JPH0499072A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPH0499072A
JPH0499072A JP2207573A JP20757390A JPH0499072A JP H0499072 A JPH0499072 A JP H0499072A JP 2207573 A JP2207573 A JP 2207573A JP 20757390 A JP20757390 A JP 20757390A JP H0499072 A JPH0499072 A JP H0499072A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
main electrode
semiconductor layer
electrode region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2207573A
Other languages
Japanese (ja)
Inventor
Hidekazu Takahashi
秀和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2207573A priority Critical patent/JPH0499072A/en
Publication of JPH0499072A publication Critical patent/JPH0499072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To efficiently collect produced carriers by arranging the first semiconductor and second main electrode areas in the first main electrode area and extending a plurality of second semiconductor areas in different directions from the first semiconductor area. CONSTITUTION:This photoelectric conversion element has the same constitution as an NPN type bipolar transistor has, with an N<+> semiconductor layer 6, P<-> semiconductor layer 5 and P<+> semiconductor layer 7, and N<-> epitaxial layer 4, N<+> layer 5, and P<+> semiconductor layer 7 respectively corresponding to an emitter constituting a main electrode area on the signal outputting side, base constituting a controlled electrode area, and collector constituting the other main electrode area. The layer 7 is provided mainly for collecting carriers. Holes produced by incident light are accumulated in the base by an electric field in a depletion layer and raise the base potential. The increased amount of the base potential is outputted as an increased amount of the emitter potential. Since the layer 5 is formed at the center of a light receiving section and the layer 7 is formed in both directions from the layer 5, the carrier collecting efficiency is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光電変換素子に係り、特に第1の主電極領域と
、この第1の主電極領域に形成された制御電極領域と、
この制御電極領域に蓄積されたキャリアに対応する信号
を出力する第2の主電極領域とを有する光電変換素子に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photoelectric conversion element, and in particular, a first main electrode region, a control electrode region formed in the first main electrode region,
The present invention relates to a photoelectric conversion element having a second main electrode region that outputs a signal corresponding to carriers accumulated in the control electrode region.

[従来の技術] 近年、キャリアが蓄積される制御電極領域の電位の変化
分を、主電極領域の電位の変化分として出力することで
、光量に応じた電気信号を得ることができる増幅型の光
電変換素子が、高解像度化の要請等から注目されている
[Prior Art] In recent years, amplification-type devices have been developed that can obtain electrical signals according to the amount of light by outputting changes in the potential of the control electrode region where carriers are accumulated as changes in the potential of the main electrode region. Photoelectric conversion elements are attracting attention due to the demand for higher resolution.

以下、このような光電変換素子の一構成例の受光部につ
いて説明する。
Hereinafter, a light receiving section of one configuration example of such a photoelectric conversion element will be described.

第6図は、従来の光電変換素子の受光部の概略的平面図
である。
FIG. 6 is a schematic plan view of a light receiving section of a conventional photoelectric conversion element.

第7図は、上記第6図のA−A ′断面図である。FIG. 7 is a sectional view taken along line AA' in FIG. 6.

両図において、1はP型半導体基板、2はN9型埋込み
層、3はN4半導体層、4はN−エピタキシャル層、5
はP−半導体層、6はN″″半導体層、7はP゛半導体
層、8は絶縁膜、9はpoty−Si電極、10は配線
金属、11はパッシベーション膜である。
In both figures, 1 is a P-type semiconductor substrate, 2 is an N9-type buried layer, 3 is an N4 semiconductor layer, 4 is an N-epitaxial layer, and 5
6 is a P-semiconductor layer, 6 is an N'''' semiconductor layer, 7 is a P'' semiconductor layer, 8 is an insulating film, 9 is a poty-Si electrode, 10 is a wiring metal, and 11 is a passivation film.

N゛半導体層6が信号出力側の主電極領域たるエミッタ
、P−半導体層5及びP+半導体層7が制御電極領域た
るベース、N−エピタキシャル層4、N1埋込み層2及
びN4半導体層3が他方の主電極領域たるコレクタに相
当し、NPN型バイポーラトランジスタと同様な構成と
なっている。
The N゛ semiconductor layer 6 is the emitter which is the main electrode region on the signal output side, the P- semiconductor layer 5 and the P+ semiconductor layer 7 are the base which is the control electrode region, and the N- epitaxial layer 4, the N1 buried layer 2 and the N4 semiconductor layer 3 are the other It corresponds to the collector, which is the main electrode region of the transistor, and has a structure similar to that of an NPN bipolar transistor.

なお、P00半導層7は主としてキャリアの収集のため
に設けられるものである。
Note that the P00 semiconductor layer 7 is provided mainly for collecting carriers.

コレクタは最高電位に保たれ、ベースはコレクタに対し
逆バイアス状態になるように初期電位が与えられる。
The collector is held at the highest potential and the base is given an initial potential so as to be reverse biased with respect to the collector.

ベース領域及びベース・コレクタ間の空乏層において、
入射光により生成した正孔は、ベースに蓄積し、ベース
電位は上昇する。ベース電位の変化Δ■、は、光電流密
度をIP、受光部面積なA、ベース・コレクタ容量をC
bc、蓄積時間なt8とすると、 Δ■、 = A ′Ip°ts Cゎ。
In the base region and the depletion layer between the base and collector,
Holes generated by incident light accumulate in the base, and the base potential increases. The change in base potential Δ■ is the photocurrent density (IP), the photosensitive area (A), and the base-collector capacitance (C).
bc, accumulation time t8, Δ■, = A'Ip°ts Cゎ.

となる。このベース電位の変化分を、エミッタ電位の変
化分として出力することで、光量に応じた電気信号を得
ることができる。
becomes. By outputting this change in base potential as a change in emitter potential, an electrical signal corresponding to the amount of light can be obtained.

[発明が解決しようとしている課題] しかしながら、上記従来の光電変換素子では、高感度化
するため受光部面積を拡大すると、キャリア収集のため
P゛ベース長P゛半導体層7)も長くしなければならず
、その結果ベース・コレクタ容量も増大してしまい、高
感度化が困難となる課題があった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional photoelectric conversion element, when the area of the light-receiving portion is expanded to increase sensitivity, the base length P (semiconductor layer 7) must also be increased to collect carriers. However, as a result, the base/collector capacitance also increases, making it difficult to achieve high sensitivity.

[課題を解決するための手段] 本発明の光電変換素子は、第1の主電極領域と、この第
1の主電極領域に形成された制御電極領域と、この制御
電極領域に蓄積されたキャリアに対応する信号を出力す
る第2の主電極領域とを有する光電変換素子において、 前記制御電極領域が、一導電型の第1の半導体領域と、
この第1の半導体領域と同一導電型で幅が狭く高導電で
あって、前記第1の半導体領域から前記第1の主電極領
域側へそれぞれ異なる方向に延長して形成された複数の
第2の半導体領域とから形成されていることを特徴とす
る。
[Means for Solving the Problems] The photoelectric conversion element of the present invention includes a first main electrode region, a control electrode region formed in the first main electrode region, and carriers accumulated in the control electrode region. a second main electrode region that outputs a signal corresponding to the control electrode region, wherein the control electrode region includes a first semiconductor region of one conductivity type;
A plurality of second semiconductor regions each having the same conductivity type as the first semiconductor region, having a narrow width and high conductivity, and extending in different directions from the first semiconductor region toward the first main electrode region. It is characterized in that it is formed from a semiconductor region.

[作 用] 本発明の光電変換素子は、第1の半導体領域及び第2の
主電極領域を第1の主電極領域に配置し、第1の半導体
領域から複数の第2の半導体領域をそれぞれ異なる方向
に(例えば双方向)に出すことにより、従来よりも第2
の半導体領域の長さを短かくし、制御電極領域と第1の
主電極領域との間の容量を減少させるものである。
[Function] In the photoelectric conversion element of the present invention, the first semiconductor region and the second main electrode region are arranged in the first main electrode region, and the plurality of second semiconductor regions are respectively connected from the first semiconductor region. By sending it out in different directions (for example, bidirectionally), the second
The length of the semiconductor region is shortened to reduce the capacitance between the control electrode region and the first main electrode region.

[実施例] 以下、本発明の実施例について図面を用いて詳細に説明
する。なお、以下の実施例において、第6図及び第7図
と同一構成部材については、同一符号を付する。
[Example] Hereinafter, an example of the present invention will be described in detail using the drawings. In the following embodiments, the same components as those in FIGS. 6 and 7 are denoted by the same reference numerals.

(実施例1) 第1図は、本発明の光電変換素子の第1実施例の受光部
の概略的平面図である。
(Example 1) FIG. 1 is a schematic plan view of a light receiving section of a first example of a photoelectric conversion element of the present invention.

第2図は、上記第1図のB−B ′断面図である。FIG. 2 is a sectional view taken along line BB' in FIG. 1.

両図において、1はP型半導体基板、2はN′″型埋型
埋層、3はN゛半導体層、4はN−エピタキシャル層、
5はP−半導体層、6はN゛半導体層、7はP゛半導体
層、8は絶縁膜、9はpoly−Si電極、10は配線
金属、11はパッシベーション膜である。
In both figures, 1 is a P-type semiconductor substrate, 2 is an N'' type buried layer, 3 is an N'' semiconductor layer, 4 is an N-epitaxial layer,
5 is a P-semiconductor layer, 6 is an N-semiconductor layer, 7 is a P-semiconductor layer, 8 is an insulating film, 9 is a poly-Si electrode, 10 is a wiring metal, and 11 is a passivation film.

N0半導体層6が信号出力側の主電極領域たるエミッタ
、P−半導体層5及びP゛半導体層7が制御電極領域た
るベース、N−エピタキシャル層4、N′″′″み層2
及びN′″′″体層3が他方の主電極領域たるコレクタ
に相当し、NPN型バイポーラトランジスタと同様な構
成となっている。
The N0 semiconductor layer 6 is the emitter which is the main electrode region on the signal output side, the P-semiconductor layer 5 and the P'semiconductor layer 7 are the base which is the control electrode region, the N-epitaxial layer 4, and the N''''' layer 2.
The N'''''' body layer 3 corresponds to the collector, which is the other main electrode region, and has a structure similar to that of an NPN type bipolar transistor.

なお、P゛半導体層7は主としてキャリアの収集のため
に設けられるものである。
Note that the P semiconductor layer 7 is provided mainly for collecting carriers.

コレクタは最高電位に保たれ、ベースはコレクタに対し
逆バイアス状態とし、ベース・コレクタ間に空乏層を形
成するように初期電位が与えられる。
The collector is kept at the highest potential, the base is reverse biased with respect to the collector, and an initial potential is applied to form a depletion layer between the base and collector.

入射光により生成した正孔は空乏層中の電界によりベー
スに蓄積され、ベース電位を上昇させ、このベース電位
の変化分をエミッタ電位の変化分として出力する。
Holes generated by the incident light are accumulated in the base by the electric field in the depletion layer, raising the base potential, and the change in the base potential is output as the change in the emitter potential.

ここで、本実施例では、P−半導体層5は受光部中央に
形成し、このP−半導体層5からP11半導層7を双方
向に形成するため、キャリアの収集効率が良くなる。し
たがって、第6図及び第7図に示した光電変換素子の受
光部よりもP44半導層7の長さを短くすることが可能
となり、その結果、ベース・コレクタ容量が小さくなり
、高感度化が可能となる。
In this embodiment, the P- semiconductor layer 5 is formed at the center of the light receiving section, and the P11 semiconductor layer 7 is formed bidirectionally from the P- semiconductor layer 5, so that the carrier collection efficiency is improved. Therefore, it is possible to make the length of the P44 semiconductor layer 7 shorter than that of the light receiving part of the photoelectric conversion element shown in FIGS. 6 and 7, and as a result, the base-collector capacitance becomes smaller and higher sensitivity becomes possible.

(実施例2) 第3図は、本発明の光電変換素子の第2の実施例の受光
部の概略的平面図である。
(Example 2) FIG. 3 is a schematic plan view of a light receiving section of a second example of the photoelectric conversion element of the present invention.

同図に示すように、本実施例では、エミッタたるN′″
半導体層6、ベースの一部たるP−半導体層5、コレク
タの一部たるN4半導体層3及びN−エピタキシャル層
4が同心円状となるように構成されており、光生成キャ
リアを効率良く収集することができる。
As shown in the figure, in this embodiment, the emitter N′″
The semiconductor layer 6, the P-semiconductor layer 5, which is part of the base, the N4 semiconductor layer 3, which is part of the collector, and the N-epitaxial layer 4 are configured to form concentric circles to efficiently collect photogenerated carriers. be able to.

P44半導層7は、P−半導体層5から数本形成され、
キャリアの収集、効果を高めている。
Several P44 semiconductor layers 7 are formed from the P− semiconductor layer 5,
Collecting carriers, increasing effectiveness.

(実施例3) 第4図は、本発明の光電変換素子の第3の実施例の受光
部の概略的平面図である。
(Example 3) FIG. 4 is a schematic plan view of a light receiving section of a third example of the photoelectric conversion element of the present invention.

同図において、本実施例では、エミッタたるN゛半導体
層6、ベースの一部たるP−半導体層5、コレクタの一
部たるN′″半導体層3及びN−エピタキシャル層4が
正方形となるように構成されている。P44半導層7は
P−半導体層の角の部分に4つ設けられている。
In the figure, in this embodiment, the N' semiconductor layer 6 which is the emitter, the P- semiconductor layer 5 which is part of the base, the N'' semiconductor layer 3 which is part of the collector, and the N- epitaxial layer 4 are arranged in a square shape. Four P44 semiconductor layers 7 are provided at the corner portions of the P- semiconductor layer.

受光面積が拡大しても、P′″半導体層7の長さを長く
することにより、P−半導体層5の面積を拡大しな(も
、キャリア収集が可能となる。
Even if the light-receiving area is expanded, by increasing the length of the P'' semiconductor layer 7, carrier collection becomes possible without increasing the area of the P- semiconductor layer 5.

第5図は、本発明を適用した固体撮像装置の概略的構成
図である。
FIG. 5 is a schematic configuration diagram of a solid-state imaging device to which the present invention is applied.

同図において、光センサがエリア状に配列された撮像素
子201は、垂直走査部202及び水平走査部203に
よってテレビジョン走査が行なわれる。
In the figure, an image sensor 201 in which optical sensors are arranged in an area is subjected to television scanning by a vertical scanning section 202 and a horizontal scanning section 203.

水平走査部203から出力された信号は、処理回路20
4を通して標準テレビジョン信号として出力される。
The signal output from the horizontal scanning section 203 is sent to the processing circuit 20.
4 and output as a standard television signal.

垂直および水平走査部202及び203の駆動パルスφ
■νφM+、φH!l φvs+ φV1.φV2等は
ドライバ205によって供給される。またドライバ20
5はコントローラ206によって制限される。
Drive pulse φ for vertical and horizontal scanning units 202 and 203
■νφM+, φH! l φvs+ φV1. φV2 etc. are supplied by the driver 205. Also driver 20
5 is limited by controller 206.

[発明の効果] 以上説明したように、本発明の光電変換素子によれば、
第1の半導体領域及び第2の主電極領域を第1の主電極
領域に配置し、第1の半導体領域から複数の第2の半導
体領域をそれぞれ異なる方向に出すことにより、生成キ
ャリアを効率良く収集できる効果がある。
[Effects of the Invention] As explained above, according to the photoelectric conversion element of the present invention,
By arranging the first semiconductor region and the second main electrode region in the first main electrode region and ejecting the plurality of second semiconductor regions from the first semiconductor region in different directions, generated carriers can be efficiently generated. There are effects that can be collected.

また、本発明においては、第2の半導体領域の長さは従
来よりも短かくできるため、第1の主電極領域と制御電
極領域との間の容量は小さくなり、高感度化が可能とな
る。
Furthermore, in the present invention, since the length of the second semiconductor region can be made shorter than conventional ones, the capacitance between the first main electrode region and the control electrode region is reduced, making it possible to increase sensitivity. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の光電変換素子の第1実施例の受′光
部の概略的平面図である。 第2図は、上記第1図のB−B ′断面図である。 第3図は、本発明の光電変換素子の第2の実施例の受光
部の概略的平面図である。 第4図は、本発明の光電変換素子の第3の実施例の受光
部の概略的平面図である。 第5図は、本発明を適用した固体撮像装置の概略的構成
図である。 第6図は、従来の光電変換素子の受光部の概略的平面図
である。 第7図は、上記第6図のA−A ′断面図である。 1:P型半導体基板 2:N+埋め込み層 3:N′″半導体層 4:N−エピタキシャル層 5二P−半導体層 6:N′″半導体層 7:P+半導体層 8:絶縁膜 9 :  poly−3L電極 10:配線金属 11:パッシベーション膜
FIG. 1 is a schematic plan view of a light receiving section of a first embodiment of a photoelectric conversion element of the present invention. FIG. 2 is a sectional view taken along line BB' in FIG. 1. FIG. 3 is a schematic plan view of the light receiving section of the second embodiment of the photoelectric conversion element of the present invention. FIG. 4 is a schematic plan view of the light receiving section of the third embodiment of the photoelectric conversion element of the present invention. FIG. 5 is a schematic configuration diagram of a solid-state imaging device to which the present invention is applied. FIG. 6 is a schematic plan view of a light receiving section of a conventional photoelectric conversion element. FIG. 7 is a sectional view taken along the line AA' in FIG. 6. 1: P-type semiconductor substrate 2: N+ buried layer 3: N''' semiconductor layer 4: N- epitaxial layer 5 2 P- semiconductor layer 6: N''' semiconductor layer 7: P+ semiconductor layer 8: Insulating film 9: poly- 3L electrode 10: Wiring metal 11: Passivation film

Claims (3)

【特許請求の範囲】[Claims] (1)第1の主電極領域と、この第1の主電極領域に形
成された制御電極領域と、この制御電極領域に蓄積され
たキャリアに対応する信号を出力する第2の主電極領域
とを有する光電変換素子において、 前記制御電極領域が、一導電型の第1の半導体領域と、
この第1の半導体領域と同一導電型で幅が狭く高導電で
あって、前記第1の半導体領域から前記第1の主電極領
域側へそれぞれ異なる方向に延長して形成された複数の
第2の半導体領域とから形成されていることを特徴とす
る光電変換素子。
(1) A first main electrode region, a control electrode region formed in this first main electrode region, and a second main electrode region that outputs a signal corresponding to carriers accumulated in this control electrode region. In the photoelectric conversion element, the control electrode region includes a first semiconductor region of one conductivity type;
A plurality of second semiconductor regions each having the same conductivity type as the first semiconductor region, having a narrow width and high conductivity, and extending in different directions from the first semiconductor region toward the first main electrode region. A photoelectric conversion element characterized in that it is formed from a semiconductor region.
(2)前記第1の半導体領域を前記第1の主電極領域の
中央部に配置した請求項1記載の光電変換素子。
(2) The photoelectric conversion element according to claim 1, wherein the first semiconductor region is arranged in the center of the first main electrode region.
(3)前記第1の主電極領域、前記第1の半導体領域、
前記第2の主電極領域を同心円状に設けたことを特徴と
する請求項1記載の光電変換素子。
(3) the first main electrode region, the first semiconductor region,
2. The photoelectric conversion element according to claim 1, wherein the second main electrode region is provided concentrically.
JP2207573A 1990-08-07 1990-08-07 Photoelectric conversion element Pending JPH0499072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2207573A JPH0499072A (en) 1990-08-07 1990-08-07 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2207573A JPH0499072A (en) 1990-08-07 1990-08-07 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH0499072A true JPH0499072A (en) 1992-03-31

Family

ID=16541992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2207573A Pending JPH0499072A (en) 1990-08-07 1990-08-07 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0499072A (en)

Similar Documents

Publication Publication Date Title
JP7365601B2 (en) photodetector
US7816755B2 (en) Photoelectric conversion device with isolation arrangement that reduces pixel space without reducing resolution or sensitivity
US6150704A (en) Photoelectric conversion apparatus and image sensor
JPH09199752A (en) Photoelectric conversion system and image reader
JP5677238B2 (en) Solid-state imaging device
JP2002237614A (en) Photoelectric conversion device and its drive method, and information processor
JPH0289368A (en) Solid-state image sensing device
US5162885A (en) Acoustic charge transport imager
JPH10144900A (en) Fabrication on photodetector
JPH0499072A (en) Photoelectric conversion element
JPS59178769A (en) Solid-state image pickup device
KR100769563B1 (en) Image sensor for reducing current leakage
JPS5833373A (en) Semiconductor image pickup device
JPH0499066A (en) Photoelectric conversion device
JPS6255961A (en) Solid state image pick-up device
JPH05190828A (en) Solid-state image-sensing element
JPH043473A (en) Photoelectric conversion device
CN117242585A (en) Light receiving element, X-ray imaging element, and electronic device
KR20240031244A (en) Light receiving devices, X-ray imaging devices, and electronic devices
JP2017076727A (en) Semiconductor device, photodetector, imaging device, and method for manufacturing semiconductor device
JPH0645572A (en) Solid-state image pick-up device with microlens
JPH1126745A (en) Solid-state image pick-up device
JP2001085661A (en) Solid-state imaging device
JPH05335550A (en) Infrared solid state image sensor
JPS63268267A (en) Solid-state image pickup device