JPH07180930A - Liquid receiver integrated type refrigerant condenser - Google Patents

Liquid receiver integrated type refrigerant condenser

Info

Publication number
JPH07180930A
JPH07180930A JP22543294A JP22543294A JPH07180930A JP H07180930 A JPH07180930 A JP H07180930A JP 22543294 A JP22543294 A JP 22543294A JP 22543294 A JP22543294 A JP 22543294A JP H07180930 A JPH07180930 A JP H07180930A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
gas
supercooling
liquid receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22543294A
Other languages
Japanese (ja)
Other versions
JP3617083B2 (en
Inventor
Hiroki Matsuo
弘樹 松尾
Yasushi Yamanaka
康司 山中
Kenichi Fujiwara
健一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP22543294A priority Critical patent/JP3617083B2/en
Publication of JPH07180930A publication Critical patent/JPH07180930A/en
Application granted granted Critical
Publication of JP3617083B2 publication Critical patent/JP3617083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • F25B2400/162Receivers characterised by the plug or stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To maintain the gas/liquid separating property of refrigerant in a liquid receiving unit and prevent an easy outflow of a bubble type gas-phase refrigerant into an overcooling unit, a side glass or an expansion valve from the liquid receiving unit even if the lowermost part of condensated part is approached to the uppermost part of overcooled part. CONSTITUTION:The inside of a second header 16, in which the downstream end of a condensing unit 8 is connected to the upper side thereof and the upstream end of an overcooling unit 10 is connected to the lower side thereof, is divided by first and second separaters 41, 42 into an upstream side communicating chamber 46, a downstream side communicating chamber 47 and E liquid receiving unit 9 while refrigerant in has and liquid two-phase condition, which flows out of the condensing unit 8, is collected into the upstream side communicating chamber 46 once to increase the diameter of bubble type gas-phase refrigerant. On the other hand, the refrigerant inflow port 1411 of the liquid receiving unit 9, which is opened at the lower part of the upstream side communicating chamber 46, and the refrigerant outflow port 45 of the liquid receiving unit 9, which is opened at the lower side of the refrigerant inflow port 44, are formed on the first separater 41, arranged in the second header 16 in up-and-down direction, so as to produce the U-turn flow of the refrigerant of gas and liquid two-phase condition in the liquid receiving unit 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば冷媒循環量が
変動可能な車両用空気調和装置に用いられる受液器一体
型冷媒凝縮器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid receiver integrated refrigerant condenser used in a vehicle air conditioner in which the refrigerant circulation amount can be varied.

【0002】[0002]

【従来の技術】従来より、車両用空気調和装置の冷凍サ
イクルの受液器と凝縮器とは別個独立して配置されてい
る。そのため、部品点数の低減即ちコスト低減が困難で
あり、また受液器と凝縮器とで互いに取付スペースを占
めるため、省スペースの要望に応えることができないと
いう不具合があった。そこで、その不具合を解消する目
的で、米国特許第4972683号公報に開示された技
術や実開平2−103667号公報に開示された技術が
提案されている。
2. Description of the Related Art Conventionally, a liquid receiver and a condenser of a refrigeration cycle of an air conditioner for a vehicle are separately arranged. Therefore, it is difficult to reduce the number of parts, that is, the cost is reduced. Further, since the receiver and the condenser occupy the mounting space, the demand for space saving cannot be met. Therefore, for the purpose of solving the problem, the technique disclosed in U.S. Pat. No. 4,972,683 and the technique disclosed in U.S. Pat. No. 2,103,671 are proposed.

【0003】先ず、米国特許第4972683号公報に
開示された技術は、冷媒凝縮器の片側ヘッダ内の気液分
離室の断面積を大きくして冷媒の流速を落とすことによ
り気相冷媒の浮力を利用して気液分離させるものであっ
た。次に、実開平2−103667号公報に開示された
技術は、冷媒凝縮器の出口側ヘッダの内部を2部屋に区
画する仕切り部材に2部屋を連通するための貫通路を設
け、出口側ヘッダの片側の部屋を気液分離室として用い
るものであった。
First, in the technique disclosed in US Pat. No. 4,972,683, the buoyancy of the vapor-phase refrigerant is reduced by increasing the cross-sectional area of the gas-liquid separation chamber in the header on one side of the refrigerant condenser to reduce the flow velocity of the refrigerant. It was used for gas-liquid separation. Next, in the technique disclosed in Japanese Utility Model Laid-Open No. 2-103667, a partition member that divides the inside of the outlet side header of the refrigerant condenser into two chambers is provided with a through passage for communicating the two chambers, and the outlet side header is provided. One of the chambers was used as a gas-liquid separation chamber.

【0004】[0004]

【発明が解決しようとする課題】ところが、米国特許第
4972683号公報に開示された技術においては、凝
縮用チューブの流路径が微細で、しかも数多く気液二相
状態の冷媒を吹き出す。このために、凝縮用チューブか
ら出る気泡状の気相冷媒が小さいので、浮力の効果が期
待できず、容易に気相冷媒を気液分離室より下流へ送り
出してしまう。したがって、冷媒凝縮器より下流側に接
続された温度作動式膨張弁で流動音が発生する等の問題
が発生してしまう。
However, in the technique disclosed in US Pat. No. 4,972,683, a condenser tube has a minute flow path diameter and a large number of gas-liquid two-phase refrigerant is blown out. For this reason, since the bubble-shaped vapor-phase refrigerant that emerges from the condensation tube is small, the effect of buoyancy cannot be expected, and the vapor-phase refrigerant is easily sent downstream from the gas-liquid separation chamber. Therefore, there arises a problem that a flow noise is generated in the temperature-operated expansion valve connected on the downstream side of the refrigerant condenser.

【0005】そこで、温度作動式膨張弁に気相冷媒が送
り込まれないようにするために、凝縮部と過冷却部を上
下に配した冷媒凝縮器も考えられるが、この冷媒凝縮器
の場合でも気液分離室へ冷媒を導く凝縮用チューブのう
ちの最下部の凝縮用チューブと気液分離室から液相冷媒
のみを送り出すための過冷却用チューブのうちの最上部
の過冷却用チューブとの距離が接近する。このため、容
易に気相冷媒を気液分離室より下流側の過冷却部へ送り
出し易く、過冷却部が有効に働かない。
Therefore, in order to prevent the gas-phase refrigerant from being sent to the temperature-operated expansion valve, a refrigerant condenser having a condenser section and a supercooling section arranged vertically is conceivable, but even in the case of this refrigerant condenser, Of the condensation tube at the bottom of the condensation tubes that guide the refrigerant to the gas-liquid separation chamber and the top supercooling tube of the supercooling tubes for sending out only the liquid-phase refrigerant from the gas-liquid separation chamber The distance approaches. Therefore, the gas-phase refrigerant is easily sent to the supercooling section on the downstream side of the gas-liquid separation chamber, and the supercooling section does not work effectively.

【0006】また、実開平2−103667号公報に開
示された技術において、気液分離室内への冷媒流入口が
気液分離室の上部にある場合は、特に冷媒圧縮機を高速
運転した時のように冷媒循環量が大きい場合は、気液分
離室内の断面積がかなり大きくないと、気液分離室内で
気液界面ができない。したがって、気液分離室の下流側
へ気相冷媒を送り出すことになる。
Further, in the technique disclosed in Japanese Utility Model Laid-Open No. 10363/1990, when the refrigerant inlet into the gas-liquid separation chamber is located above the gas-liquid separation chamber, especially when the refrigerant compressor is operated at high speed. As described above, when the refrigerant circulation amount is large, the gas-liquid interface cannot be formed in the gas-liquid separation chamber unless the cross-sectional area in the gas-liquid separation chamber is considerably large. Therefore, the gas-phase refrigerant is sent to the downstream side of the gas-liquid separation chamber.

【0007】そして、気液分離室内への冷媒流入口が気
液分離室の下部(但し気液分離室内からの冷媒流出口よ
りも上方)にある場合は、気液分離室の冷媒流入口と冷
媒流出口の距離が近く、また気液分離室の冷媒流入口か
ら冷媒流出口への冷媒の流れのベクトル方向が同じであ
る。このため、気液分離室の下流側へ容易に気相冷媒を
送り出してしまうため、前述の問題が発生する。
If the refrigerant inlet into the gas-liquid separation chamber is located below the gas-liquid separation chamber (however, above the refrigerant outlet from the gas-liquid separation chamber), the refrigerant inlet into the gas-liquid separation chamber The refrigerant outlets are close in distance, and the vector directions of the refrigerant flow from the refrigerant inlet to the refrigerant outlet of the gas-liquid separation chamber are the same. For this reason, the gas-phase refrigerant is easily sent to the downstream side of the gas-liquid separation chamber, and the above-mentioned problem occurs.

【0008】この発明の目的は、仮に凝縮部の最下部と
過冷却部の最上部とが接近していても、受液部の気液分
離室内での冷媒の気液分離性を維持し、且つ受液部の気
液分離室より下流の過冷却部へ簡単に気相冷媒が流出し
ないようにすることが可能な受液器一体型冷媒凝縮器を
提供することにある。
An object of the present invention is to maintain the gas-liquid separability of the refrigerant in the gas-liquid separation chamber of the liquid receiving section even if the lowermost part of the condensing part and the uppermost part of the supercooling part are close to each other, Another object of the present invention is to provide a liquid-receiver-integrated refrigerant condenser that can easily prevent the vapor-phase refrigerant from flowing out to the supercooling unit downstream of the gas-liquid separation chamber of the liquid receiving unit.

【0009】[0009]

【課題を解決するための手段】この発明は、内部を流れ
る冷媒を凝縮する凝縮部、およびこの凝縮部で凝縮され
た冷媒を過冷却する過冷却部を上下に配設したコアと、
このコアの一端部において上下方向に延ばされ、上側部
に前記凝縮部の下流端が接続され、下側部に前記過冷却
部の上流端が接続され、内部を、前記凝縮部の下流端の
みに連通する上流側連通室と前記過冷却部の上流端のみ
に連通する下流側連通室とに区画する第1仕切り部を有
するタンク部と、内部に、流入した冷媒を気液分離する
気液分離室を有し、且つこの気液分離室と前記上流側連
通室および前記下流側連通室とを仕切る第2仕切り部を
有する受液部とを備えた受液器一体型冷媒凝縮器であっ
て、前記第2仕切り部は、前記上流側連通室の下部で開
口し、前記上流側連通室より前記気液分離室内へ冷媒を
流入させる冷媒流入口、およびこの冷媒流入口より下方
で開口し、前記気液分離室より前記下流側連通室内へ冷
媒を流出させる冷媒流出口を有する技術手段を採用し
た。
According to the present invention, there is provided a condensing section for condensing a refrigerant flowing inside, and a core having a supercooling section for supercooling the refrigerant condensed in the condensing section arranged vertically.
One end of this core is extended in the vertical direction, the upper end is connected to the downstream end of the condensing unit, the lower end is connected to the upstream end of the supercooling unit, and the inside is the downstream end of the condensing unit. And a tank part having a first partition part which is divided into an upstream communication chamber that communicates only with the downstream communication chamber that communicates only with the upstream end of the supercooling part, and a gas that separates the inflowing refrigerant into gas and liquid. A liquid receiver integrated refrigerant condenser having a liquid separation chamber and a liquid receiving part having a second partitioning part for partitioning the gas-liquid separation chamber from the upstream communication chamber and the downstream communication chamber. Then, the second partition portion opens at a lower portion of the upstream communication chamber, a refrigerant inlet for allowing a refrigerant to flow from the upstream communication chamber into the gas-liquid separation chamber, and an opening below the refrigerant inlet. Cooling the refrigerant from the gas-liquid separation chamber to the downstream communication chamber. It was adopted technical means having an outlet.

【0010】なお、前記受液部を、前記タンク部に一体
成形しても良い。また、前記受液部を、前記ヘッダに間
接的または直接的に接続しても良い。さらに、過冷却部
よりも下流に、冷媒の状態を観察するためのサイトグラ
スを接続しても良い。そして、気液分離室内の上部に、
冷媒中の水分を取り除くドライヤを設けても良い。
The liquid receiving portion may be integrally formed with the tank portion. Further, the liquid receiving portion may be connected to the header indirectly or directly. Further, a sight glass for observing the state of the refrigerant may be connected downstream of the supercooling section. And, in the upper part of the gas-liquid separation chamber,
You may provide the dryer which removes the water | moisture content in a refrigerant.

【0011】[0011]

【作用】この発明によれば、凝縮部より流出した気液二
相状態の冷媒をタンク部の上流側連通室内に一旦集め、
その後に受液部の第2仕切り部の冷媒流入口を介して受
液部の気液分離室内へ送り出すようにしている。これに
より、凝縮部より出る細かい気泡状の気相冷媒がタンク
部の上流側連通室で集められて径の大きい気泡状の気相
冷媒となって浮力の影響を大きく受けるようになり、受
液部の気液分離室内で気液分離し易くなる。また、タン
ク部の第1仕切り部により、第2仕切り部の冷媒流入口
から気液分離室を通って第2仕切り部の冷媒流出口まで
の冷媒の流れがUターン流れとなっているので、気液が
遠心力により分離し気泡状の気相冷媒がより集まること
で気泡状の気相冷媒の径がより大きくなり、浮力の影響
を大きく受けて気液分離がよりし易くなる。
According to the present invention, the gas-liquid two-phase refrigerant flowing out from the condenser is temporarily collected in the upstream communication chamber of the tank,
After that, it is sent out into the gas-liquid separation chamber of the liquid receiving portion via the refrigerant inlet of the second partitioning portion of the liquid receiving portion. As a result, the fine bubble-like gas-phase refrigerant that comes out of the condensing part is collected in the upstream communication chamber of the tank part, becomes a bubble-like gas-phase refrigerant with a large diameter, and is greatly affected by buoyancy. It becomes easy to separate gas and liquid in the gas-liquid separation chamber of the part. In addition, since the first partition of the tank section makes a U-turn flow of the refrigerant from the refrigerant inlet of the second partition through the gas-liquid separation chamber to the refrigerant outlet of the second partition, The gas-liquid is separated by the centrifugal force and the bubble-like gas-phase refrigerant is further gathered, so that the diameter of the bubble-like gas-phase refrigerant becomes larger, and the influence of the buoyancy is greatly exerted to facilitate the gas-liquid separation.

【0012】そして、仮に凝縮部の最下部と過冷却部の
最上部とが接近していても、タンク部の第1仕切り部に
より凝縮部の下流端から過冷却部の上流端までの流路長
さが長くなり、気液分離室から過冷却部へ分離できてい
ない気泡状の気相冷媒を送り出すことがなくなる。そし
て、受液部の気液分離室の下流側に過冷却部が設けられ
ているため、気液分離室での気液分離が完全でなくて
も、過冷却部にて気泡状の気相冷媒は消滅するので、気
液分離室の容積、つまり気液分離室の断面積を小さくす
ることが可能となり、凝縮部と過冷却部の有効放熱面積
が小さくならない。
Even if the lowermost part of the condensing part and the uppermost part of the supercooling part are close to each other, the first partitioning part of the tank part allows the flow path from the downstream end of the condensing part to the upstream end of the supercooling part. The length becomes longer, and the bubble-like vapor phase refrigerant that has not been separated from the gas-liquid separation chamber to the supercooling section is not sent out. Since the supercooling unit is provided on the downstream side of the gas-liquid separation chamber of the liquid receiving unit, even if the gas-liquid separation in the gas-liquid separation chamber is not complete, a bubble-like gas phase is generated in the supercooling unit. Since the refrigerant disappears, it is possible to reduce the volume of the gas-liquid separation chamber, that is, the cross-sectional area of the gas-liquid separation chamber, and the effective heat radiation area of the condenser section and the supercooling section does not decrease.

【0013】[0013]

【実施例】次に、この発明の受液器一体型冷媒凝縮器を
自動車用空気調和装置に適用した実施例に基づいて説明
する。
Next, a description will be given of an embodiment in which the liquid receiver integrated refrigerant condenser of the present invention is applied to an automobile air conditioner.

【0014】〔第1実施例の構成〕図1ないし図4はこ
の発明の第1実施例を示したもので、図1は自動車用空
気調和装置の冷凍サイクルを示した図である。この自動
車用空気調和装置の冷凍サイクル1は、冷媒圧縮機2、
受液器一体型冷媒凝縮器3、サイトグラス4、膨張弁5
および冷媒蒸発器6を、金属製パイプまたはゴム製パイ
プよりなる冷媒配管7によって順次接続されている。
[Structure of First Embodiment] FIGS. 1 to 4 show a first embodiment of the present invention, and FIG. 1 is a view showing a refrigeration cycle of an automobile air conditioner. The refrigeration cycle 1 of this automobile air conditioner includes a refrigerant compressor 2,
Liquid receiver integrated refrigerant condenser 3, sight glass 4, expansion valve 5
The refrigerant evaporator 6 is sequentially connected by a refrigerant pipe 7 made of a metal pipe or a rubber pipe.

【0015】冷媒圧縮機2は、自動車のエンジンルーム
(図示せず)内に設置されたエンジンEにベルト(図示
せず)と電磁クラッチ(図示せず)を介して連結されて
いる。この冷媒圧縮機2は、エンジンEの回転動力が伝
達されると、冷媒蒸発器6より内部に吸入した気相冷媒
を圧縮して、高温高圧の気相冷媒を受液器一体型冷媒凝
縮器3へ吐出する。
The refrigerant compressor 2 is connected to an engine E installed in an engine room (not shown) of an automobile through a belt (not shown) and an electromagnetic clutch (not shown). When the rotational power of the engine E is transmitted, the refrigerant compressor 2 compresses the gas-phase refrigerant sucked inside from the refrigerant evaporator 6 to transfer the high-temperature and high-pressure gas-phase refrigerant to the receiver-integrated refrigerant condenser. Discharge to 3.

【0016】受液器一体型冷媒凝縮器3は、凝縮部8、
受液部9および過冷却部10を一体的に設けている。凝
縮部8は、冷媒圧縮機2の吐出側に接続され、冷媒圧縮
機2より内部に流入した気相冷媒をクーリングファン
(図示せず)等により送られてくる室外空気と熱交換さ
せて冷媒を凝縮液化させる凝縮器として働く。
The receiver-integrated refrigerant condenser 3 includes a condenser section 8,
The liquid receiving section 9 and the supercooling section 10 are integrally provided. The condenser 8 is connected to the discharge side of the refrigerant compressor 2 and causes the gas-phase refrigerant flowing into the refrigerant compressor 2 to exchange heat with the outdoor air sent by a cooling fan (not shown) or the like. Acts as a condenser for condensing and liquefying.

【0017】受液部9は、凝縮部8より内部に流入した
気液二相状態の冷媒を気相冷媒と液相冷媒とに気液分離
して、液相冷媒のみ過冷却部10に供給する受液器とし
て働く。過冷却部10は、凝縮部8より下方に隣接して
設けられ、受液部9より内部に流入した液相冷媒をクー
リングファン等により送られてくる室外空気と熱交換さ
せて液相冷媒を過冷却する過冷却器として働く。
The liquid receiving section 9 separates the gas-liquid two-phase refrigerant flowing into the condenser section 8 into a gas-phase refrigerant and a liquid-phase refrigerant, and supplies only the liquid-phase refrigerant to the subcooling section 10. Acts as a receiver. The subcooling unit 10 is provided below the condensing unit 8 so as to be adjacent thereto, and heat-exchanges the liquid-phase refrigerant flowing into the liquid-receiving unit 9 with the outdoor air sent by a cooling fan or the like to generate the liquid-phase refrigerant. It works as a supercooler to supercool.

【0018】サイトグラス4は、受液器一体型冷媒凝縮
器3の過冷却部10より下流側に接続され、冷凍サイク
ル1内を循環する冷媒の状態を観察するものである。こ
のサイトグラス4は、自動車のエンジンルーム内におい
て点検者が視認し易い場所、例えば受液器一体型冷媒凝
縮器3に隣設した冷媒配管7の途中に単独で架装されて
いる。
The sight glass 4 is connected downstream of the supercooling section 10 of the receiver-integrated refrigerant condenser 3 and observes the state of the refrigerant circulating in the refrigeration cycle 1. The sight glass 4 is mounted independently in a place where it is easily visible to an inspector in the engine room of the automobile, for example, in the middle of the refrigerant pipe 7 adjacent to the receiver-integrated refrigerant condenser 3.

【0019】そして、サイトグラス4は、図1に示した
ように、両端部が冷媒配管7に溶接や締結等の手段で接
続される管状の金属ボディ11、およびこの金属ボディ
11の上面に形成された覗き窓12に嵌め込まれた溶着
ガラス13等より構成されている。一般に覗き窓12か
ら気泡が見られるときは冷媒不足であり、気泡が見られ
ないときは冷媒量が適正量である。
As shown in FIG. 1, the sight glass 4 is formed on a tubular metal body 11 whose both ends are connected to the refrigerant pipe 7 by means such as welding or fastening, and an upper surface of the metal body 11. It is composed of a welded glass 13 and the like fitted in the peep window 12. Generally, when bubbles are seen through the viewing window 12, the amount of refrigerant is insufficient, and when no bubbles are seen, the amount of refrigerant is appropriate.

【0020】膨張弁5は、冷媒蒸発器6の冷媒入口部側
に接続され、サイトグラス4より流入した高温高圧の液
相冷媒を断熱膨張して低温低圧の霧状冷媒にするもの
で、本例では冷媒蒸発器6の冷媒出口部の冷媒過熱度を
所定値に維持するよう弁開度を自動調整する温度作動式
膨張弁が用いられている。
The expansion valve 5 is connected to the refrigerant inlet side of the refrigerant evaporator 6 and adiabatically expands the high temperature high pressure liquid phase refrigerant flowing from the sight glass 4 into a low temperature low pressure atomized refrigerant. In the example, a temperature actuated expansion valve is used that automatically adjusts the valve opening so as to maintain the degree of refrigerant superheat at the refrigerant outlet of the refrigerant evaporator 6 at a predetermined value.

【0021】冷媒蒸発器6は、冷媒圧縮機2の吸入側と
膨張弁5の下流側との間に接続され、膨張弁5より内部
に流入した気液二相状態の冷媒をブロワ(図示せず)に
より吹き付けられる室外空気または室内空気と熱交換さ
せて冷媒を蒸発気化させる熱交換器として働く。
The refrigerant evaporator 6 is connected between the suction side of the refrigerant compressor 2 and the downstream side of the expansion valve 5 and blows the gas-liquid two-phase refrigerant flowing from the expansion valve 5 into the blower (not shown). Function as a heat exchanger that evaporates and evaporates the refrigerant by exchanging heat with the outdoor air or indoor air blown by (1).

【0022】次に、この実施例の受液器一体型冷媒凝縮
器3を図2ないし図4に基づいて詳細に説明する。この
受液器一体型冷媒凝縮器3は、例えば高さが300mm〜
400mm、幅が300mm〜600mmで、自動車のエンジ
ンルーム内の走行風を受け易い場所に取付ブラケット
(図示せず)を介して一体的に取り付けられている。そ
して、受液器一体型冷媒凝縮器3は、熱交換を行うコア
14、このコア14の水平方向の一端側に配された第1
ヘッダ15、およびコア14の水平方向の他端側に配さ
れた第2ヘッダ16等から構成され、炉中にて一体ろう
付けして製造される。
Next, the liquid receiver integrated refrigerant condenser 3 of this embodiment will be described in detail with reference to FIGS. The liquid receiver integrated refrigerant condenser 3 has, for example, a height of 300 mm to
It has a width of 400 mm and a width of 300 mm to 600 mm, and is integrally attached to a place in the engine room of an automobile where the running wind is easily received through a mounting bracket (not shown). The receiver-integrated refrigerant condenser 3 includes a core 14 for heat exchange, and a first core 14 disposed on one end side in the horizontal direction of the core 14.
It is composed of a header 15 and a second header 16 arranged on the other end side of the core 14 in the horizontal direction, and is manufactured by integrally brazing in a furnace.

【0023】コア14は、凝縮部8および過冷却部10
よりなり、上端部および下端部に受液器一体型冷媒凝縮
器3を自動車に取り付けるための取付用ブラケットを固
定するサイドプレート17、18がろう付け等の手段に
より接合されている。凝縮部8は、複数の凝縮用チュー
ブ19およびコルゲートフィン20よりなり、これらは
ろう付け等の手段により接合されている。過冷却部10
は、複数の過冷却用チューブ21およびコルゲートフィ
ン22よりなり、これらはろう付け等の手段により接合
されている。
The core 14 includes a condenser section 8 and a supercooling section 10.
The side plates 17 and 18 for fixing mounting brackets for mounting the liquid receiver integrated refrigerant condenser 3 to the automobile are joined to the upper end and the lower end by means such as brazing. The condensing part 8 is composed of a plurality of condensing tubes 19 and corrugated fins 20, which are joined by means such as brazing. Supercooling section 10
Consists of a plurality of supercooling tubes 21 and corrugated fins 22, which are joined by means such as brazing.

【0024】なお、サイドプレート17、18は、アル
ミニウムまたはアルミニウム合金でろう材でクラッド処
理した金属プレートをプレス加工することによって形状
が得られ、水平方向の両端部にそれぞれ第1ヘッダ15
および第2ヘッダ16に差し込まれる挿入片171、1
72、181、182が形成されている。
The side plates 17 and 18 have a shape obtained by pressing a metal plate clad with a brazing material of aluminum or an aluminum alloy, and have first headers 15 at both ends in the horizontal direction.
And insert pieces 171, 1 inserted into the second header 16
72, 181, and 182 are formed.

【0025】複数の凝縮用チューブ19および過冷却用
チューブ21は耐腐食性、熱伝導性に優れたアルミニウ
ムまたはアルミニウム合金等でろう材をクラッド処理し
たプレートを押出し加工することによって断面形状が偏
平な長円形状に形成され、内部に複数の冷媒流路を有し
ている。また、コルゲートフィン20、22は、冷媒の
放熱効率を向上させるための放熱フィンで、両側面をろ
う材でクラッド処理したアルミニウムまたはアルミニウ
ム合金等の金属プレートをコルゲート状にプレス加工し
たものである。
The plurality of condensing tubes 19 and the supercooling tubes 21 are flat in cross section by extruding a plate obtained by clad-treating a brazing material with aluminum or an aluminum alloy having excellent corrosion resistance and thermal conductivity. It is formed in an elliptical shape and has a plurality of refrigerant channels inside. Further, the corrugated fins 20 and 22 are radiating fins for improving the heat radiation efficiency of the refrigerant, and are metal plates such as aluminum or aluminum alloy whose both sides are clad with a brazing material and pressed into a corrugated shape.

【0026】なお、複数の凝縮用チューブ19および複
数の過冷却用チューブ21は水平方向に配されている。
そして、複数の凝縮用チューブ19内を流れる冷媒は第
1ヘッダ15から第2ヘッダ16へ流れ、複数の過冷却
用チューブ21内を流れる冷媒は逆に第2ヘッダ16か
ら第1ヘッダ15へ流れる。また、この実施例では、凝
縮用チューブ19の本数を、過冷却用チューブ21の本
数より多くしてあり、実験的経験によれば、過冷却用チ
ューブ21の本数はコア14の全体の15%〜20%程
度が好ましい。
The plurality of condensing tubes 19 and the plurality of supercooling tubes 21 are arranged horizontally.
The refrigerant flowing in the plurality of condensing tubes 19 flows from the first header 15 to the second header 16, and the refrigerant flowing in the plurality of supercooling tubes 21 flows conversely from the second header 16 to the first header 15. . Further, in this embodiment, the number of the condensing tubes 19 is set to be larger than the number of the supercooling tubes 21, and according to experimental experience, the number of the supercooling tubes 21 is 15% of the entire core 14. It is preferably about 20%.

【0027】第1ヘッダ15は、断面形状が略U字状の
ヘッダプレート23および断面形状が半円弧状のタンク
プレート24よりなり、上下方向に延びる円筒形状を呈
する。この第1ヘッダ15は、それぞれ耐腐食性および
熱伝導性に優れたアルミニウムまたはアルミニウム合金
で両側面をろう材でクラッド処理した金属プレートをプ
レス加工することによって所定の形状を得ている。
The first header 15 is composed of a header plate 23 having a substantially U-shaped cross section and a tank plate 24 having a semi-circular cross section, and has a cylindrical shape extending in the vertical direction. The first header 15 has a predetermined shape obtained by pressing a metal plate whose both sides are clad with a brazing material with aluminum or aluminum alloy having excellent corrosion resistance and thermal conductivity.

【0028】また、第1ヘッダ15の上側部は凝縮部8
を構成する複数の凝縮用チューブ19の上流端が接続さ
れ、下側部は過冷却部10を構成する複数の過冷却用チ
ューブ21の下流端が接続されている。そして、第1ヘ
ッダ15の上下方向(板長さ方向)の上下端部の開口部
には、キャップ25が嵌め込まれている。
The upper part of the first header 15 is the condensing part 8
The upstream ends of the plurality of condensing tubes 19 constituting the above are connected, and the lower ends are connected to the downstream ends of the plurality of supercooling tubes 21 constituting the supercooling unit 10. Then, the cap 25 is fitted into the openings of the upper and lower ends of the first header 15 in the vertical direction (plate length direction).

【0029】なお、キャップ25は、アルミニウムまた
はアルミニウム合金でろう材でクラッド処理した金属プ
レートをプレス加工することによって形状が得られ、第
1ヘッダ15の上下端部にろう付け等の手段により接合
される略円環状の接合片251と、この接合片251よ
り窪んでおり、上下端部の開口部を塞ぐ略円板状の閉塞
部252とを有している。
The cap 25 has a shape obtained by pressing a metal plate clad with a brazing material of aluminum or an aluminum alloy, and is joined to the upper and lower ends of the first header 15 by means such as brazing. It has a substantially annular joint piece 251 and a substantially disk-shaped closing portion 252 that is recessed from the joint piece 251 and closes the openings at the upper and lower ends.

【0030】ヘッダプレート23には、プレス加工によ
って、長円形状の抜き穴26が多数形成され、上下端部
に貫通穴27がそれぞれ形成されている。その多数の抜
き穴26には、複数の凝縮用チューブ19の上流端およ
び複数の過冷却用チューブ21の下流端が差し込まれた
状態でろう付け等の手段により接合されている。また、
2個の貫通穴27には、サイドプレート17、18の挿
入片171、181が差し込まれた状態でろう付け等の
手段により接合されている。
A large number of oval holes 26 are formed in the header plate 23 by press working, and through holes 27 are formed in the upper and lower ends, respectively. The upstream ends of the plurality of condensing tubes 19 and the downstream ends of the plurality of supercooling tubes 21 are joined to the numerous holes 26 by brazing or the like in a state of being inserted. Also,
The insertion pieces 171 and 181 of the side plates 17 and 18 are joined to the two through holes 27 by means such as brazing while being inserted.

【0031】タンクプレート24には、プレス加工によ
って、内部を上下に仕切るセパレータ28を固定する穴
部29、入口配管30を固定する円形状の冷媒吸入口3
1および出口配管32を固定する円形状の冷媒吐出口3
3が形成されている。そのセパレータ28は、略円板形
状に形成され、第1ヘッダ15の内部を、凝縮部8の上
流端のみに連通する入口側連通室34と過冷却部10の
下流端のみに連通する出口側連通室35とに分割するも
のである。
The tank plate 24 has a hole 29 for fixing the separator 28 that divides the inside into upper and lower parts by press working, and a circular refrigerant inlet 3 for fixing the inlet pipe 30.
Circular refrigerant discharge port 3 for fixing 1 and outlet pipe 32
3 is formed. The separator 28 is formed in a substantially disc shape, and the inside of the first header 15 communicates with only the upstream end of the condensing part 8 with the inlet side communication chamber 34 and the outlet side with which only the downstream end of the supercooling part 10 communicates. It is divided into a communication chamber 35.

【0032】入口配管30は、円管形状を呈し、冷媒圧
縮機2より吐出された高温高圧の気相冷媒を入口側連通
室34内に流入させるための配管で、ろう付け等の手段
により冷媒吸入口31に接合されている。また、出口配
管32は、円管形状を呈し、出口側連通室35内の液相
冷媒をサイトグラス4へ送り出す配管で、ろう付け等の
手段により冷媒吐出口33に接合されている。
The inlet pipe 30 has a circular pipe shape, and is a pipe for allowing the high-temperature and high-pressure vapor-phase refrigerant discharged from the refrigerant compressor 2 to flow into the inlet-side communication chamber 34. It is joined to the suction port 31. Further, the outlet pipe 32 has a circular pipe shape and is a pipe for sending out the liquid phase refrigerant in the outlet side communication chamber 35 to the sight glass 4, and is joined to the refrigerant discharge port 33 by means such as brazing.

【0033】第2ヘッダ16は、図4にも示したよう
に、断面形状が略U字状のヘッダプレート36および断
面形状が略R形状の筒状体37よりなり、上下方向に延
びる二重筒状を呈し、受液部9がタンク部に一体成形さ
れている。この第2ヘッダ16は、それぞれ耐腐食性お
よび熱伝導性に優れたアルミニウムまたはアルミニウム
合金で所定の形状を得ている。なお、本例では、ヘッダ
プレート36と筒状体37の図示左側部分とでタンク部
を構成し、筒状体37の筒部分で受液部9を構成してい
る。
As shown in FIG. 4, the second header 16 is composed of a header plate 36 having a substantially U-shaped cross section and a tubular body 37 having a substantially R-shaped cross section, and is a double body extending in the vertical direction. It has a tubular shape, and the liquid receiving portion 9 is integrally formed with the tank portion. The second header 16 is made of aluminum or aluminum alloy having excellent corrosion resistance and thermal conductivity, and has a predetermined shape. In this example, the header plate 36 and the left side portion of the tubular body 37 in the drawing form a tank portion, and the tubular portion of the tubular body 37 constitutes the liquid receiving portion 9.

【0034】また、第2ヘッダ16の上側部は凝縮部8
を構成する複数の凝縮用チューブ19の下流端が接続さ
れ、下側部は過冷却部10を構成する複数の過冷却用チ
ューブ21の上流端が接続されている。そして、第2ヘ
ッダ16の上下方向(板長さ方向)の上下端部の開口部
には、キャップ38が嵌め込まれている。
The upper portion of the second header 16 is the condensing portion 8
The downstream ends of the plurality of condensing tubes 19 constituting the above are connected, and the lower ends are connected to the upstream ends of the plurality of supercooling tubes 21 constituting the supercooling unit 10. A cap 38 is fitted in the openings of the upper and lower ends of the second header 16 in the vertical direction (plate length direction).

【0035】なお、キャップ38は、第2ヘッダ16の
上下端部にろう付け等の手段により接合される略円環状
の接合片381と、この接合片381より窪んでおり、
第2ヘッダ16の上下端部の内側の開口部を塞ぐ略円板
状の閉塞部382と、第2ヘッダ16の上下端部の外側
の開口部を塞ぐ偏平な楕円形状の閉塞部383とを有し
ている。
The cap 38 has a substantially annular joining piece 381 joined to the upper and lower ends of the second header 16 by means such as brazing, and is recessed from the joining piece 381.
A substantially disk-shaped closing portion 382 that closes the inner opening of the upper and lower ends of the second header 16 and a flat elliptical closing portion 383 that closes the outer opening of the upper and lower ends of the second header 16. Have

【0036】ヘッダプレート36には、両側面をろう材
でクラッド処理した金属プレートをプレス加工すること
によって、長円形状の抜き穴39が多数形成され、上下
端部に貫通穴40がそれぞれ形成されている。その多数
の抜き穴39には、複数の凝縮用チューブ19の下流端
および複数の過冷却用チューブ21の上流端が差し込ま
れた状態でろう付け等の手段により接合されている。ま
た、2個の貫通穴40には、サイドプレート17、18
の挿入片172、182が差し込まれた状態でろう付け
等の手段により接合されている。
A large number of oval holes 39 are formed in the header plate 36 by pressing a metal plate whose both sides are clad with a brazing material, and through holes 40 are formed in the upper and lower ends, respectively. ing. The downstream ends of the plurality of condensing tubes 19 and the upstream ends of the plurality of supercooling tubes 21 are joined to the large number of holes 39 by means such as brazing while being inserted. In addition, the two through holes 40 have side plates 17, 18
The insertion pieces 172 and 182 are joined together by means such as brazing.

【0037】筒状体37は、押出し加工にて所定の形状
に形成され、内側部に第2ヘッダ16内を第1の部屋と
第2の部屋とに2分割(区画)する第1セパレータ41
を有している。この第1セパレータ41には、プレス加
工による追加工によって、第1の部屋の内部を上側の部
屋(上流側連通室46)と下側の部屋(下流側連通室4
7)とに2分割(区画)する第2セパレータ42を固定
する穴部43、第1の部屋と第2の部屋とを連通する円
形状の冷媒流入口44および円形状の冷媒流出口45が
形成されている。
The tubular body 37 is formed into a predetermined shape by extrusion and has a first separator 41 which divides the inside of the second header 16 into a first chamber and a second chamber inside.
have. In the first separator 41, the inside of the first chamber is further processed by press working so that the upper chamber (upstream communication chamber 46) and the lower chamber (downstream communication chamber 4).
7) has a hole 43 for fixing the second separator 42 that is divided into two parts (section), a circular refrigerant inlet 44 and a circular refrigerant outlet 45 that connect the first chamber and the second chamber. Has been formed.

【0038】第1セパレータ41および第2セパレータ
42は、凝縮部8の下流端のみに連通する上流側連通室
46と過冷却部10の上流端のみに連通する下流側連通
室47と外側に形成される受液部9を構成する気液分離
室48とに、第2ヘッダ16の内部を3分割する仕切り
部である。また、第1セパレータ41は本発明の第2仕
切り部を構成し、第2セパレータ42は本発明の第1仕
切り部を構成する。
The first separator 41 and the second separator 42 are formed outside the upstream communication chamber 46 that communicates only with the downstream end of the condenser 8 and the downstream communication chamber 47 that communicates only with the upstream end of the supercooling unit 10. It is a partition part that divides the interior of the second header 16 into three parts for the gas-liquid separation chamber 48 that constitutes the liquid receiving part 9. Further, the first separator 41 constitutes the second partition part of the present invention, and the second separator 42 constitutes the first partition part of the present invention.

【0039】なお、冷媒流入口44は上流側連通室46
の下部(凝縮部8の最下部)で開口し、上流側連通室4
6内の冷媒を気液分離室48内に流入させる連通口で、
冷媒流出口45は冷媒流入口44より下方で開口し、気
液分離室48内の冷媒を下流側連通室47内に流出させ
る連通口である。また、気液分離室48は、上流側連通
室46より内部に流入した冷媒を気相冷媒と液相冷媒と
に分離して液相冷媒のみを下流側連通室47へ送り出
す。
The refrigerant inlet 44 is connected to the upstream communication chamber 46.
Is opened at the lower part (the lowermost part of the condensation part 8) of the upstream communication chamber 4
At the communication port through which the refrigerant in 6 flows into the gas-liquid separation chamber 48,
The refrigerant outlet port 45 is a communication opening that opens below the refrigerant inlet port 44 and allows the refrigerant in the gas-liquid separation chamber 48 to flow into the downstream side communication chamber 47. Further, the gas-liquid separation chamber 48 separates the refrigerant flowing into the upstream communication chamber 46 into a gas-phase refrigerant and a liquid-phase refrigerant, and sends only the liquid-phase refrigerant to the downstream communication chamber 47.

【0040】〔第1実施例の作用〕次に、この実施例の
自動車用空気調和装置の冷凍サイクル1の作用を図1お
よび図2に基づいて簡単に説明する。自動車用空気調和
装置の運転が開始されると、電磁クラッチが通電され、
冷媒圧縮機がベルトと電磁クラッチを介してエンジンE
によって回転駆動される。
[Operation of First Embodiment] Next, the operation of the refrigeration cycle 1 of the vehicle air conditioner of this embodiment will be briefly described with reference to FIGS. 1 and 2. When the operation of the automobile air conditioner is started, the electromagnetic clutch is energized,
Refrigerant compressor passes through belt and electromagnetic clutch to engine E
It is driven to rotate by.

【0041】このため、冷媒圧縮機2内で圧縮されて吐
出された高温高圧の気相冷媒は、入口配管30を通って
第1ヘッダ15の入口側連通室34内に流入する。入口
側連通室34内に流入した気相冷媒は、入口側連通室3
4内で凝縮部8を構成する複数の凝縮用チューブ19に
分配される。
Therefore, the high-temperature and high-pressure vapor-phase refrigerant compressed and discharged in the refrigerant compressor 2 flows into the inlet-side communication chamber 34 of the first header 15 through the inlet pipe 30. The gas-phase refrigerant that has flowed into the inlet-side communication chamber 34 is stored in the inlet-side communication chamber 3
It is distributed to a plurality of condensing tubes 19 that constitute the condensing part 8 in the condenser 4.

【0042】そして、複数の凝縮用チューブ19に分配
された気相冷媒は、これらの凝縮用チューブ19を通過
する際にコルゲートフィン20を介して室外空気と熱交
換して凝縮液化され、一部の気相冷媒を残してほとんど
液相冷媒となる。このような気液二相状態の冷媒は、複
数の凝縮用チューブ19より第2ヘッダ16の上流側連
通室46内に流入する。上流側連通室46内に流入した
気液二相状態の冷媒は、一旦集められた後に、冷媒流入
口44を通って受液部9(気液分離室48)内へ流入す
る。
The vapor-phase refrigerant distributed to the plurality of condensing tubes 19 is condensed and liquefied by exchanging heat with the outdoor air via the corrugated fins 20 when passing through these condensing tubes 19. Most of the gas phase refrigerant is liquid phase refrigerant. The refrigerant in the gas-liquid two-phase state flows into the upstream communication chamber 46 of the second header 16 through the plurality of condensing tubes 19. The refrigerant in the gas-liquid two-phase state that has flowed into the upstream communication chamber 46 is once collected and then flows into the liquid receiving section 9 (gas-liquid separation chamber 48) through the refrigerant inlet 44.

【0043】受液部9(気液分離室48)では、その断
面積をある程度大きく(例えば500mm2 )とることで
冷媒の速度を低減させ、且つ気泡状の気相冷媒の浮力を
利用している。さらに、第2セパレータ42によって、
複数の凝縮用チューブ19のうちの最下部の凝縮用チュ
ーブ19の下流端から複数の過冷却用チューブ21のう
ちの最下部の過冷却用チューブ21の上流端までの流路
長さを長くとっている。
In the liquid receiving portion 9 (gas-liquid separation chamber 48), the cross-sectional area of the liquid receiving portion 9 is increased to a certain extent (for example, 500 mm 2 ) to reduce the speed of the refrigerant and utilize the buoyancy of the bubble-like gas-phase refrigerant. There is. Further, by the second separator 42,
The flow path length from the downstream end of the lowermost condensing tube 19 of the plurality of condensing tubes 19 to the upstream end of the lowermost supercooling tube 21 of the plurality of supercooling tubes 21 is set to be long. ing.

【0044】その上、第2セパレータ42によって、複
数の凝縮用チューブ19から第2ヘッダ16内に流入し
た冷媒がUターンして複数の過冷却用チューブ21へ流
出するようにしているので、気液二相状態の冷媒が遠心
力により気液分離し気泡状の気相冷媒がより一箇所(内
側)に集められる。
Moreover, the second separator 42 allows the refrigerant flowing from the plurality of condensing tubes 19 into the second header 16 to make a U-turn and flow out to the plurality of supercooling tubes 21. The refrigerant in the liquid two-phase state is separated into gas and liquid by the centrifugal force, and the bubble-like gas-phase refrigerant is gathered in one place (inner side).

【0045】すなわち、冷媒流入口44が上流側連通室
46の下部で開口しており、冷媒流入口44と冷媒流出
口45とが比較的に接近しているので、気液二相状態の
冷媒が冷媒流入口44→受液部9→冷媒流出口45を通
過する時に、遠心力を受けて比重の大きい液相冷媒が筒
状体37の外側部に移行し、比重の小さい気泡状の気相
冷媒が第2セパレータ42の受液部9内への突出部分に
集まる。
That is, since the refrigerant inlet 44 opens at the lower part of the upstream side communication chamber 46 and the refrigerant inlet 44 and the refrigerant outlet 45 are relatively close to each other, the refrigerant in the gas-liquid two-phase state is formed. When passing through the refrigerant inflow port 44 → the liquid receiving part 9 → the refrigerant outflow port 45, the liquid phase refrigerant having a large specific gravity is transferred to the outer side part of the cylindrical body 37 by the centrifugal force, and a bubble-like gas having a small specific gravity is generated. The phase refrigerant collects at the protruding portion of the second separator 42 into the liquid receiving portion 9.

【0046】したがって、受液部9内で気液二相状態の
冷媒が効率良く気液分離するため、受液部9の上部に気
相冷媒が、下部に液相冷媒が溜まることになる。よっ
て、受液部9内において気液界面ができるだけの十分な
冷媒が冷凍サイクル1内に充填されているならば、受液
部9の下部にある冷媒流出口45からは過冷却度を持た
ない液相冷媒のみが下流側連通室47内に流入する。下
流側連通室47内に流入した液相冷媒は、下流側連通室
47内で過冷却部10を構成する複数の過冷却用チュー
ブ21に分配される。
Therefore, the refrigerant in the gas-liquid two-phase state is efficiently gas-liquid separated in the liquid receiving section 9, so that the gas phase refrigerant is accumulated in the upper portion of the liquid receiving section 9 and the liquid phase refrigerant is accumulated in the lower portion thereof. Therefore, if the refrigeration cycle 1 is filled with a sufficient amount of refrigerant to form a gas-liquid interface in the liquid receiving section 9, there is no supercooling degree from the refrigerant outlet port 45 at the bottom of the liquid receiving section 9. Only the liquid-phase refrigerant flows into the downstream communication chamber 47. The liquid-phase refrigerant that has flowed into the downstream communication chamber 47 is distributed to the plurality of supercooling tubes 21 that form the supercooling unit 10 in the downstream communication chamber 47.

【0047】そして、複数の過冷却用チューブ21に分
配された液相冷媒は、これらの過冷却用チューブ21を
通過する際にコルゲートフィン22を介して室外空気と
熱交換して過冷却され、過冷却度を持つ液相冷媒とな
り、第1ヘッダ15の出口側連通室35内に流入する。
The liquid-phase refrigerant distributed to the plurality of supercooling tubes 21 is supercooled by exchanging heat with the outdoor air via the corrugated fins 22 when passing through these supercooling tubes 21. It becomes a liquid-phase refrigerant having a supercooling degree and flows into the outlet side communication chamber 35 of the first header 15.

【0048】出口側連通室35内に流入した液相冷媒
は、出口配管32、サイトグラス4を通って膨張弁5内
へ流入する。なお、膨張弁5内には気相冷媒を含まない
単相の液相冷媒が供給されるため、膨張弁5内に流入す
る液相冷媒の冷媒循環量が低下することはない。これに
より、十分な量の霧状冷媒が冷媒蒸発器6内へ供給され
るので、自動車用空気調和装置の冷凍能力を低下を防止
することができる。
The liquid-phase refrigerant flowing into the outlet side communication chamber 35 flows into the expansion valve 5 through the outlet pipe 32 and the sight glass 4. Since the single-phase liquid-phase refrigerant containing no vapor-phase refrigerant is supplied into the expansion valve 5, the refrigerant circulation amount of the liquid-phase refrigerant flowing into the expansion valve 5 does not decrease. As a result, a sufficient amount of mist-like refrigerant is supplied into the refrigerant evaporator 6, so that it is possible to prevent the refrigerating capacity of the vehicle air conditioner from decreasing.

【0049】〔第1実施例の効果〕以上のように、自動
車用空気調和装置の冷凍サイクル1は、上流側連通室4
6の下部、つまり受液部9の下側で冷媒流入口44が開
口しているので、特に冷媒圧縮機2を高速運転した時の
ように冷媒循環量が大きい場合でも、受液部9の断面積
を異様に大きくしなくても、受液部9内で気液界面がで
きる。
[Effects of First Embodiment] As described above, the refrigeration cycle 1 of the automobile air conditioner includes the upstream communication chamber 4
Since the refrigerant inlet port 44 is opened at the lower part of 6, that is, the lower side of the liquid receiving section 9, even if the refrigerant circulation amount is large, such as when the refrigerant compressor 2 is operated at high speed, A gas-liquid interface can be formed in the liquid receiving section 9 without increasing the cross-sectional area abnormally.

【0050】また、複数の凝縮用チューブ19の下流端
より流出した気液二相状態の冷媒を第2ヘッダ16の上
流側連通室46内にて一旦集め、その後に上流側連通室
46の下部で開口する冷媒流入口44を介して受液部9
内へ送り出すようにしている。これにより、複数の凝縮
用チューブ19の下流端より出る細かい気泡状の気相冷
媒が上流側連通室46内で集められて径の大きい気泡状
の気相冷媒となって浮力の影響を大きく受けるようにな
る。
Further, the gas-liquid two-phase state refrigerant flowing out from the downstream ends of the plurality of condensing tubes 19 is temporarily collected in the upstream side communication chamber 46 of the second header 16 and thereafter, the lower part of the upstream side communication chamber 46. The liquid receiving portion 9 through the refrigerant inlet 44 opening at
I try to send it in. As a result, the fine bubble-like vapor-phase refrigerant that emerges from the downstream ends of the plurality of condensing tubes 19 is collected in the upstream side communication chamber 46 and becomes a bubble-like vapor-phase refrigerant with a large diameter, which is greatly affected by buoyancy. Like

【0051】そして、凝縮部8の下流端と過冷却部10
の上流端との境界の位置に設置した第2セパレータ42
の存在により、冷媒流入口44から受液部9を通って冷
媒流出口45までの冷媒の流れがUターン流れ(逆方向
のベクトル)となっている。このため、気液が遠心力に
より分離し気泡状の気相冷媒がより集まることで気泡状
の気相冷媒の径がより大きくなり、浮力の影響をより大
きく受けて気液分離がよりし易くなる。したがって、冷
媒流入口44より受液部9内へ流入した際に気液分離し
易くなり、受液部9内において気相冷媒が上方に液相冷
媒が下方に滞留するようになる。
The downstream end of the condenser 8 and the supercooler 10
Second separator 42 installed at the position of the boundary with the upstream end of the
Due to the existence of the above, the flow of the refrigerant from the refrigerant inlet 44 through the liquid receiving portion 9 to the refrigerant outlet 45 is a U-turn flow (vector in the opposite direction). Therefore, the gas-liquid is separated by the centrifugal force and the bubble-like gas-phase refrigerant is more gathered, so that the diameter of the bubble-like gas-phase refrigerant becomes larger, and the influence of the buoyancy is more greatly affected, and the gas-liquid separation is easier. Become. Therefore, when flowing into the liquid receiving section 9 through the refrigerant inlet port 44, gas-liquid separation is facilitated, and in the liquid receiving section 9, the vapor phase refrigerant accumulates upward and the liquid phase refrigerant accumulates downward.

【0052】そして、仮に複数の凝縮用チューブ19の
うちの最下部の凝縮用チューブ19と複数の過冷却用チ
ューブ21のうちの最上部の過冷却用チューブ21とが
接近していても、凝縮部8の下流端と過冷却部10の上
流端との境界の位置に設置した第2セパレータ42の存
在により複数の凝縮用チューブ19の下流端から複数の
過冷却用チューブ21の上流端までの流路長さが長くな
っている。これにより、受液部9から複数の過冷却用チ
ューブ21、サイトグラス4および膨張弁5へ分離でき
ていない気泡状の気相冷媒を流出させることがなくな
り、過冷却部10を有効に働かせることができ、且つ膨
張弁5での流動音の発生を防止することができる。
Even if the lowermost condensing tube 19 of the plurality of condensing tubes 19 and the uppermost supercooling tube 21 of the plurality of supercooling tubes 21 are close to each other, the condensing is performed. Due to the presence of the second separator 42 installed at the boundary position between the downstream end of the section 8 and the upstream end of the supercooling unit 10, from the downstream end of the plurality of condensing tubes 19 to the upstream end of the plurality of supercooling tubes 21. The flow path length is long. As a result, the unseparated bubble-like vapor-phase refrigerant is prevented from flowing out from the liquid receiving section 9 to the plurality of supercooling tubes 21, the sight glass 4, and the expansion valve 5, and the supercooling section 10 is effectively operated. It is possible to prevent the generation of flow noise in the expansion valve 5.

【0053】そして、受液部9の下流側に過冷却部10
が設けられているため、受液部9での気液分離が完全で
なくても、過冷却部10にて気泡状の気相冷媒は完全に
消滅するので、受液部9の容積、つまり受液部9の断面
積を小さくすることができ、コア14の凝縮部8と過冷
却部10の有効放熱面積が縮小化することを防止するこ
とができる。
Then, the supercooling section 10 is provided on the downstream side of the liquid receiving section 9.
Therefore, even if the gas-liquid separation in the liquid receiving section 9 is not complete, the bubble-like vapor phase refrigerant is completely extinguished in the subcooling section 10, so the volume of the liquid receiving section 9, that is, The cross-sectional area of the liquid receiving section 9 can be reduced, and the effective heat radiation area of the condenser section 8 and the supercooling section 10 of the core 14 can be prevented from being reduced.

【0054】また、この実施例では、受液器一体型冷媒
凝縮器3を冷媒圧縮機2とサイトグラス4との間に接続
しているので、部品点数の低減即ちコスト低減が図られ
るため、生産性を向上することができる。また、自動車
のエンジンルーム内にコンパクトに収めることができる
ため、省スペースとなる。
Further, in this embodiment, since the liquid receiver integrated refrigerant condenser 3 is connected between the refrigerant compressor 2 and the sight glass 4, the number of parts, that is, the cost can be reduced. Productivity can be improved. In addition, since it can be compactly housed in the engine room of an automobile, space is saved.

【0055】なお、この実施例では、サイトグラス4を
過冷却部10より下流側に接続しているため、受液部9
での気液分離性を確実にする必要はなく、受液部9の容
積、つまり受液部9の断面積は冷凍サイクル1の負荷変
動による冷媒変動量と冷媒漏れに対する余裕量の分だけ
見込んでおけば良い。
In this embodiment, since the sight glass 4 is connected to the downstream side of the supercooling section 10, the liquid receiving section 9
It is not necessary to ensure the gas-liquid separability at the time, and the volume of the liquid receiving portion 9, that is, the cross-sectional area of the liquid receiving portion 9 is estimated by the amount of refrigerant fluctuation due to the load fluctuation of the refrigeration cycle 1 and the margin for refrigerant leakage. You can do it with

【0056】〔第2実施例〕図5はこの発明の第2実施
例を示したもので、受液器一体型冷媒凝縮器を示した図
である。この実施例では、第1ヘッダ15および第2ヘ
ッダ16内に、凝縮部8を構成する複数の凝縮用チュー
ブ19と連通している部屋を第2セパレータ51、52
により2分割して中間連通室53および上流側連通室5
4を追加し、凝縮部8内での冷媒の流し方をSターンと
している。なお、凝縮部8内での冷媒の流し方はセパレ
ータをさらに増やすことでターン数を増やしても良い。
但し、凝縮部8内への冷媒吸入口31と受液部9内への
冷媒流入口44とは相反する位置に設ける必要がある。
[Second Embodiment] FIG. 5 shows a second embodiment of the present invention and is a view showing a liquid receiver integrated refrigerant condenser. In this embodiment, in the first header 15 and the second header 16, the chambers communicating with the plurality of condensing tubes 19 constituting the condensing unit 8 are provided with the second separators 51, 52.
Is divided into two by the intermediate communication chamber 53 and the upstream communication chamber 5
4 is added, and the way in which the refrigerant flows in the condensing section 8 is S-turn. The number of turns may be increased by further increasing the number of separators in the way in which the refrigerant flows in the condenser section 8.
However, the refrigerant inlet 31 into the condenser 8 and the refrigerant inlet 44 into the liquid receiver 9 need to be provided at opposite positions.

【0057】〔第3実施例の構成〕図6および図7はこ
の発明の第3実施例を示したもので、図6は受液器一体
型冷媒凝縮器を示した図で、図7は受液器一体型冷媒凝
縮器の受液部を示した図である。この実施例の受液部9
(気液分離室48)内の上部には、冷媒中の水分を取り
除くドライヤ61が組み込まれている。ドライヤ61
は、キャップ38の楕円形状の閉塞部383と楕円形状
のホルダ(押さえ)62に保持されたフィルタ63との
間に設けられている。また、ドライヤ61は、合成ゼオ
ライト、アルミナゲル、シリカゲル等のシリカアルミナ
吸着剤などの多数のフロン系冷媒用乾燥剤(以下乾燥剤
と略す)611が用いられている。
[Structure of Third Embodiment] FIGS. 6 and 7 show a third embodiment of the present invention. FIG. 6 is a view showing a liquid receiver integrated refrigerant condenser, and FIG. It is the figure which showed the liquid receiving part of the liquid receiver integrated type refrigerant condenser. Liquid receiving portion 9 of this embodiment
A dryer 61 for removing water in the refrigerant is incorporated in the upper part of the (gas-liquid separation chamber 48). Dryer 61
Is provided between the elliptical occlusion part 383 of the cap 38 and the filter 63 held by the elliptical holder (presser) 62. As the dryer 61, a large number of desiccants (hereinafter abbreviated as desiccants) 611 for fluorocarbon refrigerants such as synthetic zeolite, alumina gel, and silica-alumina adsorbents such as silica gel are used.

【0058】ホルダ62は、多数の***64が開けられ
たパンチングメタルよりなる。なお、フィルタ63の材
質として剛性のあるものを用いた場合にはホルダ62を
設けなくても良い。フィルタ63は、例えば耐高温性に
優れるセラミックスや金属等よりなり、ドライヤ61を
構成する多数の乾燥剤611が長期間使用している間に
崩壊したり、磨耗して微粉化して冷凍サイクル内に流出
するのを防止するものである。
The holder 62 is made of punching metal having many small holes 64 formed therein. If the filter 63 is made of a rigid material, the holder 62 may not be provided. The filter 63 is made of, for example, ceramics or metal having excellent high temperature resistance, and many desiccants 611 forming the dryer 61 collapse during long-term use or are worn and pulverized into a refrigeration cycle. It prevents it from flowing out.

【0059】ここで、ドライヤ61の組み付け方法を簡
単に説明する。先ず、第2ヘッダ16の筒状体37内に
ホルダ62を圧入して所定の位置に止める。そして、フ
ィルタ63を第2ヘッダ16の筒状体37の上部側開口
よりホルダ62に当接するまで挿入した後に、多数の乾
燥剤611よりなるドライヤ61を入れる。そして、第
2ヘッダ16の筒状体37の上部側開口にキャップ38
の閉塞部383を嵌め込んで一体ろう付けすることによ
り、ドライヤ61の組み付けがなされる。
Here, a method of assembling the dryer 61 will be briefly described. First, the holder 62 is press-fitted into the tubular body 37 of the second header 16 and stopped at a predetermined position. Then, the filter 63 is inserted from the upper side opening of the tubular body 37 of the second header 16 until it abuts on the holder 62, and then the dryer 61 including a large number of desiccants 611 is put therein. Then, the cap 38 is provided in the upper opening of the tubular body 37 of the second header 16.
The dryer 61 is assembled by fitting the closed portion 383 of FIG.

【0060】〔第3実施例の作用〕次に、この実施例の
受液器一体型冷媒凝縮器3の作用を図6および図7に基
づいて簡単に説明する。複数の凝縮用チューブ19より
第2ヘッダ16の上流側連通室46内に流入した気液二
相状態の冷媒は、一旦集められた後に、冷媒流入口44
を通って受液部9(気液分離室48)内へ流入する。そ
して、受液部9内に流入した気液二相状態の冷媒は、第
1実施例で説明したように効率良く気液分離して、液相
冷媒のみが冷媒流出口45から下流側連通室47内に流
入する。そして、下流側連通室47内に流入した液相冷
媒は、下流側連通室47内で過冷却部10を構成する複
数の過冷却用チューブ21に分配される。
[Operation of Third Embodiment] Next, the operation of the liquid receiver integrated refrigerant condenser 3 of this embodiment will be briefly described with reference to FIGS. 6 and 7. The refrigerant in the gas-liquid two-phase state that has flowed into the upstream side communication chamber 46 of the second header 16 from the plurality of condensing tubes 19 is once collected and then the refrigerant inlet port 44.
To flow into the liquid receiving section 9 (gas-liquid separation chamber 48). The gas-liquid two-phase refrigerant flowing into the liquid receiving section 9 is efficiently gas-liquid separated as described in the first embodiment, and only the liquid-phase refrigerant is discharged from the refrigerant outlet port 45 into the downstream communication chamber. Flows into 47. Then, the liquid-phase refrigerant that has flowed into the downstream communication chamber 47 is distributed to the plurality of supercooling tubes 21 that configure the supercooling unit 10 in the downstream communication chamber 47.

【0061】なお、この実施例においては、ドライヤ6
1を冷媒の主流流れを受けない場所に設置している。そ
して、液相冷媒が溜まる部分は受液部9の下部にある
が、気液分離方法は受液部9の下方から気泡が浮力で上
昇し、代わりに液相冷媒を受液部9の下方に補う方式の
ため、受液部9内の気泡の一部は外部(大気)との熱交
換により凝縮液化して受液部9の下方に流れる。このた
め、気液分離した気泡がホルダ62の多数の***64、
フィルタ63を通って受液部9の上部に設けたドライヤ
61内に一旦入り、凝縮液化して下方に流れ出る際に冷
媒中の水分が取り除かれる。
In this embodiment, the dryer 6
1 is installed in a place where the mainstream flow of the refrigerant is not received. The portion where the liquid-phase refrigerant collects is below the liquid-receiving portion 9, but in the gas-liquid separation method, bubbles rise due to buoyancy from below the liquid-receiving portion 9, and instead the liquid-phase refrigerant falls below the liquid-receiving portion 9. Since a part of the bubbles in the liquid receiving section 9 is condensed and liquefied by heat exchange with the outside (atmosphere), it flows below the liquid receiving section 9. For this reason, the air bubbles separated from the gas and the liquid are generated in the small holes 64 of the holder 62,
Moisture in the refrigerant is removed when it enters the dryer 61 provided at the upper part of the liquid receiving section 9 through the filter 63, condenses into liquid, and flows out downward.

【0062】したがって、冷媒の主流の一部ではある
が、常に冷媒中の水分を除去することができる。また、
フィルタ63を冷媒の主流に配置しないことにより、長
期間使用してもフィルタ63の上流と下流との間に上下
圧力差が生じることはなく、冷凍サイクルに悪影響を及
ぼさない。さらに、フィルタ63のホルダ62も冷媒の
主流に配置されないので、冷媒の流れの主流と共にホル
ダ62が流出することはなく、これによりドライヤ61
の流出を防止できる。よって、膨張弁5や冷媒圧縮機2
の弁機構に引っ掛かってその作動を妨げたり、冷媒圧縮
機2のピストン、軸受等の摺動部の焼き付きを防ぐこと
ができる。
Therefore, although it is a part of the main flow of the refrigerant, the water in the refrigerant can be always removed. Also,
By not arranging the filter 63 in the main stream of the refrigerant, a vertical pressure difference does not occur between the upstream side and the downstream side of the filter 63 even if it is used for a long period of time, and the refrigeration cycle is not adversely affected. Further, since the holder 62 of the filter 63 is also not arranged in the main stream of the refrigerant, the holder 62 does not flow out together with the main stream of the refrigerant, which allows the dryer 61 to flow.
Can be prevented from flowing out. Therefore, the expansion valve 5 and the refrigerant compressor 2
It is possible to prevent the valve mechanism from being caught by the valve mechanism and to prevent seizure of sliding parts such as the piston and the bearing of the refrigerant compressor 2.

【0063】〔第4実施例〕図8はこの発明の第4実施
例を示したもので、受液器一体型冷媒凝縮器の受液部を
示した図である。この実施例のキャップ38の閉塞部3
83には、ドライヤ61を挿入するためのドライヤ挿入
口65が開口している。そして、閉塞部383の内周に
は、シール材としての閉塞栓66の小径部分(下端部)
が嵌め合わされている。
[Fourth Embodiment] FIG. 8 shows a fourth embodiment of the present invention and is a view showing a liquid receiving portion of a liquid receiver integrated refrigerant condenser. Closure 3 of cap 38 of this embodiment
A dryer insertion port 65 for inserting the dryer 61 is opened in 83. Then, on the inner circumference of the closing portion 383, a small diameter portion (lower end portion) of the closing plug 66 as a sealing material.
Are fitted together.

【0064】そして、この実施例のドライヤ61の組み
付け方法は、第2ヘッダ16の筒状体37内にホルダ6
2を圧入しておいて受液器一体型冷媒凝縮器3を炉中で
一体ろう付けした後に、キャップ38の閉塞部383に
形成したドライヤ挿入口65から受液部9内にフィルタ
63、ドライヤ61を挿入するようにしている。そし
て、ドライヤ61を挿入した後にドライヤ挿入口65を
閉塞栓66で塞ぐようにしている。
Then, the method of assembling the dryer 61 of this embodiment is such that the holder 6 is placed in the tubular body 37 of the second header 16.
2 is press-fitted and the receiver-integrated refrigerant condenser 3 is integrally brazed in the furnace, and then the filter 63 and the dryer are inserted into the receiver 9 from the dryer insertion port 65 formed in the closing portion 383 of the cap 38. 61 is inserted. Then, after the dryer 61 is inserted, the dryer insertion port 65 is closed by the closing plug 66.

【0065】なお、閉塞栓66は、トーチろう付け法、
アルゴンガス溶接法等のドライヤ61やフィルタ63に
あまり熱が伝わらないような溶接法を用いてキャップ3
8に接合すると良い。また、閉塞栓66の接合位置とフ
ィルタ63とはある程度の距離が保たれているので、フ
ィルタ63の材質として一般的な樹脂材料を用いること
ができる。
The block plug 66 is formed by a torch brazing method,
The cap 3 is formed by using a welding method such as an argon gas welding method that does not transfer much heat to the dryer 61 and the filter 63.
It is good to join to 8. Further, since a certain distance is maintained between the joining position of the blocking plug 66 and the filter 63, a general resin material can be used as the material of the filter 63.

【0066】〔第5実施例〕図9はこの発明の第5実施
例を示したもので、受液器一体型冷媒凝縮器の受液部を
示した図である。この実施例のキャップ38の閉塞部3
83には、ドライヤ61を挿入するためのドライヤ挿入
口65が開口している。そして、閉塞部383の内周に
はシール材としての閉塞栓67の小径部分(下端部)が
嵌め合わされている。
[Fifth Embodiment] FIG. 9 shows a fifth embodiment of the present invention and is a view showing a liquid receiving portion of a liquid receiver integrated refrigerant condenser. Closure 3 of cap 38 of this embodiment
A dryer insertion port 65 for inserting the dryer 61 is opened in 83. A small diameter portion (lower end portion) of the closing plug 67 as a sealing material is fitted to the inner circumference of the closing portion 383.

【0067】また、閉塞部383は、他の実施例より板
厚が厚く形成されており、その上部側の内周に閉塞栓6
7の小径部分の上部外周に形成されたおねじ部(外周ね
じ部)671に螺合するめねじ部(内周ねじ部)651
が形成されている。閉塞栓67の外周とキャップ38の
閉塞部383の内周との間には、ドライヤ61の外部へ
の流出を防止するシール材としてのOリング68が装着
されている。
The closing portion 383 is formed thicker than the other embodiments, and the closing plug 6 is provided on the inner circumference on the upper side thereof.
Female threaded portion (inner circumferential threaded portion) 651 that is screwed into a male threaded portion (outer circumferential threaded portion) 671 formed on the upper outer circumference of the small diameter portion of 7.
Are formed. An O-ring 68, which serves as a sealing material that prevents the dryer 61 from flowing out, is mounted between the outer circumference of the closing plug 67 and the inner circumference of the closing portion 383 of the cap 38.

【0068】そして、この実施例のドライヤ61の組み
付け方法は、第2ヘッダ16の筒状体37内にホルダ6
2を圧入し、受液器一体型冷媒凝縮器3を炉中で一体ろ
う付けした後に、キャップ38の閉塞部383のドライ
ヤ挿入口65から受液部9内にフィルタ63、ドライヤ
61を挿入し、閉塞栓67をドライヤ挿入口65にねじ
込むようにしている。この実施例の場合には、冷凍サイ
クルを長期間使用した後に閉塞栓67を開けてドライヤ
61およびフィルタ63の取替え(交換)を行うことが
できる。
The method of assembling the dryer 61 of this embodiment is such that the holder 6 is placed in the tubular body 37 of the second header 16.
2 is press-fitted and the receiver-integrated refrigerant condenser 3 is integrally brazed in the furnace, and then the filter 63 and the dryer 61 are inserted into the receiver 9 from the dryer insertion port 65 of the closing portion 383 of the cap 38. The block plug 67 is screwed into the dryer insertion port 65. In the case of this embodiment, after the refrigeration cycle is used for a long period of time, the blocking plug 67 can be opened and the dryer 61 and the filter 63 can be replaced (replaced).

【0069】〔第6実施例〕図10はこの発明の第6実
施例を示したもので、受液器一体型冷媒凝縮器の受液部
を示した図である。この実施例のキャップ38の閉塞部
383には、ドライヤ61を挿入するためのドライヤ挿
入口65が形成されており、しかもこのドライヤ挿入口
65を閉じる突起片69が一体成形されている。なお、
突起片69は弾性変形可能に設けられている。
[Sixth Embodiment] FIG. 10 shows a sixth embodiment of the present invention and is a view showing a liquid receiving portion of a liquid receiver integrated refrigerant condenser. At the closing portion 383 of the cap 38 of this embodiment, a dryer insertion port 65 for inserting the dryer 61 is formed, and a projecting piece 69 for closing the dryer insertion port 65 is integrally formed. In addition,
The protruding piece 69 is elastically deformable.

【0070】この実施例の場合も、受液器一体型冷媒凝
縮器3を炉中で一体ろう付けし、ドライヤ挿入口65か
ら受液部9内にフィルタ63、ドライヤ61を挿入した
後に、キャップ38の突起片69を閉塞部383と同一
平面上に位置するように倒してから、ドライヤ61の流
出を防止するためにドライヤ挿入口65を塞ぐ。そし
て、第4実施例と同様にして、突起片69の外周と閉塞
部383の内周との隙間をろう付けや溶接により塞ぐ。
Also in this embodiment, the liquid receiver integrated refrigerant condenser 3 is integrally brazed in the furnace, the filter 63 and the dryer 61 are inserted into the liquid receiver 9 from the dryer insertion port 65, and then the cap is closed. The protrusion piece 69 of 38 is laid down so as to be located on the same plane as the closing portion 383, and then the dryer insertion port 65 is closed to prevent the dryer 61 from flowing out. Then, similarly to the fourth embodiment, the gap between the outer circumference of the protruding piece 69 and the inner circumference of the closing portion 383 is closed by brazing or welding.

【0071】〔第7実施例〕図11はこの発明の第7実
施例を示したもので、受液器一体型冷媒凝縮器の受液部
を示した図である。この実施例のキャップ38の閉塞部
383には、上方に向かって内径が漸減する円錐状部分
と円筒部分よりなる筒部70が形成されている。この筒
部70内には、ドライヤ61を挿入するためのドライヤ
挿入口71が開口している。そして、筒部70内にはシ
ール材としての閉塞栓72の小径部分(下端部)が嵌め
合わされている。
[Seventh Embodiment] FIG. 11 shows a seventh embodiment of the present invention and is a view showing a liquid receiving portion of a liquid receiver integrated refrigerant condenser. The closing portion 383 of the cap 38 of this embodiment is formed with a tubular portion 70 including a conical portion and a cylindrical portion whose inner diameter gradually decreases upward. A dryer insertion port 71 for inserting the dryer 61 is opened in the tubular portion 70. A small diameter portion (lower end portion) of the closing plug 72 as a sealing material is fitted in the tubular portion 70.

【0072】また、筒部70の上部側の内周には、閉塞
栓72の小径部分の上部外周に形成されたおねじ部(外
周ねじ部)721に螺合するめねじ部(内周ねじ部)7
01が形成されている。閉塞栓72の小径部分の外周と
筒部70の内周との間には、ドライヤ61の外部への流
出を防止するシール材としてのOリング73が装着され
ている。
Further, on the inner periphery of the upper portion of the tubular portion 70, a female screw portion (inner peripheral screw portion) that is screwed into a male screw portion (outer peripheral screw portion) 721 formed on the upper outer periphery of the small diameter portion of the closure plug 72. ) 7
01 is formed. An O-ring 73 as a sealing material that prevents the dryer 61 from flowing out is mounted between the outer periphery of the small-diameter portion of the blocking plug 72 and the inner periphery of the tubular portion 70.

【0073】この実施例の場合には、ドライヤ挿入口7
1からドライヤ61を受液部(気液分離室48)内に挿
入した後に、閉塞栓72でドライヤ挿入口71を塞いだ
場合でも、閉塞栓72の小径部分の下端部がドライヤ6
1を構成する多数の乾燥剤611の上面に届かず、多数
の乾燥剤611の上面を平に保つことができる。
In the case of this embodiment, the dryer insertion port 7
Even when the dryer 61 is inserted into the liquid receiving part (gas-liquid separation chamber 48) from 1 and the dryer insertion port 71 is closed by the closing plug 72, the lower end of the small-diameter portion of the closing plug 72 is placed in the dryer 6
It is possible to keep the upper surfaces of the many desiccants 611, which do not reach the upper surfaces of the many desiccants 611 that form one, flat.

【0074】さらに、多数の乾燥剤611の上面と閉塞
栓72の小径部分の下端部との間を、シール材としての
フェルト(耐水性の重質紙)74で塞ぐようにしている
ので、ドライヤ61を構成する多数の乾燥剤611同士
に隙間が発生することを防止できる。なお、多数の乾燥
剤611同士に隙間があると、車両の振動等により乾燥
剤611が移動することにより乾燥剤611同士が磨耗
して微粉化し易くなる。
Further, since a space between the upper surfaces of the many desiccants 611 and the lower end of the small-diameter portion of the plug 72 is closed by a felt (waterproof heavy paper) 74 as a sealing material, the dryer is used. It is possible to prevent a gap from being generated between the large number of desiccants 611 forming 61. If there are gaps between a large number of desiccants 611, the desiccants 611 move due to vibration of the vehicle or the like, and the desiccants 611 are abraded and easily pulverized.

【0075】〔変形例〕この実施例では、本発明を自動
車用空気調和装置に適用したが、本発明を鉄道車両、船
舶や航空機等のように冷媒循環量が変動するあらゆる空
気調和装置に適用しても良い。また、受液器一体型冷媒
凝縮器3の放熱を有効利用するヒートポンプ式冷凍サイ
クルに適用しても良い。
[Modification] In this embodiment, the present invention is applied to the air conditioner for automobiles, but the present invention is applied to all air conditioners in which the refrigerant circulation amount fluctuates, such as railroad cars, ships and aircrafts. You may. Further, it may be applied to a heat pump type refrigeration cycle that effectively uses the heat radiation of the liquid receiver integrated refrigerant condenser 3.

【0076】この実施例では、第2ヘッダ16をヘッダ
プレート36と筒状体37で構成したが、第2ヘッダ1
6を押出し成形により一部品で一体成形しても良い。同
様に、第1ヘッダ15も押出し成形により一部品で一体
成形しても良い。また、第2ヘッダ16を複数の筒状体
を上下方向に張り合わせて構成しても良く、さらに第2
ヘッダ16を1個の筒状体で形成して、その筒状体内に
別途設けた第1セパレータ41を嵌め込んでも良い。こ
の実施例では、第2ヘッダ16に受液部9を一体成形し
たが、第2ヘッダ16の外側に、第2ヘッダ16と別部
品で設けた受液部を接続しても良い。
In this embodiment, the second header 16 is composed of the header plate 36 and the tubular body 37.
It is also possible to integrally form 6 by extrusion molding. Similarly, the first header 15 may be integrally molded as a single component by extrusion molding. In addition, the second header 16 may be formed by vertically stacking a plurality of cylindrical bodies.
The header 16 may be formed of one tubular body, and the first separator 41 separately provided may be fitted into the tubular body. In this embodiment, the liquid receiving portion 9 is integrally formed with the second header 16, but the liquid receiving portion provided as a separate component from the second header 16 may be connected to the outside of the second header 16.

【0077】第3〜第7実施例では、受液部9内にドラ
イヤ61を構成する多数の乾燥剤611を直接挿入した
が、フェルト(耐水性の重質紙)製の袋内に多数の乾燥
剤611を入れたものを受液部9内に挿入しても良い。
第4〜第7実施例では、フィルタ63の材質として一般
的な樹脂材料を用いて一体ろう付け後に受液部9内に挿
入したが、フィルタ63の材質として耐熱材料を用いる
ことにより一体ろう付け前に受液部9内に挿入しておい
ても良い。
In the third to seventh embodiments, many desiccants 611 forming the dryer 61 are directly inserted into the liquid receiving section 9, but many desiccants 611 are formed in a bag made of felt (waterproof heavy paper). The desiccant 611 may be inserted into the liquid receiving section 9.
In the fourth to seventh embodiments, a general resin material is used as the material of the filter 63 and is inserted into the liquid receiving portion 9 after being integrally brazed. However, by using a heat-resistant material as the material of the filter 63, integral brazing is performed. It may be inserted into the liquid receiving portion 9 before.

【0078】第3〜第7実施例では、第2ヘッダ16の
筒状体37の上端面、つまり上端側のキャップ38にド
ライヤ挿入口65、71を形成したが、第2ヘッダ16
の筒状体37の下端面(下端側のキャップ38)または
筒状体37の側面等、受液部9の周囲であればどこにド
ライヤ挿入口を形成しても良い。
In the third to seventh embodiments, the dryer insertion ports 65 and 71 are formed in the upper end surface of the tubular body 37 of the second header 16, that is, the cap 38 on the upper end side.
The dryer insertion port may be formed anywhere around the liquid receiving portion 9, such as the lower end surface of the tubular body 37 (cap 38 on the lower end side) or the side surface of the tubular body 37.

【0079】[0079]

【発明の効果】この発明は、仮に凝縮部の最下部と過冷
却部の最上部とが接近していても、タンク部の第1仕切
り部により凝縮部の下流端から過冷却部の上流端までの
流路長さが長くなるので、受液部の気液分離室内での冷
媒の気液分離性を向上させることができる。また、受液
部の気液分離室より下流の過冷却部へ気相冷媒が流出し
難くなるので、過冷却部を有効に働かせることができ、
さらに膨張弁での作動音の発生を防止できる。
According to the present invention, even if the lowermost part of the condensing part and the uppermost part of the supercooling part are close to each other, the first partitioning part of the tank part allows the downstream end of the condensing part to the upstream end of the supercooling part. Since the length of the flow path up to is increased, the gas-liquid separability of the refrigerant in the gas-liquid separation chamber of the liquid receiving section can be improved. Further, since it becomes difficult for the gas-phase refrigerant to flow out to the supercooling section downstream of the gas-liquid separation chamber of the liquid receiving section, the supercooling section can be effectively operated,
Further, it is possible to prevent the occurrence of operating noise in the expansion valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例に用いた自動車用空気調
和装置の冷凍サイクルを示した構成図である。
FIG. 1 is a configuration diagram showing a refrigeration cycle of an automobile air conditioner used in a first embodiment of the present invention.

【図2】この発明の第1実施例に用いた受液器一体型冷
媒凝縮器を示した断面図である。
FIG. 2 is a sectional view showing a liquid receiver integrated refrigerant condenser used in the first embodiment of the present invention.

【図3】図2の受液器一体型冷媒凝縮器の分解図であ
る。
3 is an exploded view of the liquid receiver integrated refrigerant condenser of FIG. 2. FIG.

【図4】図2の受液器一体型冷媒凝縮器のタンク部と受
液部を一体成形した第2ヘッダを示した断面図である。
FIG. 4 is a cross-sectional view showing a second header in which the tank portion and the liquid receiving portion of the liquid receiver integrated refrigerant condenser of FIG. 2 are integrally formed.

【図5】この発明の第2実施例に用いた受液器一体型冷
媒凝縮器を示した断面図である。
FIG. 5 is a sectional view showing a liquid receiver integrated refrigerant condenser used in a second embodiment of the present invention.

【図6】この発明の第3実施例に用いた受液器一体型冷
媒凝縮器を示した断面図である。
FIG. 6 is a sectional view showing a liquid receiver integrated refrigerant condenser used in a third embodiment of the present invention.

【図7】図6の受液器一体型冷媒凝縮器の受液部を示し
た断面図である。
7 is a cross-sectional view showing a liquid receiving portion of the liquid receiver integrated refrigerant condenser of FIG.

【図8】この発明の第4実施例に用いた受液器一体型冷
媒凝縮器の受液部を示した断面図である。
FIG. 8 is a sectional view showing a liquid receiving portion of a liquid receiver integrated refrigerant condenser used in a fourth embodiment of the present invention.

【図9】この発明の第5実施例に用いた受液器一体型冷
媒凝縮器の受液部を示した断面図である。
FIG. 9 is a sectional view showing a liquid receiving portion of a liquid receiver integrated refrigerant condenser used in a fifth embodiment of the present invention.

【図10】この発明の第6実施例に用いた受液器一体型
冷媒凝縮器の受液部を示した断面図である。
FIG. 10 is a sectional view showing a liquid receiving portion of a liquid receiver integrated refrigerant condenser used in a sixth embodiment of the present invention.

【図11】この発明の第7実施例に用いた受液器一体型
冷媒凝縮器の受液部を示した断面図である。
FIG. 11 is a sectional view showing a liquid receiving portion of a liquid receiver integrated refrigerant condenser used in a seventh embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 冷凍サイクル 3 受液器一体型冷媒凝縮器 4 サイトグラス 8 凝縮部 9 受液部 10 過冷却部 14 コア 15 第1ヘッダ 16 第2ヘッダ 19 凝縮用チューブ 21 過冷却用チューブ 25 キャップ 38 キャップ 41 第1セパレータ(第2仕切り部) 42 第2セパレータ(第1仕切り部) 44 冷媒流入口 45 冷媒流出口 46 上流側連通室 47 下流側連通室 48 気液分離室 61 ドライヤ 62 ホルダ(押さえ) 63 フィルタ 1 Refrigeration cycle 3 Liquid receiver integrated refrigerant condenser 4 Sight glass 8 Condensing part 9 Liquid receiving part 10 Supercooling part 14 Core 15 First header 16 Second header 19 Condensing tube 21 Supercooling tube 25 Cap 38 Cap 41 1st separator (2nd partition part) 42 2nd separator (1st partition part) 44 Refrigerant inflow port 45 Refrigerant outflow port 46 Upstream side communication chamber 47 Downstream side communication chamber 48 Gas-liquid separation chamber 61 Dryer 62 Holder (presser) 63 filter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(a)内部を流れる冷媒を凝縮する凝縮
部、およびこの凝縮部で凝縮された冷媒を過冷却する過
冷却部を上下に配設したコアと、 (b)このコアの一端部において上下方向に延ばされ、
上側部に前記凝縮部の下流端が接続され、下側部に前記
過冷却部の上流端が接続され、 内部を、前記凝縮部の下流端のみに連通する上流側連通
室と前記過冷却部の上流端のみに連通する下流側連通室
とに区画する第1仕切り部を有するタンク部と、 (c)内部に、流入した冷媒を気液分離する気液分離室
を有し、且つこの気液分離室と前記上流側連通室および
前記下流側連通室とを仕切る第2仕切り部を有する受液
部とを備えた受液器一体型冷媒凝縮器であって、 (d)前記第2仕切り部は、前記上流側連通室の下部で
開口し、前記上流側連通室より前記気液分離室内へ冷媒
を流入させる冷媒流入口、およびこの冷媒流入口より下
方で開口し、前記気液分離室より前記下流側連通室内へ
冷媒を流出させる冷媒流出口を有することを特徴とする
受液器一体型冷媒凝縮器。
1. A core having (a) a condensing section for condensing a refrigerant flowing inside and a supercooling section for supercooling the refrigerant condensed in the condensing section, and (b) one end of the core. Part is extended vertically,
The upper end is connected to the downstream end of the condensing part, the lower part is connected to the upstream end of the supercooling part, and the inside is connected to only the downstream end of the condensing part. A tank part having a first partitioning part that is partitioned into a downstream side communication chamber that communicates only with the upstream end, and (c) has a gas-liquid separation chamber for separating the inflowing refrigerant into a gas and a liquid. A liquid receiver integrated refrigerant condenser comprising a liquid separation chamber and a liquid receiving part having a second partition part for partitioning the upstream communication chamber and the downstream communication chamber, wherein: (d) the second partition The portion opens at a lower portion of the upstream communication chamber, a refrigerant inflow port for allowing a refrigerant to flow from the upstream communication chamber into the gas-liquid separation chamber, and an opening below the refrigerant inflow port, the gas-liquid separation chamber It has a refrigerant outlet for letting the refrigerant flow out into the downstream side communication chamber. Integrated type condenser-receiver.
【請求項2】請求項1に記載の受液器一体型冷媒凝縮器
において、 前記受液部は、前記タンク部に一体成形されたことを特
徴とする受液器一体型冷媒凝縮器。
2. The liquid receiver integrated refrigerant condenser according to claim 1, wherein the liquid receiving part is integrally formed with the tank part.
【請求項3】請求項1または請求項2に記載の受液器一
体型冷媒凝縮器において、 前記過冷却部よりも下流に、冷媒の状態を観察するため
のサイトグラスを接続したことを特徴とする受液器一体
型冷媒凝縮器。
3. The receiver-integrated refrigerant condenser according to claim 1 or 2, wherein a sight glass for observing the state of the refrigerant is connected downstream of the supercooling section. Refrigerant condenser with integrated receiver.
【請求項4】請求項1または請求項2に記載の受液器一
体型冷媒凝縮器において、 前記気液分離室内の上部には、冷媒中の水分を取り除く
ドライヤが設けられたことを特徴とする受液器一体型冷
媒凝縮器。
4. The receiver-integrated refrigerant condenser according to claim 1 or 2, wherein a dryer for removing water in the refrigerant is provided at an upper portion of the gas-liquid separation chamber. Liquid receiver integrated refrigerant condenser.
JP22543294A 1993-10-12 1994-09-20 Receiver integrated refrigerant condenser Expired - Lifetime JP3617083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22543294A JP3617083B2 (en) 1993-10-12 1994-09-20 Receiver integrated refrigerant condenser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-254425 1993-10-12
JP25442593 1993-10-12
JP22543294A JP3617083B2 (en) 1993-10-12 1994-09-20 Receiver integrated refrigerant condenser

Publications (2)

Publication Number Publication Date
JPH07180930A true JPH07180930A (en) 1995-07-18
JP3617083B2 JP3617083B2 (en) 2005-02-02

Family

ID=34227924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22543294A Expired - Lifetime JP3617083B2 (en) 1993-10-12 1994-09-20 Receiver integrated refrigerant condenser

Country Status (1)

Country Link
JP (1) JP3617083B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811814A1 (en) * 1996-06-05 1997-12-10 Valeo Thermique Moteur S.A. Condenser with a separate receiver for an air-conditioning unit, particularly of a motor vehicle
FR2757611A1 (en) * 1996-12-23 1998-06-26 Valeo Thermique Moteur Sa Automobile air-conditioner condenser with separate reservoir
US5813249A (en) * 1995-07-18 1998-09-29 Denso Corporation Refrigeration cycle
JPH10272920A (en) * 1997-03-31 1998-10-13 Denso Corp Mounting structure of refrigerant condenser integrally formed with receiver
US5988267A (en) * 1997-06-16 1999-11-23 Halla Climate Control Corp. Multistage gas and liquid phase separation type condenser
WO2000025071A1 (en) 1998-10-27 2000-05-04 Valeo Klimatechnik Gmbh Method and condenser for condensing the internal coolant of a motor vehicle air conditioning
US6341647B1 (en) 1999-02-03 2002-01-29 Denso Corporation Separator-integrated condenser for vehicle air conditioner
US6449977B1 (en) 2000-12-29 2002-09-17 Multisorb Technologies, Inc. Self-retaining elongated adsorbent unit
EP1319907A2 (en) * 2001-12-14 2003-06-18 Sanden Corporation Heat exchanger
JP2004144472A (en) * 2004-02-13 2004-05-20 Showa Denko Kk Condenser integrated with liquid receiving part
US6742355B2 (en) 2001-12-28 2004-06-01 Calsonic Kansei Corporation Receiver-drier for use in an air conditioning system
WO2005071330A1 (en) * 2004-01-27 2005-08-04 Showa Denko K.K. Condenser
US6935413B2 (en) 2002-05-15 2005-08-30 Sanden Corporation Heat exchanger
KR100538746B1 (en) * 1998-11-14 2006-03-20 한라공조주식회사 Receiver
CN100337084C (en) * 2003-09-16 2007-09-12 株式会社电装 Heat exchanger module
KR100902760B1 (en) * 2007-10-23 2009-06-15 주식회사 두원공조 Manufacturing method of a condenser headpipe integrated with receiver dryer
EP2108905A1 (en) * 2008-04-09 2009-10-14 Behr France Hambach S.A.R.L. Condenser, in particular for a motor vehicle
JP2012159245A (en) * 2011-02-01 2012-08-23 Showa Denko Kk Condenser

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5813249A (en) * 1995-07-18 1998-09-29 Denso Corporation Refrigeration cycle
FR2749647A1 (en) * 1996-06-05 1997-12-12 Valeo Thermique Moteur Sa SEPARATE TANK CONDENSER FOR AIR CONDITIONING INSTALLATION, ESPECIALLY A MOTOR VEHICLE
EP0811814A1 (en) * 1996-06-05 1997-12-10 Valeo Thermique Moteur S.A. Condenser with a separate receiver for an air-conditioning unit, particularly of a motor vehicle
FR2757611A1 (en) * 1996-12-23 1998-06-26 Valeo Thermique Moteur Sa Automobile air-conditioner condenser with separate reservoir
JPH10272920A (en) * 1997-03-31 1998-10-13 Denso Corp Mounting structure of refrigerant condenser integrally formed with receiver
US5988267A (en) * 1997-06-16 1999-11-23 Halla Climate Control Corp. Multistage gas and liquid phase separation type condenser
WO2000025071A1 (en) 1998-10-27 2000-05-04 Valeo Klimatechnik Gmbh Method and condenser for condensing the internal coolant of a motor vehicle air conditioning
KR100538746B1 (en) * 1998-11-14 2006-03-20 한라공조주식회사 Receiver
US6341647B1 (en) 1999-02-03 2002-01-29 Denso Corporation Separator-integrated condenser for vehicle air conditioner
US6640582B2 (en) 2000-12-29 2003-11-04 Multisorb Technologies, Inc. Self-retaining elongated adsorbent unit
US6449977B1 (en) 2000-12-29 2002-09-17 Multisorb Technologies, Inc. Self-retaining elongated adsorbent unit
EP1319907A3 (en) * 2001-12-14 2003-07-02 Sanden Corporation Heat exchanger
EP1319907A2 (en) * 2001-12-14 2003-06-18 Sanden Corporation Heat exchanger
US6742355B2 (en) 2001-12-28 2004-06-01 Calsonic Kansei Corporation Receiver-drier for use in an air conditioning system
US6935413B2 (en) 2002-05-15 2005-08-30 Sanden Corporation Heat exchanger
CN100337084C (en) * 2003-09-16 2007-09-12 株式会社电装 Heat exchanger module
US7591148B2 (en) 2003-09-16 2009-09-22 Denso Corporation Vehicular heat exchanger module
US7669437B2 (en) 2003-09-16 2010-03-02 Denso Corporation Heat exchanger module
WO2005071330A1 (en) * 2004-01-27 2005-08-04 Showa Denko K.K. Condenser
JP2004144472A (en) * 2004-02-13 2004-05-20 Showa Denko Kk Condenser integrated with liquid receiving part
KR100902760B1 (en) * 2007-10-23 2009-06-15 주식회사 두원공조 Manufacturing method of a condenser headpipe integrated with receiver dryer
EP2108905A1 (en) * 2008-04-09 2009-10-14 Behr France Hambach S.A.R.L. Condenser, in particular for a motor vehicle
JP2012159245A (en) * 2011-02-01 2012-08-23 Showa Denko Kk Condenser

Also Published As

Publication number Publication date
JP3617083B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP3644077B2 (en) Refrigeration cycle
JP3617083B2 (en) Receiver integrated refrigerant condenser
US5546761A (en) Receiver-integrated refrigerant condenser
JP3561957B2 (en) Recipient integrated refrigerant condenser
US5628206A (en) Refrigerant condenser
JP3301169B2 (en) Refrigeration equipment
US8789389B2 (en) Intermediate heat exchanger
US6698235B2 (en) Refrigerant cycle system having discharge function of gas refrigerant in receiver
JPH11304293A (en) Refrigerant condenser
JP3812582B2 (en) Receiver integrated refrigerant condenser
US20040244411A1 (en) Air-conditioner
JP4091416B2 (en) Receiver tank for refrigeration cycle, heat exchanger with receiver tank, and condensing device for refrigeration cycle
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
JP3557628B2 (en) Recipient integrated refrigerant condenser
CN110023694A (en) Refrigerating circulatory device
JP3355844B2 (en) Recipient integrated refrigerant condenser
JPH07159000A (en) Refrigerant condenser
JPH08219590A (en) Liquid reciver integration type refrigerant condenser
US20070144206A1 (en) Pressure reducer module with oil separator
JP2000213826A (en) Refrigerant condenser integral with liquid receiver
JP4151345B2 (en) Refrigeration cycle equipment
WO2001001051A1 (en) Refrigerant condenser
JP2001174103A (en) Refrigerant condenser
US4359877A (en) Heat pump coil circuit
JP2000074527A (en) Liquid receiver integrated refrigerant condenser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term