇し、したがって焼結合金の密度が高くなり
、このために焼結合金の圧縮強度が著しく上昇するもの
と考えられる。また、T1−Zr系焼結合金の引張強さ
+よ。
(Example 2) Ti-6A/-4V alloy powder was produced by a rotating electrode method, and the -200 mesh size powder was sieved and sorted. A predetermined amount of -200 mesh Zr powder was added thereto, and this was placed in a type mixer and thoroughly mixed. This Ti-6AI! A mixed powder of -4V alloy powder and Zr powder was put into a mold, pressure-molded at a pressure of 5t/ci and taken out, and at a temperature of about 1400℃ and a vacuum degree of 1O-5To.
It was sintered for 1 hour. FIG. 3 shows the relationship between Zr content (weight %) and tensile strength (MPa). As is clear from the figure, the tensile strength increases rapidly as the Zr content increases, and
The effect of Zr addition appears in the range of ~90% Zr content, and the mother alloy Ti-6fiJ! It exhibits a tensile strength that is about 3 times more than -4V sintered alloy, reaching a peak at 40 to 60 inches, and 900 MP
A tensile strength of a or more was obtained. and Z [content 40~
The inventor discovered that the density of a Ti-Zr sintered alloy of 70 cm is higher than the true density of 95 cm, and that this has a tensile strength comparable to that of a Ti-Zr alloy made by the melting method. They have confirmed that. The reason is that Ti-Zr
The density of the sintered alloy is determined by the fact that diffusion is promoted by the addition of Zr, or because Zr is soft, the density increases during molding, and the density of the sintered alloy increases. It is thought that the compressive strength of gold increases significantly. Also, the tensile strength of T1-Zr based sintered alloy is +.

焼結合金の密度が上昇することと、Zrの固溶効果とに
よって顕著に上昇するものと考えられる。
It is thought that this remarkable increase is due to the increase in the density of the sintered alloy and the solid solution effect of Zr.

(実施例3) 実施例2と全く同様な条件で、Ti−15Mo−5Zr
合金粉末を製造し、これにZr粉末を添加混合、成形し
て焼結した。第4図に、Zr含有量(重量%)と引張強
さくMPa)の関係を示す。図から明らかなどと<、Z
r含有量約5逅ですでに母合金焼結体(Ti−15Mo
−5Zr) (7)引張強さの2倍以上に達し、Zr含
有量が20〜70%の範囲では、母合金焼結体の引張強
さに対して、実に4倍以上の値を示し、40〜60%Z
rでピークに達し、900 M Pa以上の引張強さを
示している。そして、Zr含有量が40〜70%の時に
、溶解法によって得られるTi −15Mo−5Zr合
金の真密度に対して95%以上の密度の焼結合金が得ら
れたことは、実施例2におけるTi−6A/−4V−Z
r焼結合金の場合と全く同様であった。
(Example 3) Under exactly the same conditions as Example 2, Ti-15Mo-5Zr
An alloy powder was produced, Zr powder was added thereto, mixed, molded, and sintered. FIG. 4 shows the relationship between Zr content (weight %) and tensile strength (MPa). It is clear from the figure that <, Z
The master alloy sintered body (Ti-15Mo
-5Zr) (7) It reaches more than twice the tensile strength, and in the range of Zr content from 20 to 70%, it shows a value that is actually more than four times the tensile strength of the master alloy sintered body, 40-60%Z
The tensile strength reaches a peak at r, and shows a tensile strength of 900 MPa or more. The fact that a sintered alloy with a density of 95% or more of the true density of the Ti-15Mo-5Zr alloy obtained by the melting method was obtained when the Zr content was 40 to 70% was confirmed in Example 2. Ti-6A/-4V-Z
It was exactly the same as the case of r sintered alloy.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく本発明は、TIおよびTi合
金粉末にZr粉末を添加するだけで、成形・−焼結が容
易となり、かつTiおよびTi合金のもつ、軽くて強靭
で耐食・耐熱性がよいという特性を劣化させないで、機
械的性質のすぐれたTi−Zr系焼結合金を容易に製造
することができるから、ジェットエンジン等の航空機用
構造部品、または各種反応器、熱交換器、耐酸・耐熱ポ
ンプおよびノクルブ等の化学装置用部材、あるいは精密
機械等に用いられる小物部品、海水利用産業用耐食部材
、電解用電極材などへの用途が期待される。
As explained in detail above, the present invention facilitates molding and sintering by simply adding Zr powder to Ti and Ti alloy powders, and has the light, strong, corrosion and heat resistance properties of Ti and Ti alloys. Because Ti-Zr sintered alloys with excellent mechanical properties can be easily produced without deteriorating their properties, they can be used for structural parts for aircraft such as jet engines, various reactors, heat exchangers, and acid-resistant・It is expected to be used as parts for chemical equipment such as heat-resistant pumps and noclubs, small parts used in precision machinery, corrosion-resistant parts for industries that use seawater, and electrode materials for electrolysis.

また、生体に対して毒性がな(、組織接着性がよく、そ
のうえ機械的性質にすぐれ、生体組織に近い弾性係数を
もつ、生体への適合性のよい多孔性Ti −Zr系焼結
合金をも製造することができるので、歯科用または整形
外科用生体修復材料等としても利用することができ、実
用上の価値は大きい。
In addition, we have developed a porous Ti-Zr-based sintered alloy that is non-toxic to living organisms (has good tissue adhesion, excellent mechanical properties, and has an elastic modulus close to that of living tissues) and is highly compatible with living organisms. Since it can also be produced as a biorepair material for dental or orthopedic surgery, it has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明によるTi粉末にZr粉末を添加し、
成形・焼結した場合のTi−Zr系焼結合金のZr含有
量と圧縮強度の関係を示すグラフで、第2図は第1図の
Ti −Zr系焼結合金のZr含有量と引張強さの関係
を示すグラフである。第3図は、本発明によるTi−6
A/−4V合金粉末にZr粉末を添加して加圧成形し焼
結したTi −Zr系焼結合金のZr含有量と引張強さ
の関係を示すグラフであり、第4図は、Ti −15M
o−5Zr合金粉末にZr粉末を添加して加圧成形し焼
結したTi −Zr系焼結合金のZr含有量と引張強さ
の関係を示すグラフである。第5図(alは本発明の実
施例1におけるZr含有量か50チの時のTi −Zr
系焼結合金の表面状態を示す顕微鏡写真で、第5図(b
lは第5図(alにおけるTiとZrの結合状態を示す
スケッチ図である。第6図(alは第5図(a)のTi
−Zr系焼結合金の断面状態を示す顕微鏡写真であり、
第6図fb)は第6図(alにおけるTiとZ、rの結
合状態を示すスケッチ図である。 代理人弁理士 中村純之助 5jP1図 Zr含;f4童(*1z) 1F2図 Zr含有量 (*t%) 73図 Zr含有量 (重量2) t4図 Zr含看童 (重IX) (α)2.5. 0.5mm (b) ’Q、5mm 手続補正書(麓) 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第81119号2、
発明の名称 Ti−Zr系焼結合金3、補正をする者 事件との関係 特許出願人 氏 名 川 原 春 幸 氏 名 三 浦 維 四 4、代理人 氏名 (6835) 弁理士 中村 純之助5、補正命
令の日付 昭和59年7月31日補正の内容 1、明細書の図面の簡単な説明の欄を次のとおりに訂正
する。 (1) 明細書の第16頁第9行〜第10行の[顕微鏡
写真」の後にr (X34)Jを挿入する。 (2) 明細書の第16頁第13行の「顕微鏡写真」の
後にr (X34)Jを挿入する。 (3) 明細書の第16頁第9行の「表面状態」を「表
面組織」と訂正する。 (4) 明細書の第16頁第12行の「断面状態」を「
断面組織」と訂正する。
FIG. 1 shows that Zr powder is added to Ti powder according to the present invention,
This is a graph showing the relationship between the Zr content and the compressive strength of the Ti-Zr sintered alloy when molded and sintered. Figure 2 shows the relationship between the Zr content and the tensile strength of the Ti-Zr sintered alloy shown in Figure 1. It is a graph showing the relationship between FIG. 3 shows a Ti-6 according to the present invention.
FIG. 4 is a graph showing the relationship between Zr content and tensile strength of a Ti--Zr based sintered alloy obtained by adding Zr powder to A/-4V alloy powder, press-forming and sintering; FIG. 15M
1 is a graph showing the relationship between Zr content and tensile strength of a Ti--Zr-based sintered alloy obtained by adding Zr powder to o-5Zr alloy powder, press-forming, and sintering. FIG. 5 (Al is Ti-Zr when the Zr content in Example 1 of the present invention is 50
Figure 5 (b) is a micrograph showing the surface condition of the sintered alloy.
5(a) is a sketch diagram showing the bonding state of Ti and Zr in FIG. 5(a).
- A micrograph showing a cross-sectional state of a Zr-based sintered alloy,
Figure 6 fb) is a sketch diagram showing the bonding state of Ti, Z, and r in Figure 6 (al).Representative Patent Attorney Junnosuke Nakamura 5jP1 Figure Zr included; f4 Child (*1z) 1F2 Figure Zr content ( *t%) Figure 73 Zr content (weight 2) Figure 73 Zr content (weight 2) Figure 4 Zr content (heavy IX) (α) 2.5. 0.5mm (b) 'Q, 5mm Procedural amendment (foot) Director General of the Patent Office Manabu Ka 1, Indication of the case 1981 Patent Application No. 81119 2,
Title of the invention Ti-Zr based sintered alloy 3, Relationship with the case of the person making the amendment Patent applicant name Haruyuki Kawahara Name Tsuyoshi Miura 44, name of agent (6835) Patent attorney Junnosuke Nakamura 5, amendment Date of order: July 31, 1980 Contents of amendment 1: The column of the brief explanation of the drawings in the specification is corrected as follows. (1) Insert r (X34)J after "Microphotograph" on page 16, lines 9 to 10 of the specification. (2) Insert r (X34)J after "micrograph" on page 16, line 13 of the specification. (3) "Surface condition" on page 16, line 9 of the specification is corrected to "surface texture." (4) Change “Cross-sectional condition” on page 16, line 12 of the specification to “
"Cross-sectional tissue" is corrected.

Claims (1)

【特許請求の範囲】 1、T1粉末に、Zr粉末を混合して、成形ならびに焼
結したTi−Zr系焼結合金であって。 Zrを5〜90重量% 含有し、残部か不可避的に混入する不純物およびTiか
らなることを特徴とする、機械的性質、耐食性、耐熱性
、または生体への適合性のすぐれたT1−Zr系焼結合
金。 2、T1またはT1合金粉末に、ZrまたはZr合金粉
末を混合して、成形ならびに焼結したTi −Zr系焼
結合金であって、重量%で。 Zr 5〜90%。 および A/16%以下。 V 26チ以下。 5n22%以下。 Mn 16%以下。 MO30%以下。 Ta 10チ以下。 Pd 30チ以下。 Ni 2チ以下。 Si 1チ以下。 Cu 5%以下。 Nb 2%以下。 Fe 30%以下。 Cr 30%以下。 Co 9チ以下。 Pt 20チ以下。 のうちから選ばれる1種以上の元素を含有し、残部が不
可避的に混入する不純物およびTiからなることを特徴
とする、機械的性質、耐食性、耐熱性、または生体への
適合性のすぐれたTi−Zr系焼結合金。 3、Zr含有量が30〜70重量%であることを特徴と
する特許請求の範囲第1項および第2項いずれか記載の
Ti−Zr系焼結合金。 4、Zr含有量が40〜60重量%であることを特徴と
する特許請求の範囲第1項および第2項記載のTi−Z
r系焼結合金。
[Claims] 1. A Ti-Zr based sintered alloy obtained by mixing T1 powder with Zr powder, forming and sintering the mixture. A T1-Zr system with excellent mechanical properties, corrosion resistance, heat resistance, and compatibility with living organisms, characterized by containing 5 to 90% by weight of Zr, with the remainder consisting of unavoidably mixed impurities and Ti. Sintered alloy. 2. A Ti-Zr based sintered alloy formed by mixing T1 or T1 alloy powder with Zr or Zr alloy powder, molding and sintering, expressed as % by weight. Zr 5-90%. and A/16% or less. V 26 inches or less. 5n22% or less. Mn 16% or less. MO30% or less. Ta less than 10 inches. Pd 30 inches or less. Ni 2 or less. Si less than 1 inch. Cu 5% or less. Nb 2% or less. Fe 30% or less. Cr 30% or less. Co 9 inches or less. Pt 20 inches or less. Contains one or more elements selected from the following, with the remainder consisting of unavoidable impurities and Ti, and has excellent mechanical properties, corrosion resistance, heat resistance, or compatibility with living organisms. Ti-Zr based sintered alloy. 3. A Ti-Zr based sintered alloy according to any one of claims 1 and 2, characterized in that the Zr content is 30 to 70% by weight. 4. Ti-Z according to claims 1 and 2, characterized in that the Zr content is 40 to 60% by weight
r-based sintered alloy.
JP8111984A 1984-04-24 1984-04-24 Ti-zr sintered alloy Pending JPS60224727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8111984A JPS60224727A (en) 1984-04-24 1984-04-24 Ti-zr sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8111984A JPS60224727A (en) 1984-04-24 1984-04-24 Ti-zr sintered alloy

Publications (1)

Publication Number Publication Date
JPS60224727A true JPS60224727A (en) 1985-11-09

Family

ID=13737490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8111984A Pending JPS60224727A (en) 1984-04-24 1984-04-24 Ti-zr sintered alloy

Country Status (1)

Country Link
JP (1) JPS60224727A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019337A (en) * 1990-02-16 1991-05-28 American Dental Association Health Foundation Ductile intermetallic compounds for dental applications
JPH051342A (en) * 1991-06-24 1993-01-08 Sumitomo Heavy Ind Ltd Production of titanium alloy and sintered titanium alloy
KR100211097B1 (en) * 1997-04-22 1999-07-15 박원훈 Ti-based implant alloy with good biocompatibility
JPH11229058A (en) * 1998-02-13 1999-08-24 Sumitomo Metal Ind Ltd Titanium alloy excellent in oxidation resistance and cold workability
JP2005048235A (en) * 2003-07-28 2005-02-24 National Institute For Materials Science beta TYPE TITANIUM ALLOY FOR LIVING BODY
JP2011021257A (en) * 2009-07-16 2011-02-03 Yonosuke Murayama Low-elastic titanium alloy
US20120135265A1 (en) * 2009-07-07 2012-05-31 Eurocoating S.P.A Laser process for producing metallic objects, and object obtained therefrom
CN104762526A (en) * 2015-03-26 2015-07-08 河北工程大学 Low-cost and high-strength Ti-Zr-Al-F2 alloy
WO2017077922A1 (en) * 2015-11-02 2017-05-11 勝義 近藤 Oxygen-solid-soluted titanium sintered compact and method for producing same
WO2017077923A1 (en) * 2015-11-02 2017-05-11 勝義 近藤 Nitrogen-solid-soluted titanium sintered compact and method for producing same
CN107099697A (en) * 2017-05-22 2017-08-29 暨南大学 A kind of Ni-free super elastic Ti-based shape memory alloy and its preparation method and application
CN107190177A (en) * 2017-05-05 2017-09-22 燕山大学 A kind of zirconium Ti-Ni alloy and preparation method thereof
CN108103354A (en) * 2018-02-02 2018-06-01 贾红琴 A kind of medical titanium alloy bone implant and preparation method thereof
CN108380890A (en) * 2018-01-30 2018-08-10 中南大学 A kind of low-elasticity-modulus titanium zirconium dentistry implant material and preparation method thereof
CN109097623A (en) * 2018-08-03 2018-12-28 中鼎特金秦皇岛科技股份有限公司 A kind of erosion resistant titanium alloy and preparation method thereof
CN112481521A (en) * 2020-04-13 2021-03-12 国核锆铪理化检测有限公司 High-strength zirconium alloy and preparation method of bar for high-strength zirconium alloy fastener
CN113249615A (en) * 2021-06-11 2021-08-13 湖南大学 Biomedical iron-containing refractory titanium-niobium alloy and preparation method thereof
CN115948676A (en) * 2022-12-13 2023-04-11 西安九洲生物材料有限公司 Self-adaptive implant for bone insufficiency, titanium-zirconium-iron alloy and preparation method thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019337A (en) * 1990-02-16 1991-05-28 American Dental Association Health Foundation Ductile intermetallic compounds for dental applications
JPH051342A (en) * 1991-06-24 1993-01-08 Sumitomo Heavy Ind Ltd Production of titanium alloy and sintered titanium alloy
KR100211097B1 (en) * 1997-04-22 1999-07-15 박원훈 Ti-based implant alloy with good biocompatibility
JPH11229058A (en) * 1998-02-13 1999-08-24 Sumitomo Metal Ind Ltd Titanium alloy excellent in oxidation resistance and cold workability
JP2005048235A (en) * 2003-07-28 2005-02-24 National Institute For Materials Science beta TYPE TITANIUM ALLOY FOR LIVING BODY
US20120135265A1 (en) * 2009-07-07 2012-05-31 Eurocoating S.P.A Laser process for producing metallic objects, and object obtained therefrom
JP2011021257A (en) * 2009-07-16 2011-02-03 Yonosuke Murayama Low-elastic titanium alloy
CN104762526A (en) * 2015-03-26 2015-07-08 河北工程大学 Low-cost and high-strength Ti-Zr-Al-F2 alloy
US10807164B2 (en) 2015-11-02 2020-10-20 Hi-Lex Corporation Nitrogen solid solution titanium sintered compact and method for producing same
US11213889B2 (en) 2015-11-02 2022-01-04 Katsuyoshi Kondoh Oxygen solid solution titanium material sintered compact and method for producing same
WO2017077923A1 (en) * 2015-11-02 2017-05-11 勝義 近藤 Nitrogen-solid-soluted titanium sintered compact and method for producing same
US11802324B2 (en) 2015-11-02 2023-10-31 Hi-Lex Corporation Nitrogen solid solution titanium sintered compact and method for producing same
WO2017077922A1 (en) * 2015-11-02 2017-05-11 勝義 近藤 Oxygen-solid-soluted titanium sintered compact and method for producing same
CN107190177A (en) * 2017-05-05 2017-09-22 燕山大学 A kind of zirconium Ti-Ni alloy and preparation method thereof
CN107099697A (en) * 2017-05-22 2017-08-29 暨南大学 A kind of Ni-free super elastic Ti-based shape memory alloy and its preparation method and application
CN108380890A (en) * 2018-01-30 2018-08-10 中南大学 A kind of low-elasticity-modulus titanium zirconium dentistry implant material and preparation method thereof
CN108103354A (en) * 2018-02-02 2018-06-01 贾红琴 A kind of medical titanium alloy bone implant and preparation method thereof
CN109097623A (en) * 2018-08-03 2018-12-28 中鼎特金秦皇岛科技股份有限公司 A kind of erosion resistant titanium alloy and preparation method thereof
CN112481521B (en) * 2020-04-13 2021-08-31 国核宝钛锆业股份公司 High-strength zirconium alloy and preparation method of bar for high-strength zirconium alloy fastener
CN112481521A (en) * 2020-04-13 2021-03-12 国核锆铪理化检测有限公司 High-strength zirconium alloy and preparation method of bar for high-strength zirconium alloy fastener
CN113249615A (en) * 2021-06-11 2021-08-13 湖南大学 Biomedical iron-containing refractory titanium-niobium alloy and preparation method thereof
CN115948676A (en) * 2022-12-13 2023-04-11 西安九洲生物材料有限公司 Self-adaptive implant for bone insufficiency, titanium-zirconium-iron alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS60224727A (en) Ti-zr sintered alloy
JP3375083B2 (en) Titanium alloy and method for producing the same
EP1352978B1 (en) Method of producing TITANIUM ALLOY HAVING HIGH ELASTIC DEFORMATION CAPACITY
US9279186B2 (en) Metal member manufacturing method and metal member
CN101003868A (en) Method for preparing shape memory nickel titanium alloy with gradient porosity
JP2002332531A (en) Titanium alloy and manufacturing method
JP4304897B2 (en) Titanium alloy having high elastic deformability and method for producing the same
JPH05460B2 (en)
CN109355602A (en) With high glass forming ability without nickel without beryllium zirconium-base amorphous alloy and preparation and application
CN108165811A (en) A kind of preparation method of high-strength degradable nanometer medical porous titanium magnesium base composite material
RU2492256C9 (en) Pure titanium-based nanostructured composite and method of its production
US20090088845A1 (en) Titanium tantalum oxygen alloys for implantable medical devices
JP2943026B2 (en) Method for producing titanium-based alloy and titanium-based sintered alloy
JP4524426B2 (en) Manufacturing method of low elastic modulus amorphous carbon fiber reinforced aluminum composites
CN112063886B (en) Magnesium-containing biological beta titanium alloy with micro/nano pores and preparation method thereof
JP3799474B2 (en) Titanium alloy bolt
CN109554567B (en) Ti-Fe alloy based composite material and preparation method thereof
CN106591628B (en) A kind of Ti-Mn-Nb ternary alloy three-partalloy with low Young&#39;s modulus
KR102562983B1 (en) Porous titanium powder, and method for manufacturing of the same
JPH0739615B2 (en) Method for producing Zn-22A1 superplastic powder-potassium titanate composite material
JP3799478B2 (en) Titanium alloy torsion bar
JPH05131024A (en) Organism compatible material made of titanium aluminite
JPH0129864B2 (en)
CN115533100A (en) Porous Ti-Zr-Nb-Ta high-entropy alloy and preparation method thereof
JP2005163154A (en) Method for improving ductility and strength of lightweight heat resistant intermetallic compound by the addition of third element particle