JPH0454238B2 - - Google Patents

Info

Publication number
JPH0454238B2
JPH0454238B2 JP1338639A JP33863989A JPH0454238B2 JP H0454238 B2 JPH0454238 B2 JP H0454238B2 JP 1338639 A JP1338639 A JP 1338639A JP 33863989 A JP33863989 A JP 33863989A JP H0454238 B2 JPH0454238 B2 JP H0454238B2
Authority
JP
Japan
Prior art keywords
hologram
plate
transferred
metal material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1338639A
Other languages
Japanese (ja)
Other versions
JPH03200192A (en
Inventor
Takeshi Takenochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP1338639A priority Critical patent/JPH03200192A/en
Priority to US07/721,581 priority patent/US5193014A/en
Priority to EP90917535A priority patent/EP0455823A1/en
Priority to AU68765/91A priority patent/AU634010B2/en
Priority to PCT/JP1990/001548 priority patent/WO1991008525A1/en
Publication of JPH03200192A publication Critical patent/JPH03200192A/en
Publication of JPH0454238B2 publication Critical patent/JPH0454238B2/ja
Priority to AU26238/92A priority patent/AU2623892A/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/024Hologram nature or properties
    • G03H1/0244Surface relief holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2270/00Substrate bearing the hologram
    • G03H2270/10Composition
    • G03H2270/13Metallic

Landscapes

  • Holo Graphy (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ホログラムの製法に関するもので、
より詳細には、金属素材の表面にレリーフ型ホロ
グラムを形成させる方法に関する。 (従来の技術) ホログラムは物体の三次元像の再生が容易であ
ると共に、虹色に光る装飾性を有しており、ギフ
ト、ノベルテイ、或は子供の玩具等のデイスプレ
イの分野、或は書籍、雑誌の表紙、挿絵等の出
版・印刷の分野に用いられている。 更にホログラムは多重記録、或は高密度記録も
可能であり、光メモリーとして応用され、その製
造には精密機器が必要であることから、容易に偽
造もできないので、有価証券、クレジツトカー
ド、IDカード等の分野でも用いられている。 ホログラムの複製については、感光材料を用い
て露光及び干渉等により直接ホログラムを作成す
る方法と、平滑なプラスチツク材料にエンボス加
工して表面レリーフ型のホログラムを作成する方
法が知られている。 (発明が解決しようとする問題点) しかしながら、これらの方法で形成されるホロ
グラムは耐久性や微細なパターンの再現性に欠け
るという欠点がある。 即ち、前者の方法によるものは、一般に種々の
デイスプレイ用品として使用されているが、この
方法は手数がかかりスピードの遅い感光、現像工
程が必要で、大量生産に向いていないという難点
がある。 また、後者の方法は、工具表面に形成されてい
る凹凸の形のホログラムを溶融状態においてプラ
スチツクの表面にレリーフの形で写しとる方法で
あるが、プラスチツクは、溶融時と室温時とにお
ける密度性ガ大で収縮傾向が大であり、寸法精度
が低く、微細なパターンの再現性に乏しい。成形
時に生ずる内部歪により、ホログラムが変形しや
すいことも難点である。 本発明者等は、凹凸の形でホログラムが形成さ
れている略平面状の版と、平滑な表面を有する平
面状の金属素材とを面に直角方向に圧介するとき
には、全く意外にも、金属素材の表面にレリーフ
型ホログラムを転写させることが可能となるこ
と、及びかくして形成されるホログラムは、凹凸
模様の寸法精度や再現性及びホログラムの強度や
耐久性に顕著に優れていることを見出した。 即ち、本発明の目的は、金属素材の表面に、凹
凸模様の寸法精度や再現性に優れ、しかも該模様
の強度や耐久性にも優れたホログラムを形成させ
る方法を提供するにある。 本発明の他の目的は、版の作成と圧介操作との
みが必要で、面倒で手数のかかる操作や精密な加
工条件等が不要であり、従つて、前述した特性を
有するホログラムを安価にしかも効率よく製造し
得る方法を提供するにある。 本発明の更に他の目的は、面の全ゆる部分にお
ける凹凸模様の再現が均一であるホログラムの製
法を提供するにある。 (問題点を解決するための手段) 本発明によれば、表面に向けて凸でゆるやかな
曲面に対して凹凸の形でホログラムが形成されて
いる略平面状の版と、平滑な表面を有する平面状
の金属素材とを面に対して直角方向に冷間で圧介
させ、該金属素材の塑性変形によりその表面にレ
リーフ型ホログラムを転写させることを特徴とす
るホログラムの製法が提供される。 本発明によればまた、表面に向けて凸でゆるや
かな曲面に対して凹凸の形でホログラムが形成さ
れている略平面状の薄い版を緩衝材の層を介して
支持し、この版と、平滑な表面を有する平面状の
金属素材とを面に対して直角方向に冷間で圧介さ
せ、該金属素材の塑性変形によりその表面にレリ
ーフ型ホログラムを転写させることを特徴とする
ホログラムの製法が提供される。 本発明は、表面に向けて凸でゆるやかな曲面に
対して凹凸の形でホログラムが形成されている略
平面状の版と、平滑な表面を有する平面状の金属
素材とを面に対して直角方向に冷間で圧介させた
場合に、寸法精度の高いホログラムが再現性よく
金属素材上に転写されるという知見に基づくもの
である。 (作用) 本発明は、凹凸の形でホログラムが形成されて
いる略平面状の版と、平滑な表面を有する平面状
の金属素材とを、面に対して直角方向に圧介させ
た場合に、寸法精度の高いホログラムが再現性よ
く金属素材上に転写されるという知見に基づくも
のである。 本発明に用いる加工法は、表面に凹凸のある版
(型)で圧し、素材面に型模様をつける加工であ
る点で、コイニング(圧印加工)に属するが、こ
のようなコイニングで微小凹凸のホログラムが形
成されることは本発明以前全く未知のことであ
る。 即ち、本発明に用いるゆるやかな曲面から成る
略平面状の版においては、その凸表面にホログラ
ムが凹凸の形で形成されているが、この凹凸と
は、像として表現すべき原稿からの光の波面に相
当する干渉縞が凹凸の形となつているものであ
り、そのピツチは多くの場合0.1乃至5μmの範囲
にあつて著しく微細のものである。このような微
細な凹凸模様が前述したコイニングにより金属素
材表面に転写されること自体全く予想外の知見で
あつた。 本発明に用いる金属素材は平面状でしかもその
表面は可及的に平滑であることも重要である。一
層具体的には、金属素材の表面は中心線平均あら
さが0.5μm以下、特に0.3μm以下であれば、ホロ
グラムの寸法精度及び再現性に関して満足すべき
結果が得られる。 金属表面における中心線平均あらさ(JIS
B0601)は、あらさ曲線からその中心線の方向に
測定長さの部分を抜き取り、この抜き取り部分
の中心線をX軸、縦倍率の方向をY軸とし、あら
さ曲線をy=f(x)と表わしたとき、次式によ
つて求められる値をマイクロメートル(μm)で
表わしたものをいう。 Ra=1/∫0(Q)f(x)(Q)dx 即ち、中心線平均あらさは、金属表面の垂直方
向の凹凸の程度(振幅の程度)に関係するもので
あり、一方ホログラムの再現性は凹凸のピツチが
面方向に如何に正確に刻まれているかに依存する
ものであるにもかかわらず、本発明においては、
Raが0.5μmを超えると凹凸パターンが転写され
ない部分が生じ、再現性のシグナル/ノイズ比
(s/n比)が小さくなり、再生像がノイズに埋
没される傾向があるのに対して、Raを0.5μm以
下とすることにより、シグナル/ノイズ比を実用
上差支えない範囲に向上させ得るものである。 ところで、剛体から成る版を型打加工(スタン
ピング)に使用すると、接触圧力は周辺部におい
て最も大きく、中心部に向うに従つて小さくなる
ことから、これに接する金属素材においても前記
周辺部に対応する部分では塑性変形が大きく、前
記中心部に対応する部分では塑性変形が小さく、
従つて加工後の金属素材では、周辺部程凹凸の程
度が大きく中心部程凹凸の程度の小さく不均一な
ホログラムが形成される傾向が認められる。 本発明においては、略平面状の版として、表面
に向けて凸でゆるやかな曲面を形成している版を
使用することにより版と金属との接触圧力が周辺
部においても中心部分においても一様となり、ど
の部分においても均一且つ一様なホログラムを金
属素材表面に形成させることが可能となる。 また、本発明の別の態様では、版を薄くして可
変形性を持たせると共に、緩衝材層を介して圧介
操作を行うことにより、接触圧力が接触面のどの
部分においても一様となり、版の凹凸模様が金属
素材に対して均一にしかも忠実に転写され、再現
されることになる。 更に、金属素材は如何に表面が平滑であるとい
つても、その表面には無視できない程のうねりや
山谷が存在することが多いが、後者の版の構成を
採用すると、これらの非平滑性要因が版により吸
収緩和され、これらの要因の有無にかかわらず均
一且つ一様なレリーフ型ホログラムの転写が可能
となる。 また、本発明においては、室温の状態または必
要により冷却された状態で十分圧介することがで
きるため、寸法精度に優れ、微細なパターンの再
現をすることができるのである。 (発明の好適態様) 本発明の方法を説明するための第1図におい
て、撮影工程Aにおいて、レーザ光源1、ホトレ
ジスト感光層2、原稿3及び反射鏡4を、原稿3
からの反射光線と、反射鏡4からの参照反射光と
が同時にホトレジスト層に入射する位置関係で配
置する。これによりホトレジスト層には、像とし
て表現すべき原稿からの光の波面に相当する干渉
縞が形成される。ホトレジスト層2は、露光部分
が硬化するネガ型のものでも露光部が溶解するポ
ジ型のものであつてもよい。 現像工程Bにおいて、露光済ホトレジスト層
2′をそれ自体公知の現像処理に付する。これに
より未硬化の未露光部分或は溶解性の露光部分5
が溶解され表面に凹凸パターン6を有するホトレ
ジスト版7が形成される。 金属版型の製作工程Cにおいて、ホトレジスト
版7の表面に金属薄膜層8を蒸着或は無電解メツ
キ等の手段により形成させ、これを電気鋳造操作
に付することによつて、ニツケルまたはクロム等
の硬質金属から成る金属版型9を形成させる。こ
の金属版型からホトレジスト層7を機械的に剥離
するか、化学的に溶解するかして、金属版型9の
みを取り出す。 金属素材への転写工程Dにおいて、上側圧子1
0に凹凸パターン6′を有する金属版型9を取付
け、一方下側圧子11に金属素材12を支持さ
せ、これらの面に対し直角方向(矢印方向)に両
者を圧介させて、金属素材12の表面にレリーフ
型ホログラム6″を形成させる。 第1−A図乃至第1−D図においては、図の簡
略化のために、版9を平面状に表わしているが、
本発明においては、前述した通り接触圧力がどの
部分でも一様となるように、版9を支持する上側
圧子10の支持面13を凸で緩やかな曲面からな
る略平面状のものを採用している。この凸の程度
を強調して第1−D図を示したものが第2図であ
る。曲面の形状は、例えば球面、楕円回転面、放
物線回転面、双曲線回転面等の任意の二次曲線回
転面であつてよいが、この例に限定されない。ま
た、この曲面の径(D)と凸出寸法(P)との比
(P/D)は、一般にP/D=1.0×10-5乃至5.0×
10-2特に5.0×10-5乃至1.0×10-2の範囲にあるの
がよい。 また、本発明の最も好適な態様では、第3図に
示す通り、変形可能な薄手の金属版型9aを、緩
衝材層14を介して第1図及び第2図の上側圧子
10に支持されるようにする。 ホトレジスト層のホログラムの作成方法は、従
来公知の方法を採用することができる。例えば、
像として表現すべき原稿(以下単に原稿という)
にレーザ光(例えば、Ar+レーザー、488nm、出
力5mw)に照射して得られる原稿からの反射光
と、同一の光源から分割した参照光とを同時にホ
トレジストを塗布した乾板に入射させ、原稿から
の光の波面に相当する干渉縞を乾板に記録するこ
とにより、原稿の撮影を2乃至60分間行つた後こ
れを現像し、干渉縞の凹凸パターンを得えること
ができる。 ホトレジストは、通常低感度であるので、一旦
銀塩感光材料を用いて撮影を行い原版ホログラム
を得て、これをホトレジストと密着させた後、原
版ホログラムを通してホトレジストに露光して原
版ホログラムの干渉縞をホトレジストに複写し、
その後ホトレジストを現像する方法も採用するこ
とができる。 ホトレジスト層としては、光遊離反応、光分解
反応、光レドツクス反応、光重合反応、光橋かけ
反応等を利用したそれ自体公知のホトレジスト材
料、例えばジアゾ樹脂、環化ポリイソプレン系樹
脂、フエノール樹脂、ノボラツク樹脂等を使用す
ることができる。 次いで、ホトレジスト原版表面に、蒸着法によ
り金の薄膜、或は無電解メツキ法により銀の薄膜
を形成することにより導電性を与え、この薄膜を
電極として通常の電気メツキ法によりニツケルメ
ツキ、クロムメツキ等の金属メツキ層をホトレジ
スト原版表面に形成させる。版の厚みは、25乃至
200μm、特に30乃至100μmの範囲が適当である。 緩衝材としては、圧縮弾性率が1×106Pa乃至
1×1010Pa、特に1×106Pa乃至1×109Paの範
囲にあり、弾性限界が高くて、復原力の大きい任
意の材料、例えばポリプロピレン、ポリエステ
ル、ポリアミド、ポリ塩化ビニル等の各種プラス
チツクや、天然又は合成の各種ゴム等が使用さ
れ、その厚みは10μm乃至200μm、特に30μm乃至
100μmの範囲にあるのがよい。 ホログラムが転写されるべき金属表面は、Ra
が前述した範囲内にあるものであればよく、また
版の凹凸のパターンを再現性よく転写すること及
び金属版型の寿命を考慮すると、転写されるべき
金属表面の硬度が金属版型表面の硬度より低いこ
とが必要である。材料としては、一般には表面の
ビツカーズ硬度が300以下、特に200以下であるも
のが好ましく、例えば、純アルミニウムやアルミ
ニウム合金単独から成るものを使用し得る他、表
面に軟質金属をメツキ処理した鋼板類、例えば、
ブリキ、アルミメツキ鋼板、錫ニツケルメツキ鋼
板等を使用できる。 また、金属素材としては、上述した金属板の他
に、表面が金属から成るという条件下で、金属板
と他の材料、例えば各種プラスチツクとの積層体
も用いることができる。 圧介に用いる圧力は、版の模様が金属素材表面
にレリーフ型ホログラムとして転写されるような
ものであり、一般に5乃至50kgf/mm2、特に10
乃至30kgf/mm2の圧力が適当である。圧介の温
度は室温で十分であるが、所望により冷却するこ
ともできる。 レリーフ型ホログラムを形成させた金属素材
は、種々の用途に供することができる。例えばこ
のホログラムを形成させた金属素材は絞り加工を
施しても、ホログラムが失われないことから、絞
り缶胴やキヤツプ、缶蓋等への加工に用いること
ができるし、また溶接や接着或いはハンダ付によ
る側面継目缶胴の製造に用いることができる。勿
論、このホログラム付金属素材を、各種表示用プ
レート乃至ラベル或いはシールやメダルの用途に
供することもできる。 本発明においては、金属表面にホログラムを転
写させた後に、該表面に透明樹脂保護層を形成さ
せることもできる。塗料としてて用いることがで
きるのは、これに限定されないが、熱硬化性樹脂
塗料、例えば、フエノールーホルムアルデヒド樹
脂、フランーホルムアルデヒド樹脂、キシレンー
ホルムアルデヒド樹脂、ケトンーホルムアルデヒ
ド樹脂、尿素−ホルムアルデヒド樹脂、メラミン
ーホルムアルデヒド樹脂、アルキツド樹脂、不飽
和ポリエステル樹脂、エポキシ樹脂、ビスマレイ
ミド樹脂、トリアリルシアネレート樹脂、熱硬化
型アクリル樹脂、シリコーン樹脂、油性樹脂、或
は熱可塑性樹脂塗料、例えば、塩化ビニルー酢酸
ビニル共重合体、塩化ビニルー酢酸ビニル共重合
体部分ケン化物、塩化ビニルーマレイン酸共重合
体、塩化ビニルーマレイン酸ー酢酸ビニル共重合
体、アクリル重合体、飽和ポリエステル樹脂等を
挙げることができる。これらの樹脂塗料は単独で
も2種以上の組合せでも使用される。 この際、形成される膜厚は1乃至15μm、特に
3乃至10μmであることが好ましい。上記範囲よ
りも厚いとホログラムが鮮明に見えなくなるおそ
れがあり、また上記範囲よりも薄いと保護層とし
ての機能を果たさなくなるおそれがある。塗布の
方法としては、スプレー法、ロール法等従来公知
の方法により施すことができる。塗膜の焼付けは
160乃至210℃の温度で5乃至15分間行うことが好
ましい。 (発明の効果) 本発明によれば、表面に向けて凸でゆるやかな
曲面に対して凹凸の形でホログラムが形成されて
いる略平面状の版と、平滑な表面を有する平面状
の金属素材とを面に対して直角方向に冷間で圧介
させることにより、金属表面に凹凸模様の寸法精
度や再現性に優れしかも該模様の強度や耐久性に
も優れたレリーフ型ホログラムを高い生産性をも
つて容易に形成することが可能となつた。しかも
版と金属素材との接触圧力がどの部分でも一様で
あり、均一且つ一様なホログラムを金属素材表面
に形成させることが可能となつた。 また薄い版が緩衝材の層を介して設けられてい
るものを用いることにより、金属素材に非平滑性
要因があつても、これを吸収緩和して一様なレリ
ーフ型ホログラムの形成が可能となつた。 (実施例) 実施例 1 ピツチが0.4〜5μmにわたつて分布し、溝深さ
が1μmの凹凸縞の形でホログラムが形成されてい
る厚さ50μmのニツケル版を、ロツクウエル硬度
Cスケール60に調質し表面に硬質クロムメツキを
施した工具鋼からなる表面形状が半径2000mmの球
面形状である支持具に取付けて直径20mmの円形断
面形状を有する転写用上型を製作した。この上型
と、ロツクウエル硬度Cスケール60に調質し表面
に硬質クロムメツキを施した工具鋼からなる平面
度0.1μm、Rnax0.01μmの表面を有する下型をプレ
ス装置に取付け、厚さ0.32mm、中心線平均粗さ
0.1μm、ビツカース硬度95のアルミニウム合金板
(JIS A 3004 P)を上下型間において、9tonの
押圧力で版とアルミニウム合金板を圧介させたと
ころ、表1に示すように、版型の全領域にわたつ
てホログラムが良好に転写された。転写されたホ
ログラムの溝深さを触針式粗さ計で測定したとこ
ろ、溝深さは転写領域の全体にわたつて均一に
1μmであつた。 実施例 2 ホログラムが形成されているニツケル版を厚さ
50μmのゴム製緩衝材を介して上型支持具に取付
ける他は実施例1と同様にしてホログラムを転写
したところ、表1に示すように、版型の全領域に
わたつてホログラムが良好に転写された。転写さ
れたホログラムの溝深さは転写領域の全体にわた
つて均一に0.9μmであつた。 比較例 1 上型支持具の表面形状が平面度0.1μm、Rnax
0.01μmの平面である他は実施例1と、同様にし
てホログラムを転写したところ、表1に示すよう
に、版型の全領域にわたつてホログラムが転写さ
れたが、転写されたホログラムの溝深さは連続的
に変化し、転写領域の外縁部で1μm、中心部では
0.2μmであつた。 比較例 2 ホログラムが形成されているニツケル版を厚さ
50μmのゴム製緩衝材を介して上型支持具に取付
ける他は比較例1と同様にしてホログラムを転写
したところ、表1に示すように、版型の全領域に
わたつてホログラムが転写されたが、転写された
ホログラムの溝深さは転写領域の外縁部で
0.9μm、中心部では0.6μmであつた。 比較例 3 被転写材の表面に表面粗さ測定のカツトオフ値
より長い周期約1mm、高さ約2μmのうねりを有す
る他は比較例2と同様にしてホログラムを転写し
たところ、表1に示すように、版型の全領域にわ
たつてホログラムが転写されたが、転写されたホ
ログラムの溝深さは転写領域の外縁部で0.9μm、
中心部では0.6μmであつた。 比較例 4 被転写材が厚さ0.24mm、錫メツキ量2.8g/m2
(片面当たり)、中心線平均粗さ0.08μm、ビツカ
ース硬度95の錫メツキ鋼板である他は比較例1と
同様にしてホログラムを転写したところ、表1に
示すように、版型の全領域にわたつてホログラム
が転写されたが、転写されたホログラムの溝深さ
は転写領域の外縁部で1μm、中心部では0.2μmで
あつた。 比較例 5 押圧力が1tonである他は比較例1と同様にして
ホログラムを転写したところ、表1に示すよう
に、版の接触した外縁部にはホログラムが転写さ
れたが中心部の直径8mm内の領域では転写されな
かつた。転写されたホログラムの溝深さは最大で
も0.2μmであつた。 比較例 6 押圧力が20tonである他は比較例1と同様にし
てホログラムを転写したところ、表1に示すよう
に、直径版型の形状に対応する凹みは形成された
が、ホログラムは転写されなかつた。また押圧に
よる非転写材の反りが起こり板材の品質が劣化し
た。 比較例 7 上型支持具の表面形状が半径500mmの球面形状
であるほかは比較例1と同様にしてホログラムを
転写したところ、表1に示すように、ホログラム
は直径16mmの範囲にしか転写されなかつた。また
押圧による非転写材の反りが起こり板材の品質が
劣化した。 比較例 8 ホログラムが形成されているニツケル版の厚さ
が20μmである他は実施例1と同様にしてホログ
ラムを転写したところ、表1に示すように、押圧
によつて版が破れ、ホログラムは転写されなかつ
た。 比較例 9 ホログラムが形成されているニツケル版の厚さ
が250μmである他は実施例1と同様にしてホログ
ラムを転写したところ、表1に示すように、押圧
によつて版が破れ、ホログラムは転写されなかつ
た。 比較例 10 ホログラムが形成されているニツケル版を厚さ
300μmのゴム製緩衝材を介して上型支持具に取り
付ける他は比較例1と同様にしてホログラムを転
写したところ、表1に示すように、緩衝材の変形
によつて押圧力が吸収され、ホログラムは転写さ
れなかつた。 【表】
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a hologram,
More specifically, the present invention relates to a method of forming a relief hologram on the surface of a metal material. (Prior art) Holograms are easy to reproduce three-dimensional images of objects, and have a decorative effect that shines in rainbow colors, and are used in the field of displays such as gifts, novelties, and children's toys, and in books. , used in the field of publishing and printing, such as magazine covers and illustrations. In addition, holograms can be used for multiple recording or high-density recording, and are used as optical memories.Holograms require precision equipment to manufacture, so they cannot be easily counterfeited, so they are used in securities, credit cards, and ID cards. It is also used in other fields. Regarding the reproduction of holograms, two methods are known: one is to directly create a hologram using a photosensitive material through exposure and interference, and the other is to create a surface relief type hologram by embossing a smooth plastic material. (Problems to be Solved by the Invention) However, holograms formed by these methods have drawbacks such as lack of durability and reproducibility of fine patterns. That is, the former method is generally used for various display items, but this method requires laborious and slow exposure and development steps, and has the disadvantage that it is not suitable for mass production. In addition, the latter method is a method in which a hologram in the form of unevenness formed on the tool surface is transferred in the form of a relief onto the surface of plastic in a molten state. It has a large size and a tendency to shrink, has low dimensional accuracy, and has poor reproducibility of fine patterns. Another drawback is that the hologram is easily deformed due to internal distortion that occurs during molding. The present inventors discovered that when pressing a substantially planar plate on which a hologram is formed in the form of unevenness and a planar metal material having a smooth surface in a direction perpendicular to the surface, the metal We have discovered that it is possible to transfer a relief-type hologram onto the surface of a material, and that the hologram thus formed is significantly superior in the dimensional accuracy and reproducibility of the uneven pattern, as well as in the strength and durability of the hologram. . That is, an object of the present invention is to provide a method for forming a hologram on the surface of a metal material, which has an uneven pattern with excellent dimensional accuracy and reproducibility, and also has excellent strength and durability of the pattern. Another object of the present invention is to make it possible to produce holograms having the above-mentioned characteristics at a low cost by requiring only the creation of a plate and a pressing operation, and eliminating the need for troublesome and time-consuming operations or precise processing conditions. Moreover, the purpose is to provide a method that can be manufactured efficiently. Still another object of the present invention is to provide a method for manufacturing a hologram in which the uneven pattern is uniformly reproduced on all parts of the surface. (Means for Solving the Problems) According to the present invention, there is provided a substantially planar plate in which a hologram is formed in an uneven shape on a gently curved surface that is convex toward the surface, and a plate that has a smooth surface. A method for manufacturing a hologram is provided, which is characterized in that a planar metal material is cold pressed in a direction perpendicular to the plane, and a relief-type hologram is transferred to the surface of the metal material by plastic deformation of the metal material. According to the present invention, a substantially planar thin plate on which a hologram is formed in an uneven shape on a gently curved surface that is convex toward the surface is supported via a layer of cushioning material, and this plate and A method for producing a hologram, which comprises cold pressing a flat metal material having a smooth surface in a direction perpendicular to the surface, and transferring a relief-type hologram onto the surface by plastic deformation of the metal material. is provided. The present invention provides a substantially planar plate in which a hologram is formed in the form of convexes and convexes on a gently curved surface that is convex toward the surface, and a planar metal material having a smooth surface at right angles to the surface. This is based on the knowledge that a hologram with high dimensional accuracy can be transferred onto a metal material with good reproducibility when it is cold pressed in the direction of the metal material. (Function) The present invention is applicable to the case where a substantially planar plate on which a hologram is formed in the form of unevenness and a planar metal material having a smooth surface are pressed together in a direction perpendicular to the surface. This is based on the knowledge that holograms with high dimensional accuracy can be transferred onto metal materials with good reproducibility. The processing method used in the present invention belongs to coining (coining) in that it presses with a plate (mold) with an uneven surface to create a pattern on the surface of the material. The formation of holograms was completely unknown prior to the present invention. That is, in the substantially planar plate with a gently curved surface used in the present invention, a hologram is formed in the form of unevenness on its convex surface, and these unevenness are caused by light emitted from the document to be expressed as an image. The interference fringes corresponding to the wavefront are uneven, and the pitch is extremely fine, often in the range of 0.1 to 5 μm. The fact that such a fine uneven pattern was transferred to the surface of the metal material by the above-mentioned coining was itself a completely unexpected finding. It is also important that the metal material used in the present invention is planar and that its surface is as smooth as possible. More specifically, if the center line average roughness of the surface of the metal material is 0.5 μm or less, particularly 0.3 μm or less, satisfactory results can be obtained regarding the dimensional accuracy and reproducibility of the hologram. Centerline average roughness of metal surface (JIS
B0601) extracts a portion of the measured length from the roughness curve in the direction of its center line, sets the center line of this sampled portion as the When expressed, it refers to the value determined by the following formula expressed in micrometers (μm). Ra=1/∫ 0 (Q)f(x)(Q)dx In other words, the centerline average roughness is related to the degree of unevenness (degree of amplitude) in the vertical direction of the metal surface, while the hologram reproduction Although the quality depends on how accurately the pitch of the unevenness is carved in the surface direction, in the present invention,
If Ra exceeds 0.5 μm, there will be parts where the concavo-convex pattern is not transferred, the signal/noise ratio (s/n ratio) of reproducibility will become small, and the reproduced image will tend to be buried in noise. By setting the distance to 0.5 μm or less, the signal/noise ratio can be improved to a practically acceptable range. By the way, when a rigid plate is used for stamping, the contact pressure is greatest at the periphery and decreases toward the center, so the contact pressure also applies to the metal material in contact with the periphery. The plastic deformation is large in the part corresponding to the central part, and the plastic deformation is small in the part corresponding to the central part.
Therefore, in the metal material after processing, there is a tendency for a non-uniform hologram to be formed, with the degree of unevenness being greater at the periphery and less at the center. In the present invention, by using a substantially flat plate having a convex and gently curved surface toward the surface, the contact pressure between the plate and the metal is uniform both at the periphery and at the center. Therefore, it becomes possible to form a uniform and uniform hologram on the surface of the metal material in any part. In addition, in another aspect of the present invention, the plate is made thinner to have deformability, and the pressure operation is performed through the cushioning material layer, so that the contact pressure is uniform on all parts of the contact surface. , the uneven pattern of the plate is transferred and reproduced uniformly and faithfully to the metal material. Furthermore, no matter how smooth the surface of a metal material is, there are often undulations and peaks and valleys on the surface that cannot be ignored. The factors are absorbed and relaxed by the plate, and it becomes possible to uniformly and uniformly transfer a relief type hologram regardless of the presence or absence of these factors. Furthermore, in the present invention, sufficient pressure can be applied at room temperature or in a cooled state if necessary, so that dimensional accuracy is excellent and fine patterns can be reproduced. (Preferred Embodiment of the Invention) In FIG. 1 for explaining the method of the present invention, in the photographing step A, a laser light source 1, a photoresist photosensitive layer 2, an original 3, and a reflecting mirror 4 are
The photoresist layer is arranged in a positional relationship such that the reflected light from the mirror 4 and the reference reflected light from the reflecting mirror 4 are simultaneously incident on the photoresist layer. As a result, interference fringes corresponding to the wavefront of light from the original to be expressed as an image are formed on the photoresist layer. The photoresist layer 2 may be of a negative type, in which exposed areas harden, or of positive type, in which exposed areas dissolve. In a development step B, the exposed photoresist layer 2' is subjected to a development process known per se. As a result, the uncured unexposed area or the soluble exposed area 5
is melted to form a photoresist plate 7 having an uneven pattern 6 on its surface. In the manufacturing process C of the metal plate mold, a metal thin film layer 8 is formed on the surface of the photoresist plate 7 by means such as vapor deposition or electroless plating, and this is subjected to an electroforming operation to form a layer of nickel, chromium, etc. A metal plate mold 9 made of hard metal is formed. The photoresist layer 7 is mechanically peeled off from the metal plate mold or chemically dissolved, and only the metal plate mold 9 is taken out. In the transfer process D to the metal material, the upper indenter 1
A metal plate mold 9 having a concavo-convex pattern 6' is attached to the metal plate 9, and the metal material 12 is supported by the lower indenter 11. A relief-type hologram 6'' is formed on the surface of the plate 9. In FIGS. 1-A to 1-D, the plate 9 is shown in a planar shape for the sake of simplification.
In the present invention, as described above, the support surface 13 of the upper indenter 10 that supports the plate 9 is formed into a substantially flat surface with a convex and gently curved surface so that the contact pressure is uniform at all parts. ing. FIG. 2 shows FIG. 1-D with emphasis on the degree of this convexity. The shape of the curved surface may be any quadratic surface of revolution, such as a spherical surface, an elliptical surface of revolution, a parabolic surface of revolution, or a hyperbolic surface of revolution, but is not limited to this example. In addition, the ratio (P/D) between the diameter (D) of this curved surface and the protrusion dimension (P) is generally P/D=1.0×10 -5 to 5.0×
10 -2 Particularly preferably in the range of 5.0 x 10 -5 to 1.0 x 10 -2 . Furthermore, in the most preferred embodiment of the present invention, as shown in FIG. 3, a deformable thin metal plate mold 9a is supported by the upper indenter 10 in FIGS. 1 and 2 via a cushioning material layer 14. to be done. A conventionally known method can be used to create the hologram of the photoresist layer. for example,
Manuscript to be expressed as an image (hereinafter simply referred to as the manuscript)
The reflected light from the document obtained by irradiating it with a laser beam (for example, Ar + laser, 488 nm, output 5 mw) and the reference light split from the same light source are simultaneously incident on a dry plate coated with photoresist, and the light reflected from the document is By recording interference fringes corresponding to the wavefront of light on a dry plate, an uneven pattern of interference fringes can be obtained by photographing the original for 2 to 60 minutes and then developing it. Photoresists usually have low sensitivity, so once an image is taken using a silver salt photosensitive material to obtain an original hologram, and this is brought into close contact with the photoresist, the photoresist is exposed through the original hologram to create interference fringes on the original hologram. Copy onto photoresist,
A method of developing the photoresist after that can also be adopted. The photoresist layer may be a photoresist material known per se that utilizes photo-release reaction, photo-decomposition reaction, photo-redox reaction, photo-polymerization reaction, photo-crosslinking reaction, etc., such as diazo resin, cyclized polyisoprene resin, phenolic resin, etc. Novolak resin etc. can be used. Next, conductivity is imparted to the surface of the photoresist original plate by forming a thin film of gold by vapor deposition or a thin film of silver by electroless plating, and this thin film is used as an electrode for nickel plating, chrome plating, etc. by ordinary electroplating. A metal plating layer is formed on the surface of the photoresist original. The thickness of the plate is 25 to
A range of 200 μm, particularly 30 to 100 μm, is suitable. As a cushioning material, any material with a compressive modulus of elasticity in the range of 1×10 6 Pa to 1×10 10 Pa, especially 1×10 6 Pa to 1×10 9 Pa, a high elastic limit, and a large restoring force can be used. Materials used include various plastics such as polypropylene, polyester, polyamide, and polyvinyl chloride, various natural or synthetic rubbers, and the thickness thereof is 10 μm to 200 μm, particularly 30 μm to 30 μm.
It is preferable that it be in the range of 100 μm. The metal surface to which the hologram is to be transferred must be Ra
It is sufficient that the hardness of the metal surface to be transferred is within the above-mentioned range, and considering that the uneven pattern of the plate should be transferred with good reproducibility and the life of the metal plate mold, the hardness of the metal surface to be transferred should be the same as the surface of the metal plate mold. It is necessary that the hardness is lower than the hardness. The material is generally one whose surface has a Vickers hardness of 300 or less, particularly 200 or less. For example, materials made of pure aluminum or aluminum alloy alone can be used, as well as steel plates whose surfaces are plated with a soft metal. ,for example,
Tin plate, aluminized steel plate, tin-nickel plated steel plate, etc. can be used. In addition to the above-mentioned metal plates, the metal material may also be a laminate of a metal plate and other materials, such as various plastics, provided that the surface is made of metal. The pressure used for pressing is such that the pattern of the plate is transferred to the surface of the metal material as a relief hologram, and is generally 5 to 50 kgf/mm 2 , particularly 10 kgf/mm 2 .
A pressure of 30 kgf/mm 2 is suitable. Room temperature is sufficient for the temperature of the pressurization, but it can be cooled if desired. A metal material on which a relief hologram is formed can be used for various purposes. For example, the hologram will not be lost even if the metal material on which this hologram is formed is subjected to drawing processing, so it can be used for processing into drawn can bodies, caps, can lids, etc., and it can also be used for processing into drawn can bodies, caps, can lids, etc., and can also be welded, glued, or soldered. Can be used to manufacture can bodies with side seams. Of course, this hologram-attached metal material can also be used for various display plates, labels, stickers, and medals. In the present invention, after the hologram is transferred to the metal surface, a transparent resin protective layer can also be formed on the surface. Examples of paints that can be used as paints include, but are not limited to, thermosetting resin paints such as phenol-formaldehyde resin, furan-formaldehyde resin, xylene-formaldehyde resin, ketone-formaldehyde resin, urea-formaldehyde resin, Melamine-formaldehyde resins, alkyd resins, unsaturated polyester resins, epoxy resins, bismaleimide resins, triallyl cyanerate resins, thermosetting acrylic resins, silicone resins, oil-based resins, or thermoplastic resin coatings, such as vinyl chloride Examples include vinyl acetate copolymer, partially saponified vinyl chloride-vinyl acetate copolymer, vinyl chloride-maleic acid copolymer, vinyl chloride-maleic acid-vinyl acetate copolymer, acrylic polymer, saturated polyester resin, etc. can. These resin coatings may be used alone or in combination of two or more. At this time, the thickness of the formed film is preferably 1 to 15 μm, particularly 3 to 10 μm. If it is thicker than the above range, the hologram may not be clearly visible, and if it is thinner than the above range, it may not function as a protective layer. The coating can be applied by conventionally known methods such as a spray method and a roll method. Baking the paint film
Preferably, the heating is carried out at a temperature of 160 to 210°C for 5 to 15 minutes. (Effects of the Invention) According to the present invention, there is provided a substantially planar plate in which a hologram is formed in an uneven shape on a gently curved surface that is convex toward the surface, and a planar metal material having a smooth surface. By applying cold pressure to the metal surface in a direction perpendicular to the surface, a relief-type hologram with excellent dimensional accuracy and reproducibility of the uneven pattern on the metal surface, as well as excellent strength and durability of the pattern, can be produced with high productivity. It has become possible to easily form the structure. Moreover, the contact pressure between the plate and the metal material is uniform at all parts, making it possible to form a uniform and uniform hologram on the surface of the metal material. In addition, by using a thin plate with a layer of cushioning material in between, even if there is a non-smoothness factor in the metal material, it is possible to absorb and alleviate this and form a uniform relief-type hologram. Summer. (Example) Example 1 A 50 μm thick nickel plate on which a hologram was formed in the form of uneven stripes with pitches distributed over 0.4 to 5 μm and a groove depth of 1 μm was adjusted to Rockwell hardness C scale 60. An upper mold for transfer having a circular cross-sectional shape of 20 mm in diameter was manufactured by attaching it to a support made of tool steel with hard chrome plating on the surface and having a spherical surface shape with a radius of 2000 mm. This upper mold and the lower mold, which is made of tool steel tempered to Rockwell hardness C scale 60 and hard chrome plated on the surface, have a flatness of 0.1 μm and an R nax of 0.01 μm, and are attached to a press machine to form a mold with a thickness of 0.32 mm. , centerline average roughness
When an aluminum alloy plate (JIS A 3004 P) with a 0.1 μm and Bitkers hardness of 95 was placed between the upper and lower molds and the plate and aluminum alloy plate were pressed together with a pressing force of 9 tons, as shown in Table 1, the entire plate mold was The hologram was transferred well over the area. When we measured the groove depth of the transferred hologram with a stylus roughness meter, we found that the groove depth was uniform over the entire transfer area.
It was 1 μm. Example 2 The thickness of the nickel plate on which the hologram is formed
The hologram was transferred in the same manner as in Example 1 except that it was attached to the upper die support via a 50 μm rubber cushioning material. As shown in Table 1, the hologram was transferred well over the entire area of the plate. It was done. The groove depth of the transferred hologram was uniformly 0.9 μm over the entire transfer area. Comparative example 1 The surface shape of the upper mold support has a flatness of 0.1 μm and R nax
A hologram was transferred in the same manner as in Example 1 except that the plane was 0.01 μm. As shown in Table 1, the hologram was transferred over the entire area of the printing plate, but the grooves of the transferred hologram The depth varies continuously, from 1 μm at the outer edge of the transfer area to at the center.
It was 0.2 μm. Comparative example 2 The thickness of the nickel plate on which the hologram is formed
When the hologram was transferred in the same manner as in Comparative Example 1 except that it was attached to the upper die support via a 50 μm rubber cushioning material, the hologram was transferred over the entire area of the plate, as shown in Table 1. However, the groove depth of the transferred hologram is at the outer edge of the transferred area.
It was 0.9 μm, and 0.6 μm in the center. Comparative Example 3 A hologram was transferred in the same manner as Comparative Example 2, except that the surface of the transferred material had undulations with a period of about 1 mm longer than the cutoff value for surface roughness measurement and a height of about 2 μm, and as shown in Table 1. The hologram was transferred over the entire area of the printing plate, but the groove depth of the transferred hologram was 0.9 μm at the outer edge of the transfer area.
In the center, it was 0.6 μm. Comparative example 4 Transferred material has a thickness of 0.24 mm and a tin plating amount of 2.8 g/m 2
The hologram was transferred in the same manner as in Comparative Example 1, except that the center line average roughness was 0.08 μm and the Vickers hardness was 95. The hologram was transferred across the area, and the groove depth of the transferred hologram was 1 μm at the outer edge of the transfer area and 0.2 μm at the center. Comparative Example 5 A hologram was transferred in the same manner as in Comparative Example 1 except that the pressing force was 1 ton. As shown in Table 1, the hologram was transferred to the outer edge where the plate contacted, but the center diameter was 8 mm. No transcription occurred in the inner region. The maximum groove depth of the transferred hologram was 0.2 μm. Comparative Example 6 A hologram was transferred in the same manner as Comparative Example 1 except that the pressing force was 20 tons. As shown in Table 1, a depression corresponding to the shape of the diameter plate was formed, but the hologram was not transferred. Nakatsuta. In addition, the non-transfer material warped due to the pressure, and the quality of the board material deteriorated. Comparative Example 7 A hologram was transferred in the same manner as in Comparative Example 1 except that the surface shape of the upper die support was a spherical shape with a radius of 500 mm. As shown in Table 1, the hologram was transferred only within a 16 mm diameter range. Nakatsuta. In addition, the non-transfer material warped due to the pressure, and the quality of the board material deteriorated. Comparative Example 8 A hologram was transferred in the same manner as in Example 1 except that the thickness of the nickel plate on which the hologram was formed was 20 μm. As shown in Table 1, the plate was torn by the pressure and the hologram was It was not transcribed. Comparative Example 9 A hologram was transferred in the same manner as in Example 1 except that the thickness of the nickel plate on which the hologram was formed was 250 μm. As shown in Table 1, the plate was torn by the pressure and the hologram was It was not transcribed. Comparative Example 10 The thickness of the nickel plate on which the hologram is formed
When the hologram was transferred in the same manner as in Comparative Example 1 except that it was attached to the upper mold support via a 300 μm rubber cushioning material, as shown in Table 1, the pressing force was absorbed by the deformation of the cushioning material. The hologram was not transferred. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のレリーフ型ホログラムを作
成するための撮影工程A、現像工程B、金属版型
の作成工程C及び金属素材の転写工程を示す説明
図であり、第2図は、第1−D図を版の凸の程度
を強調して示す図であり、第3図は、転写工程の
別の好適態様を示す断面図である。 1……レーザー光源、2……ホトレジスト感光
層、3……原稿、4……反射鏡、6……凹凸パタ
ーン、8……金属薄膜層、9……金属版型、12
……金属素材。
FIG. 1 is an explanatory diagram showing a photographing step A, a developing step B, a metal plate mold creating step C, and a metal material transfer step for creating a relief hologram of the present invention, and FIG. FIG. 1-D is a diagram emphasizing the degree of convexity of the plate, and FIG. 3 is a cross-sectional view showing another preferred embodiment of the transfer process. DESCRIPTION OF SYMBOLS 1...Laser light source, 2...Photoresist photosensitive layer, 3...Original, 4...Reflector, 6...Irregular pattern, 8...Metal thin film layer, 9...Metal plate mold, 12
...Metal material.

Claims (1)

【特許請求の範囲】 1 表面に向けて凸でゆるやかな曲面に対して凹
凸の形でホログラムが形成されている略平面状の
版と、平滑な表面を有する平面状の金属素材とを
面に対して直角方向に冷間で圧介させ、該金属素
材の塑性変形によりその表面にレリーフ型ホログ
ラムを転写させることを特徴とするホログラムの
製法。 2 表面に向けて凸でゆるやかな曲面に対して凹
凸の形でホログラムが形成されている略平面状の
薄い版を緩衝材の層を介して支持し、この版と、
平滑な表面を有する平面状の金属素材とを面に対
して直角方向に冷間で圧介させ、該金属素材の塑
性変形によりその表面にレリーフ型ホログラムを
転写させることを特徴とするホログラムの製法。
[Claims] 1. A substantially planar plate on which a hologram is formed in the form of convexes and convexes on a gently curved surface that is convex toward the surface, and a planar metal material having a smooth surface. 1. A method for producing a hologram, which comprises cold pressing in a direction perpendicular to a metal material and transferring a relief-type hologram onto the surface of the metal material through plastic deformation. 2. A substantially planar thin plate on which a hologram is formed in the form of convexes and convexes on a gently curved surface that is convex toward the surface is supported via a layer of cushioning material, and this plate and
A method for producing a hologram, which comprises cold pressing a flat metal material having a smooth surface in a direction perpendicular to the surface, and transferring a relief-type hologram onto the surface by plastic deformation of the metal material. .
JP1338639A 1989-11-28 1989-12-28 Production of hologram Granted JPH03200192A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1338639A JPH03200192A (en) 1989-12-28 1989-12-28 Production of hologram
US07/721,581 US5193014A (en) 1989-11-28 1990-11-28 Metal vessel having hologram of diffraction grating formed thereon
EP90917535A EP0455823A1 (en) 1989-11-28 1990-11-28 Metallic container equipped with hologram or diffraction grating
AU68765/91A AU634010B2 (en) 1989-11-28 1990-11-28 Metallic container equipped with hologram or diffraction grating
PCT/JP1990/001548 WO1991008525A1 (en) 1989-11-28 1990-11-28 Metallic container equipped with hologram or diffraction grating
AU26238/92A AU2623892A (en) 1989-11-28 1992-10-07 Metal vessel having hologram of diffraction grating formed thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338639A JPH03200192A (en) 1989-12-28 1989-12-28 Production of hologram

Publications (2)

Publication Number Publication Date
JPH03200192A JPH03200192A (en) 1991-09-02
JPH0454238B2 true JPH0454238B2 (en) 1992-08-28

Family

ID=18320069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338639A Granted JPH03200192A (en) 1989-11-28 1989-12-28 Production of hologram

Country Status (1)

Country Link
JP (1) JPH03200192A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331312A (en) * 2001-05-07 2002-11-19 Sumitomo Metal Mining Co Ltd Marking component for blanking die and blanking die using the same
JP4507591B2 (en) * 2003-01-09 2010-07-21 東洋製罐株式会社 Pattern transfer can and manufacturing method thereof
JP5238193B2 (en) 2007-06-26 2013-07-17 株式会社遠州 Tongue and manufacturing method thereof
JP5554516B2 (en) * 2008-07-01 2014-07-23 紀伊産業株式会社 Decorative molded product manufacturing method and decorative molded product obtained thereby
JP5434451B2 (en) * 2009-10-06 2014-03-05 パナソニック株式会社 Coining mold and scroll compressor for metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865466A (en) * 1981-10-15 1983-04-19 Dainippon Printing Co Ltd Duplicating method for hologram
JPS63138385A (en) * 1986-11-29 1988-06-10 Toppan Printing Co Ltd Hologram press method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5865466A (en) * 1981-10-15 1983-04-19 Dainippon Printing Co Ltd Duplicating method for hologram
JPS63138385A (en) * 1986-11-29 1988-06-10 Toppan Printing Co Ltd Hologram press method

Also Published As

Publication number Publication date
JPH03200192A (en) 1991-09-02

Similar Documents

Publication Publication Date Title
US5193014A (en) Metal vessel having hologram of diffraction grating formed thereon
US6017657A (en) Method for embossing holograms into aluminum and other hard substrates
US5521030A (en) Process for making holographic embossing tools
US4923572A (en) Image transfer tool
DE3788660T2 (en) Method for reproducing a flexible optical information recording medium and holding device for reproducing the medium.
US4211617A (en) Process for producing a stamper for videodisc purposes
JP2814305B2 (en) Optical data storage disk
JPH0354742A (en) Optical disk, production thereof and reading method thereof
JPH0454238B2 (en)
JPS58132271A (en) Manufacture of hologram
JPS60169887A (en) Transfer sheet and method for reproducing hologram image on article surface
JP2006164877A (en) Film light guide plate and its manufacturing method
JPH057265B2 (en)
JP2686667B2 (en) Micro image data recording card
JP2789599B2 (en) Method of manufacturing hologram surface-mounted mold
KR20020042418A (en) Method of reproducing a die and property check method of the same
CN105904864A (en) Manufacturing method for hot-stamped and transferred film with Fresnel lens visual effect
JPH0618746B2 (en) Method for manufacturing molded article having partially vapor-deposited hologram
JPH0138610Y2 (en)
JP2656628B2 (en) Method for manufacturing substrate of optical information recording medium and method for manufacturing roller used in the method
JPH0462668B2 (en)
JPH1153767A (en) Optical data recording disk and its production
JP4482950B2 (en) Manufacturing method of sheet with OVD image
JPH0456282B2 (en)
JPH03235234A (en) Manufacture of roll die to form substrate sheet for information recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 17

LAPS Cancellation because of no payment of annual fees