JPH04341558A - Article with diamondlike protective film and its production - Google Patents

Article with diamondlike protective film and its production

Info

Publication number
JPH04341558A
JPH04341558A JP14267891A JP14267891A JPH04341558A JP H04341558 A JPH04341558 A JP H04341558A JP 14267891 A JP14267891 A JP 14267891A JP 14267891 A JP14267891 A JP 14267891A JP H04341558 A JPH04341558 A JP H04341558A
Authority
JP
Japan
Prior art keywords
film
diamond
substrate
grid
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14267891A
Other languages
Japanese (ja)
Other versions
JP3056827B2 (en
Inventor
Masatoshi Nakayama
正俊 中山
Masanori Shibahara
正典 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3142678A priority Critical patent/JP3056827B2/en
Publication of JPH04341558A publication Critical patent/JPH04341558A/en
Application granted granted Critical
Publication of JP3056827B2 publication Critical patent/JP3056827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce an article with a diamondlike protective thin film having high bonding property to the substrate by successively forming an Mo film and a diamondlike thin film on the surface of a substrate having a poor affinity for the diamondlike thin film. CONSTITUTION:An Mo film and a diamondlike thin film are successively formed on the surface of a substrate S selected among an alloy contg. at least one among Co, Ni and Fe, ceramics and glass and having a poor affinity for the diamondlike thin film. An Mo grid 33 is set near the surface of the substrate S. Mo atoms are stuck on the substrate S with inert gas such as Ar through the grid 33 to form the Mo film. Hydrocarbon having low mol. wt. is ionized and the resulting ions are accelerated to form the diamondlike thin film on the Mo film. Film formation can be carried out even on an electric insulating substrate such as glass or ceramics without hindrance.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ダイヤモンド様薄膜で
保護した物品の製造方法に関し、特に難接着性ないし難
結合性の基体に対するダイヤモンド様薄膜の接着性ない
し結合性を向上させる成膜技術に関する。ただし焼入れ
鋼製金型は別個の出願の対象にしたので本発明には含ま
れない。
[Field of Industrial Application] The present invention relates to a method for manufacturing an article protected with a diamond-like thin film, and more particularly to a film-forming technique for improving the adhesion or bonding properties of a diamond-like thin film to a substrate that is difficult to adhere or bond to. . However, the hardened steel mold is the subject of a separate application and is therefore not included in the present invention.

【0002】0002

【従来技術】気相法により製造されるダイヤモンド様薄
膜は硬度が高く、耐摩耗性、耐久性、耐薬品性、耐食性
等に優れており、また任意形状の物品に被着できるため
、こうした特性の一つ以上が必要な物品の保護膜として
有用であり、或は有望視されている。
[Prior Art] Diamond-like thin films produced by the vapor phase method have high hardness, excellent wear resistance, durability, chemical resistance, corrosion resistance, etc., and can be applied to articles of arbitrary shapes, so these properties It is considered to be useful or promising as a protective film for articles that require one or more of the following.

【0003】気相法によるダイヤモンド様薄膜製造方法
には各種の形式がある(例えば「表面化学」第5巻第1
08号(1984年)第108−115頁の各種の方法
参照)。ダイヤモンド様薄膜は任意形状の保護すべき物
品の表面に被覆され、耐食性、耐摩耗性などの保護膜と
して広く利用される。
There are various methods for producing diamond-like thin films using the vapor phase method (for example, "Surface Chemistry", Vol. 5, No. 1).
08 (1984), pp. 108-115). A diamond-like thin film is coated on the surface of an article to be protected of any shape, and is widely used as a protective film for corrosion resistance, wear resistance, etc.

【0004】しかしこれらの従来技術によって製造され
たダイヤモンド様薄膜は基体の種類によって基体に対す
る結合力が弱く、ダイヤモンド様薄膜が微結晶の集まり
であるため表面粗度が大きいことも原因となって、外力
の作用で基体から剥離し易い問題があった。そのため保
護被覆として耐食性、耐摩耗性等が必要な用途において
充分に効果を発揮出来ない。特にFe系の金属又は合金
(例えば軟鋼(STC)、ステンレス鋼、焼き入れ鋼(
SKD、SKS)等)、その他Co、Niなどの金属の
合金、ガラス、セラミックス等はダイヤモンド様薄膜に
対する結合力が弱いことが知られている。鉄を主成分と
する基体は例えば金型、摺動部材等最も工業的価値の高
いものであるし、又ガラスやセラミックスではサーマル
ヘッド等の摺動部分などに使用されるなど、広い用途を
有するので、これらの基体の表面に形成されるダイヤモ
ンド様薄膜の基体への接着性を向上させることが重要で
ある。
However, the diamond-like thin films produced by these conventional techniques have weak bonding force to the substrate depending on the type of substrate, and because the diamond-like thin film is a collection of microcrystals, the surface roughness is large. There was a problem in that it was easy to peel off from the substrate due to the action of external force. Therefore, it cannot be sufficiently effective as a protective coating in applications where corrosion resistance, abrasion resistance, etc. are required. Especially Fe-based metals or alloys (e.g. mild steel (STC), stainless steel, hardened steel (
SKD, SKS), alloys of other metals such as Co and Ni, glass, ceramics, etc. are known to have weak bonding strength to diamond-like thin films. Substrates whose main component is iron have the highest industrial value, such as molds and sliding parts, and glass and ceramics have a wide range of uses, such as being used in sliding parts of thermal heads, etc. Therefore, it is important to improve the adhesion of the diamond-like thin film formed on the surface of these substrates to the substrate.

【0005】これらの基体に前処理を行なうことは特開
昭60−200898号、同60−204695号、同
61−174376号等で提案されている。特開昭60
−200898号ではCo−WC合金を基体とし、その
表面にダイヤモンド様薄膜を高硬度膜として付けるに当
たり、基体の表面に予め直流又は交流グロー放電を直接
作用させることによりイオンエッチングすることを提案
しているが、その目的はダイヤモンド結晶の成長核を増
大して成膜速度を上げることにあり、加速電圧は印加さ
れていないからエッチング効率は接着性向上の面からは
充分でなく本発明が目的する接着性の向上は充分に得ら
れない。特開昭60−204695号も上記技術と同様
に成膜速度の向上を意図してArガスを減圧室内に導入
し正負電極間に電圧を加えてプラズマを作りこれを基体
に作用させるのであるが、プラズマのイオン濃度は低い
のでエッチング効果は接着性向上の観点からは低い。特
開昭61−174376号は基体の接着性を向上するた
めにプラズマガスで基体を処理した後、酸化処理して酸
化物被膜を形成することを記載している。しかし、プラ
ズマの生成には高周波を使用し、その中の正イオンで正
電位のグリッドを通り抜けたイオンが負電位に接続され
た金属基体に向けて加速する方法を採用しているため、
プラズマは先ず拡散によって正イオンが正電位のグリッ
ドを通り抜ける必要があり、成膜に必要な充分な量の正
イオンが基体に到達出来ないので接着性の向上の面から
は不十分である。本発明者らはこれらの欠点を改善する
ために特願平1−214913号において基板を高エネ
ルギーのArイオン等でボンバード(衝撃)して前処理
することを提案したが、なお接着性は不十分である。
Pretreatment of these substrates has been proposed in Japanese Patent Laid-open Nos. 60-200898, 60-204695, and 61-174376. Tokukai 1986
In No. 200898, a Co-WC alloy is used as a substrate, and in order to attach a diamond-like thin film as a highly hard film to the surface thereof, it is proposed that ion etching is performed by directly applying direct current or alternating current glow discharge to the surface of the substrate in advance. However, the purpose of this is to increase the growth rate of diamond crystals and increase the film formation rate, and since no accelerating voltage is applied, the etching efficiency is not sufficient from the viewpoint of improving adhesion, which is the purpose of the present invention. Adhesion cannot be sufficiently improved. JP-A No. 60-204695 also introduces Ar gas into a reduced pressure chamber and applies voltage between positive and negative electrodes to create plasma, which acts on the substrate, in the same way as the above-mentioned technique, with the intention of increasing the film formation rate. Since the ion concentration of the plasma is low, the etching effect is low from the viewpoint of improving adhesion. JP-A-61-174376 discloses that in order to improve the adhesion of the substrate, the substrate is treated with plasma gas and then subjected to oxidation treatment to form an oxide film. However, high frequency waves are used to generate plasma, and the positive ions in the plasma are accelerated toward a metal base connected to a negative potential after passing through a grid with a positive potential.
In plasma, positive ions must first pass through a grid of positive potential by diffusion, and a sufficient amount of positive ions necessary for film formation cannot reach the substrate, which is insufficient in terms of improving adhesion. In order to improve these drawbacks, the present inventors proposed in Japanese Patent Application No. 1-214913 to pre-treat the substrate by bombarding it with high-energy Ar ions, etc., but the adhesiveness was still poor. It is enough.

【0006】これらの方法の欠点を改良して接着性を向
上させるために、中間層を介在させることが特開昭64
−62468号により提案されている。中間層としては
シリコン、アルミニウム、タングステン、コバルト、ニ
ッケル等の金属層、炭化珪素、炭化タングステン等の金
属炭化物層、窒化珪素、窒化タングステン、窒化チタン
等の金属窒化物層、シリカ、アルミナ、ジルコニア等の
金属酸化物層などが使用されている。
[0006] In order to improve the adhesion by improving the drawbacks of these methods, it was proposed in JP-A-64
It is proposed by No.-62468. Intermediate layers include metal layers such as silicon, aluminum, tungsten, cobalt, and nickel, metal carbide layers such as silicon carbide and tungsten carbide, metal nitride layers such as silicon nitride, tungsten nitride, and titanium nitride, silica, alumina, and zirconia. metal oxide layers, etc. are used.

【0007】[0007]

【発明が解決すべき課題】しかし、これらの中間層は蒸
着、CVD法により成膜されるもので工程が複雑となり
ダイヤモンド成膜装置とは別の装置を要する問題があり
、又中間層の特性も充分でない。本発明の目的は、基体
に対する結合力ないし接着力が大きく、耐剥離性で耐久
性の向上したダイヤモンド様薄膜で保護した物品及びそ
の製造方法を提供することにある。
[Problems to be Solved by the Invention] However, these intermediate layers are formed by vapor deposition or CVD, which makes the process complicated and requires equipment separate from the diamond film forming equipment, and the characteristics of the intermediate layer is also not enough. An object of the present invention is to provide an article protected by a diamond-like thin film that has a high bonding force or adhesive force to a substrate, has improved peeling resistance and durability, and a method for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明は、Co、Ni、
Feの少なくとも一種を含む合金、セラミックス及びガ
ラスよりなる群より選択され且つダイヤモンド様薄膜と
の親和性が悪い基体の表面に近接して、Mo製のグリッ
ドを配置し、前記グリッドをAr等の不活性ガス原子よ
りなるボンバード用ガスで衝撃してMo原子を放出させ
、これを前記基板上に付着させることにより表面の汚染
を除くと共にMo膜を生成し、ついで低分子量炭化水素
又は分解又は反応により低分子量炭化水素を生成し得る
原料ガスをイオン化させてイオンを生成し、これらのイ
オンを加速して前記Mo膜上に付着させることによりダ
イヤモンド様膜を形成すること及びこうして得られるダ
イヤモンド様保護膜を有する物品である。
[Means for Solving the Problems] The present invention provides Co, Ni,
A grid made of Mo is placed close to the surface of a substrate selected from the group consisting of alloys containing at least one type of Fe, ceramics, and glasses and has poor affinity with diamond-like thin films, and the grid is surrounded by a non-containing material such as Ar. Mo atoms are released by bombardment with a bombardment gas consisting of active gas atoms, and the Mo atoms are deposited on the substrate to remove surface contamination and form a Mo film, followed by low molecular weight hydrocarbons or decomposition or reaction. Forming a diamond-like film by ionizing a raw material gas capable of producing low molecular weight hydrocarbons to produce ions, accelerating these ions and depositing them on the Mo film, and the diamond-like protective film thus obtained. It is an article that has

【0009】本発明によると、特願平1−214913
号における基板のArボンバード(衝撃)効果と同時に
、基板のMoによる成膜が同時に実施されてMoの基板
への強固な接着と、ダイヤモンド様保護膜のMo中間層
への強固な接着が達成出来る。この基板への接着性、密
着性の改善により厳しい条件で評価される耐摩耗性の用
途にも利用できる。又本発明によると、Mo成膜工程と
ダイヤモンド成膜工程とが同一の装置を使用して前後し
て実施出来るので工程の単純化、コスト低下が実現出来
る。
According to the present invention, patent application No. 1-214913
Simultaneously with the Ar bombardment (impact) effect on the substrate, the Mo film deposition on the substrate is carried out at the same time, achieving strong adhesion of Mo to the substrate and strong adhesion of the diamond-like protective film to the Mo intermediate layer. . This improved adhesion and adhesion to substrates can also be used for wear resistance applications that are evaluated under severe conditions. Further, according to the present invention, the Mo film forming process and the diamond film forming process can be performed back and forth using the same apparatus, so that process simplification and cost reduction can be realized.

【0010】本発明はイオン化蒸着法によるダイヤモン
ド成膜法が、熱電子電離手段と電離された炭化水素イオ
ンを加速するための電界付与グリッドを有することに着
目し、同じ装置でグリッドをMoより構成し、これをア
ルゴン(Ar)等をイオン化し加速した高エネルギーボ
ンバードガスで衝撃することにより、初期の目的を達成
出来た。
The present invention focuses on the fact that a diamond film forming method using ionization vapor deposition has a thermionic ionization means and an electric field applying grid for accelerating ionized hydrocarbon ions, and the grid is made of Mo using the same device. However, by bombarding this with a high-energy bombardment gas made by ionizing and accelerating argon (Ar), the initial objective was achieved.

【0011】イオン化蒸着法は炭化水素原料ガス又は分
解又は反応により炭化水素を生成し得る原料ガス(ここ
に炭化水素とはメタン、エタン、プロパン等の飽和炭化
水素、エチレン、プロピレン、アセチレン等の不飽和炭
化水素等があり、分解して炭化水素を生成し得る原料ガ
スはメチルアルコール、エチルアルコール等のアルコー
ル類、アセトン、メチルエチルケトン等のケトン類など
があり、又反応して炭化水素ガスを生成する原料ガスに
は一酸化炭素、二酸化炭素と水素との混合ガス等がある
。また前記原料にはヘリウム、ネオン、アルゴン等の希
ガスあるいは水素、酸素、窒素、水、一酸化炭素、二酸
化炭素、等の少なくとも一種を含ませることができる)
を熱陰極フィラメント−陽極間のアーク放電、陰極熱フ
ィラメント−陽極間の熱電子放出によるイオン化等の手
段でイオン化してイオン流とし、この流れを電場で加速
して基体に差し向けることによりダイヤモンド様薄膜を
成膜する方法であり、特願平1−214913号に記載
されている通り、イオン化蒸着法は基体温度として従来
のような700℃以上の高温度を用いる必要がなく(例
えば「表面化学」第5巻第108号(1984年)第1
08−115頁の各種の方法参照)、成膜効率も良く、
成膜されたダイヤモンド様膜が良好な表面性、高硬度、
高熱伝導性、高屈折率を有し、仕上表面処理が不要であ
る等、優れた方法である。
The ionization vapor deposition method uses a hydrocarbon raw material gas or a raw material gas that can produce hydrocarbons by decomposition or reaction (here, hydrocarbons include saturated hydrocarbons such as methane, ethane, and propane, and non-saturated hydrocarbons such as ethylene, propylene, and acetylene). There are saturated hydrocarbons, etc., and the raw material gases that can be decomposed to produce hydrocarbons include alcohols such as methyl alcohol and ethyl alcohol, and ketones such as acetone and methyl ethyl ketone, and they also react to produce hydrocarbon gases. Raw material gases include carbon monoxide, a mixed gas of carbon dioxide and hydrogen, etc. The raw materials also include rare gases such as helium, neon, and argon, or hydrogen, oxygen, nitrogen, water, carbon monoxide, carbon dioxide, etc.)
is ionized by means such as arc discharge between the hot cathode filament and the anode, ionization by thermionic emission between the cathode hot filament and the anode, etc. to form an ion flow, and this flow is accelerated by an electric field and directed toward the substrate, making it diamond-like. As described in Japanese Patent Application No. 1-214913, the ionization vapor deposition method is a method for forming a thin film, and as described in Japanese Patent Application No. 1-214913, it is not necessary to use a high temperature of 700°C or higher as the substrate temperature (for example, "surface chemical ” Volume 5, No. 108 (1984) No. 1
(Refer to various methods on pages 08-115), the film formation efficiency is also good,
The deposited diamond-like film has good surface properties, high hardness,
This is an excellent method as it has high thermal conductivity, high refractive index, and does not require finishing surface treatment.

【0012】成膜装置 第1図にMo中間層及びダイヤモンド様膜の成膜装置の
好ましい例を示す。図中30は真空容器、31はチャン
バーであり、排気系38に接続されて10−6Torr
程度までの高真空に引かれる。32は基体(保護すべき
物品)Sの裏面に設けられ負電位Vaに保たれた電極で
ある(基体が金属である場合にはそれ自体を電極として
良い)。基体Sの表面に近接又は接触してダイヤモンド
様薄膜の形状を規制する窓を有するマスク42が設けら
れる。このマスクは基体に接していても良いが膜の周部
の厚みを薄くして割れ(クラック)を減じるためにはな
るべくは離して配置する。33は基体と同一の負電位V
aを与えられたMo製のグリッドで成膜工程で炭化水素
イオンの加速を行なうのに使用される。このグリッド3
3は膜の連続性を高め且つ表面を平滑にするため適正に
定めた空間率(単位面積あたりの穴の面積)と穴密度(
単位長さあたりの穴の数)のグリッドを使用し、或いは
その面内方向に振動するための手段を有していても良い
。 34は負電位Vdに維持された熱陰極フィラメントであ
り、交流電源からの電流Ifによって加熱されて熱電子
を発生する。35は原料である炭化水素ガスの供給口、
及びアルゴン等のボンバードガスの供給口である。フィ
ラメント34を取囲んで陽極36が配置されている。こ
の陽極はこの場合接地されているが、フィラメントに対
しては正の電圧となり、電極32及びグリッド33に対
しては正の電位を与えられている。フィラメント34、
陽極36及び供給口35の周りを取り囲んでイオン化ガ
スの閉じ込め用の磁界を発生するために電源Vcからの
電流Icで励磁される電磁コイル39が配置されている
。従って、If、Vd、Va、コイルの電流Ic、イオ
ン電流Iaを調整することによりMo中間層とダイヤモ
ンド様保護膜の調整が出来る。
Film Forming Apparatus FIG. 1 shows a preferred example of a film forming apparatus for a Mo intermediate layer and a diamond-like film. In the figure, 30 is a vacuum container, 31 is a chamber, which is connected to an exhaust system 38 and has a pressure of 10-6 Torr.
It is drawn to a high vacuum up to a certain degree. Reference numeral 32 denotes an electrode provided on the back surface of the substrate (article to be protected) S and maintained at a negative potential Va (if the substrate is made of metal, it may itself be used as an electrode). A mask 42 having a window close to or in contact with the surface of the substrate S to regulate the shape of the diamond-like thin film is provided. This mask may be in contact with the substrate, but in order to reduce the thickness of the peripheral portion of the film and reduce cracks, it should be placed as far away as possible. 33 is the same negative potential V as the substrate
A Mo grid given a is used to accelerate hydrocarbon ions in the film forming process. This grid 3
3 is the porosity (area of holes per unit area) and hole density (area of holes per unit area) that are properly determined in order to increase the continuity of the membrane and smooth the surface.
(number of holes per unit length), or may have means for vibrating in its plane. A hot cathode filament 34 is maintained at a negative potential Vd, and is heated by a current If from an AC power source to generate thermoelectrons. 35 is a supply port for hydrocarbon gas, which is a raw material;
and a supply port for bombarded gas such as argon. An anode 36 is disposed surrounding the filament 34. This anode is grounded in this case, but has a positive voltage with respect to the filament and a positive potential with respect to the electrode 32 and the grid 33. filament 34,
An electromagnetic coil 39 is disposed surrounding the anode 36 and the supply port 35 and is excited by a current Ic from a power source Vc to generate a magnetic field for confining the ionized gas. Therefore, by adjusting If, Vd, Va, coil current Ic, and ion current Ia, the Mo intermediate layer and the diamond-like protective film can be adjusted.

【0013】第3図は第1図のA−A線から見た平面斜
視図であり、膜の形が長方形の場合には例えば図示のよ
うな複数フィラメントの配列体を用いるとか、コイル状
に巻いたものを用いる。又広い面積の成膜を行なうには
基体を長尺ものとして構成し、それを低速で送るとか、
イオンビームを走査させるとかの方法が可能である。な
お第1図においては、炭化水素ガスの原料導入通路37
にプラズマ励起室37’が設けられており、これにより
イオン化装置の効率を高めている。プラズマ励起は例え
ばマイクロ波、高周波(RF波)、放射線、紫外線など
が利用できる。
FIG. 3 is a plan perspective view taken along the line A-A in FIG. Use rolled ones. In addition, in order to form a film over a wide area, the substrate must be made long and fed at low speed.
A method such as scanning an ion beam is possible. In addition, in FIG. 1, the raw material introduction passage 37 for hydrocarbon gas
A plasma excitation chamber 37' is provided in the ionizer, thereby increasing the efficiency of the ionization device. For example, microwaves, radio frequency (RF waves), radiation, ultraviolet rays, etc. can be used for plasma excitation.

【0014】また、第2図に示したように第1図の構成
の一部を変更して固定又は可変強度の磁石40をフィラ
メント34の上部に配置してプラズマ状のイオンビーム
の偏向用に用いても良い。磁石40の磁界強度は固定又
は可変にし、磁石の磁界はイオン流の走行方向にたいし
て交差する方向にする。このようにしてCH3+、CH
4 + イオン等の所望するイオンに対して偏向角度θ
を得る。固定の場合一方、質量がこれらのイオンと大き
く異なるイオン例えば水素イオンはさらに大きく曲げら
れ、また中性粒子や重質の多量体イオンは直進する。従
って、直進方向にマスクを配置すれば結晶性の高いイオ
ンのみが基体Sに付着する。
In addition, as shown in FIG. 2, a part of the configuration shown in FIG. 1 is changed, and a fixed or variable strength magnet 40 is placed above the filament 34 to deflect a plasma-like ion beam. May be used. The magnetic field strength of the magnet 40 is fixed or variable, and the magnetic field of the magnet is set in a direction perpendicular to the traveling direction of the ion flow. In this way, CH3+, CH
Deflection angle θ for desired ions such as 4 + ions
get. In the fixed case, on the other hand, ions whose mass is significantly different from these ions, such as hydrogen ions, are bent even more, and neutral particles and heavy multimer ions travel straight. Therefore, if the mask is placed in the straight direction, only highly crystalline ions will adhere to the substrate S.

【0015】Moの成膜 Feまたはその合金、ガラス、セラミックス等の難接着
性基体にMo中間層を形成するには、真空室を10−6
Torr程度に排気した後、供給口35からアルゴン、
窒素、水素、ヘリウム、ネオン、等から選んだボンバー
ドガスを0.1Torr程度に導入し、フィラメント3
4により電離し、得られたアルゴンイオンをグリッド3
3により加速する。アルゴンイオンは基体Sの表面を衝
撃して清浄化して接着性を改善し、同時にMoをグリッ
ドからたたき出して基体に被着させる。各部に印加され
る電圧、或いは電流、ボンバードガスの分子量(混合ガ
スでは平均分子量)、処理時間などが必要な制御因子と
なる。
Formation of Mo film In order to form a Mo intermediate layer on a difficult-to-adhesive substrate such as Fe or its alloy, glass, or ceramics, the vacuum chamber is heated to 10-6
After exhausting to about Torr, argon,
A bombardment gas selected from nitrogen, hydrogen, helium, neon, etc. is introduced at approximately 0.1 Torr, and the filament 3
4, and the obtained argon ions are transferred to grid 3.
Accelerate by 3. The argon ions impact and clean the surface of the substrate S to improve adhesion, and at the same time knock out Mo from the grid and deposit it on the substrate. Necessary control factors include the voltage or current applied to each part, the molecular weight of the bombarded gas (average molecular weight in the case of a mixed gas), and the processing time.

【0016】ボンバード用ガスのエネルギーは、分子量
、ボンバードの処理時間、及びイオン電流Ia とした
とき、分子量×Ia (mA)×時間(Hr)で表わさ
れ、500<分子量×Ia (mA)×時間(Hr)<
800を満足することが好ましい。この値が小さ過ぎる
と、Moグリッドへのボンバードエネルギーが不十分と
なり、Mo膜の成膜が充分い出来ない。又この値が大き
過ぎると装置の他の構成部分がエッチングされてしまい
、膜中に不純物が混入することによって密着性が低下す
る。
The energy of the bombardment gas is expressed as molecular weight × Ia (mA) × time (Hr), where the molecular weight, bombardment processing time, and ion current Ia are expressed as 500<molecular weight × Ia (mA) × Time (Hr)<
It is preferable to satisfy 800. If this value is too small, the bombardment energy to the Mo grid will be insufficient, making it impossible to form a sufficient Mo film. If this value is too large, other constituent parts of the device will be etched, and impurities will be mixed into the film, resulting in a decrease in adhesion.

【0017】ダイヤモンド様膜の成膜 次工程のダイヤモンド様保護膜の成膜工程では、チャン
バー31内を10−6Torrまで高真空とし、ガス供
給通路37のバルブを操作して所定流量のメタンガス、
それと水素との混合ガス、或いはそれとAr、He、N
e等のキャリアガス等を各供給口35から導入しながら
排気系38を調整して所定のガス圧例えば10−1To
rrとする。一方、複数の熱陰極フイラメント34には
交流電流Ifを流して加熱し、フイラメント34と陽極
36の間には電位差Vdを印加して放電を形成する。供
給口35から供給されたメタンガス等の炭化水素は熱分
解されるとともにフィラメントからの熱電子と衝突して
プラスのイオンと電子を生じる。この電子は別の熱分解
粒子と衝突する。電磁コイルの磁界による閉じ込め作用
の下に、このような現象を繰り返すことによりメタンガ
スは熱分解物質のプラスイオンと成る。
Formation of Diamond-like Film In the next process of forming a diamond-like protective film, the inside of the chamber 31 is brought to a high vacuum of 10 −6 Torr, and the valve of the gas supply passage 37 is operated to supply a predetermined flow rate of methane gas,
A mixed gas of it and hydrogen, or it and Ar, He, N
While introducing a carrier gas such as e from each supply port 35, the exhaust system 38 is adjusted to a predetermined gas pressure, e.g. 10-1To.
Let it be rr. On the other hand, an alternating current If is passed through the plurality of hot cathode filaments 34 to heat them, and a potential difference Vd is applied between the filaments 34 and the anode 36 to form a discharge. Hydrocarbons such as methane gas supplied from the supply port 35 are thermally decomposed and collide with thermoelectrons from the filament to generate positive ions and electrons. This electron collides with another pyrolysis particle. By repeating this phenomenon under the confinement effect of the magnetic field of the electromagnetic coil, methane gas becomes positive ions of thermally decomposed substances.

【0018】プラスイオンは電極32、グリッド36に
印加された負電位Vaにより引き寄せられ、基体Sの方
へ向けて加速され、基体に衝突して成膜反応を行ない、
ダイヤモンド様薄膜を形成する。所望により、上に述べ
た固定磁石を利用して更に品質の良い薄膜を得ることが
できる。形成する膜の厚さは好ましくは100 〜10
0000Åであり、厚さが上記の範囲よりも薄いと耐摩
耗性等の効果が減じ又厚すぎても効果が増大せず製造時
間が長くなる。以下に本発明を例示する。
The positive ions are attracted by the negative potential Va applied to the electrode 32 and the grid 36, are accelerated toward the substrate S, collide with the substrate, and perform a film-forming reaction.
Forms a diamond-like thin film. If desired, even better quality thin films can be obtained using the fixed magnets described above. The thickness of the film to be formed is preferably 100 to 10
0,000 Å, and if the thickness is thinner than the above range, effects such as wear resistance will be reduced, and if it is too thick, the effects will not increase and the manufacturing time will increase. The present invention will be illustrated below.

【0019】実施例及び比較例 第1図の装置を使用し、真空室10内に基体Sとして板
状はがね鋼SKS2、SKD11を配置し、その面から
距離約6.0mmのところにMo、W、及びSUS30
3製のグリッド33を配置した。基体Sから陽極までの
距離は約40mmであった。グリッド33の穴密度は6
0個/25.4mm、空間率は41%であった。
EXAMPLES AND COMPARATIVE EXAMPLES Using the apparatus shown in FIG. 1, plate-shaped steel sheets SKS2 and SKD11 are placed as substrates S in a vacuum chamber 10, and a Mo , W, and SUS30
A grid 33 manufactured by No. 3 was placed. The distance from the substrate S to the anode was about 40 mm. The hole density of grid 33 is 6
0 piece/25.4mm, void ratio was 41%.

【0020】Moの成膜・・・真空室10を10−6T
orrに排気してからAr、及びH2ガスを導入した。 ガス圧を0.1Torrとして熱陰極フィラメント34
に放電を起こさせた。電磁コイル19の磁束密度は40
0ガウス、基体電圧及びグリッド電圧Va=−  30
0V、基体温度200℃とした。またフィラメント34
には電流If=20Aを流した。更にフィラメント電圧
Vd=−10Vとし、Ia可変とした。フィラメント3
4はコイル状としその幅3mm、その周りを取り囲む電
極36との隙間8mmとした。グリッド33は5mm/
分の速度で振動させた。
[0020] Mo film formation...vacuum chamber 10 at 10-6T
After exhausting to orr, Ar and H2 gas were introduced. Hot cathode filament 34 with gas pressure of 0.1 Torr
caused a discharge to occur. The magnetic flux density of the electromagnetic coil 19 is 40
0 Gauss, base voltage and grid voltage Va=-30
The temperature was 0V and the substrate temperature was 200°C. Also filament 34
A current If=20A was applied to the battery. Further, the filament voltage Vd was set to -10V, and Ia was made variable. filament 3
4 was coiled, had a width of 3 mm, and had a gap of 8 mm between it and the surrounding electrode 36. Grid 33 is 5mm/
vibrated at a speed of 1 minute.

【0021】ダイヤモンド様保護膜の成膜・・・次ぎに
Arの導入を止め、真空室10を10−6Torrに排
気してからメタンガスを導入しガス圧を10−1Tor
rとして熱陰極フィラメント34に放電を起こさせた。 電磁コイル19の磁束密度は400ガウス、基体電圧V
a=−300V、基体温度200℃とした。またフィラ
メント14には電流If=25Aを流した。フィラメン
ト34はコイル状としその幅3mm、その周りを取り囲
む電極36との隙間8mmとした。グリッド33は5m
m/分の速度で振動させた。フィラメント電圧Vd=−
30V、Vc=30Vの条件で、膜厚1.0μmのダイ
ヤモンド様膜を得た。
Formation of a diamond-like protective film...Next, the introduction of Ar is stopped, the vacuum chamber 10 is evacuated to 10-6 Torr, and then methane gas is introduced and the gas pressure is reduced to 10-1 Torr.
A discharge was caused in the hot cathode filament 34 as r. The magnetic flux density of the electromagnetic coil 19 is 400 Gauss, and the base voltage is V.
a=-300V, and the substrate temperature was 200°C. Further, a current If=25 A was passed through the filament 14. The filament 34 was coiled, had a width of 3 mm, and had a gap of 8 mm between it and the surrounding electrode 36. Grid 33 is 5m
It was vibrated at a speed of m/min. Filament voltage Vd=-
A diamond-like film with a thickness of 1.0 μm was obtained under the conditions of 30V and Vc=30V.

【0022】得られた膜の顕微鏡観察による密着力とス
クラッチ力を測定した。その結果を表1に示す。ここに
密着力は1cm角の長さ10cmの角柱をダイヤモンド
様薄膜をエポキシ樹脂で接着し、引張試験機(テンシロ
ン・・・商品名)で引っ張って剥離し測定を行なった。 又スクラッチ力はResca社製のCSRスクラッチ試
験機で測定した。これらの結果は処理エネルギー(分子
量×Ia(A)×時間(Hr)を100に設定したとき
を基準1.0にして対比した。比較のためグリッドにW
及び鋼鉄SUS303の結果を併記する。
The adhesion force and scratch force of the obtained film were measured by microscopic observation. The results are shown in Table 1. The adhesion strength was measured by adhering a diamond-like thin film to a 1 cm square prism with a length of 10 cm using epoxy resin, and then peeling it off by pulling it with a tensile tester (Tensilon, trade name). The scratch force was measured using a CSR scratch tester manufactured by Resca. These results were compared using the processing energy (molecular weight x Ia (A) x time (Hr) set to 100 as the standard 1.0. For comparison, W
The results for steel SUS303 are also listed.

【0023】[0023]

【表1】   表1から分かるように、Arイオンの分子量×Ia
×時間は約600前後で良好な密着力及びスクラッチ力
を生じることが分る。より広くはこの値は500より大
きく800よりも小さく、更に広くは50より大きく1
000より小さい。一方Wは通常のグリッド材であるS
US303よりも良好な結果を与えるがMoを使用する
場合よりも劣る。
[Table 1] As can be seen from Table 1, molecular weight of Ar ion x Ia
It can be seen that good adhesion and scratching force are produced when the x time is around 600 hours. More broadly, this value is greater than 500 and less than 800; even more broadly, this value is greater than 50 and less than 1.
Less than 000. On the other hand, W is a normal grid material S
Gives better results than US303 but worse than when using Mo.

【発明の作用効果】本発明は保護すべき基体にイオン化
蒸着法によりダイヤモンド成膜を行なう装置において、
電離された炭化水素イオンを加速するための電界付与グ
リッドをMoより構成し、これをアルゴン(Ar)等を
イオン化し加速した高エネルギーボンバードガスで衝撃
することにより、基体上にMoを成膜し、その上にダイ
ヤモンド様薄膜を形成することにより基体との結合性の
高いダイヤモンド様保護膜薄膜を有する物品を製造する
ことが出来た。さらに本発明によると、基体が金属であ
る必要はなくガラス、セラミックスのような電気絶縁性
の基体に対しても支障なく成膜を実施することが実施出
来る。
[Operations and Effects of the Invention] The present invention provides an apparatus for forming a diamond film on a substrate to be protected by an ionization vapor deposition method.
An electric field applying grid for accelerating ionized hydrocarbon ions is made of Mo, and by bombarding it with a high-energy bombarded gas made by ionizing and accelerating argon (Ar), etc., a Mo film is formed on the substrate. By forming a diamond-like thin film thereon, it was possible to produce an article having a diamond-like protective film thin film with high bonding properties to the substrate. Further, according to the present invention, the substrate does not need to be metal, and film formation can be carried out without any problem even on electrically insulating substrates such as glass and ceramics.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明のMo−ダイヤモンド様保護膜の成
膜装置の一例を示す断面図である。
FIG. 1 is a sectional view showing an example of a film forming apparatus for a Mo-diamond-like protective film of the present invention.

【図2】  本発明のMo−ダイヤモンド様保護膜の製
造装置の他の例を示す断面図である。
FIG. 2 is a sectional view showing another example of the Mo-diamond-like protective film manufacturing apparatus of the present invention.

【図3】  本発明のMo−ダイヤモンド様保護膜の製
造装置のフィラメント部分の構造を示す平面斜視図であ
る。
FIG. 3 is a plan perspective view showing the structure of the filament portion of the Mo-diamond-like protective film manufacturing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

30:真空容器、31:チャンバー、32:電極、33
:グリッド、34:熱陰極フィラメント、35:原料炭
化水素及びアルゴンガス供給口、36:陽極、37:炭
化水素ガスの導入通路37、37’:プラズマ励起室、
38:排気系、39:電磁コイル39、40:磁石、4
2:マスク、S:基体、
30: Vacuum container, 31: Chamber, 32: Electrode, 33
: grid, 34: hot cathode filament, 35: raw material hydrocarbon and argon gas supply port, 36: anode, 37: hydrocarbon gas introduction passage 37, 37': plasma excitation chamber,
38: Exhaust system, 39: Electromagnetic coil 39, 40: Magnet, 4
2: Mask, S: Substrate,

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  Co、Ni、Feの少なくとも一種を
含む合金、セラミックス及びガラスよりなる群より選択
され且つダイヤモンド様薄膜との親和性が悪い基体の表
面に、Moの膜と、ダイヤモンド様薄膜とを順に形成し
た、ダイヤモンド様保護膜を有する物品。
1. A Mo film and a diamond-like thin film are placed on the surface of a substrate selected from the group consisting of alloys containing at least one of Co, Ni, and Fe, ceramics, and glasses, and which has poor affinity with diamond-like thin films. An article having a diamond-like protective film formed in this order.
【請求項2】  Co、Ni、Feの少なくとも一種を
含む合金、セラミックス及びガラスよりなる群より選択
され且つダイヤモンド様薄膜との親和性が悪い基体の表
面に近接して、Mo製のグリッドを配置し、前記グリッ
ドをAr等の不活性ガス原子よりなるボンバード用ガス
で衝撃して表面の汚染を除くと共にMo原子を前記基板
上に付着させることによりMo膜を生成し、ついで低分
子量炭化水素又は分解又は反応により低分子量炭化水素
を生成し得る原料ガスをイオン化させてイオンを生成し
、これらのイオンを加速して前記Mo膜上に付着させる
ことによりダイヤモンド様膜を形成することを特徴とす
る、ダイヤモンド様保護膜を有する物品の製造方法。
2. A grid made of Mo is placed close to the surface of a substrate selected from the group consisting of alloys containing at least one of Co, Ni, and Fe, ceramics, and glasses, and which has poor affinity with diamond-like thin films. Then, the grid is bombarded with a bombardment gas consisting of inert gas atoms such as Ar to remove surface contamination and deposit Mo atoms onto the substrate to form a Mo film, and then bombarded with low molecular weight hydrocarbon or A diamond-like film is formed by ionizing a raw material gas capable of producing low molecular weight hydrocarbons through decomposition or reaction to produce ions, accelerating these ions, and depositing them on the Mo film. , a method of manufacturing an article having a diamond-like protective film.
【請求項3】  (a)真空室内に前記基体を配置し、
Ar等の不活性ガスを前記真空室内に導入し、これを熱
陰極フィラメントとその周りに設けられた陽極とよりな
るイオン化手段により電離してイオンの流れを形成し、
これを前記陽極よりも低電位にあるMoグリッドに衝突
させて基体の表面をMo膜で被覆し、ついで、(b)真
空室内に低分子量炭化水素、又は分解又は反応により低
分子量炭化水素を生成し得る原料ガスを導入し、前記イ
オン化手段により電離して炭化水素イオンの流れを形成
し、これを前記Moグリッドにより加速して基体上で成
膜反応させることを特徴とする、請求項2に記載のダイ
ヤモンド様保護膜を有する物品の製造方法。
(a) placing the substrate in a vacuum chamber;
Introducing an inert gas such as Ar into the vacuum chamber, ionizing it by an ionization means consisting of a hot cathode filament and an anode provided around it to form a flow of ions,
This is made to collide with a Mo grid at a lower potential than the anode to coat the surface of the substrate with a Mo film, and then (b) generate low molecular weight hydrocarbons in the vacuum chamber or low molecular weight hydrocarbons by decomposition or reaction. 3. The method of claim 2, characterized in that a raw material gas that can be used is introduced and ionized by the ionization means to form a flow of hydrocarbon ions, which is accelerated by the Mo grid to cause a film forming reaction on the substrate. A method of manufacturing an article having a diamond-like protective film as described.
【請求項4】  (a)の工程において、ボンバード用
ガスの分子量、ボンバード処理時間、及びイオン電流I
a が条件式 500<分子量×Ia (mA)×時間(Hr)<80
0を満足することを特徴とする請求項3に記載のダイヤ
モンド様保護膜を有する物品の製造方法。
4. In the step (a), the molecular weight of the bombardment gas, the bombardment treatment time, and the ion current I
a is the conditional expression 500<molecular weight×Ia (mA)×time (Hr)<80
4. The method for manufacturing an article having a diamond-like protective film according to claim 3, wherein the diamond-like protective film satisfies 0.
JP3142678A 1991-05-20 1991-05-20 Article having a diamond-like carbon protective film and method for producing the same Expired - Fee Related JP3056827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3142678A JP3056827B2 (en) 1991-05-20 1991-05-20 Article having a diamond-like carbon protective film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3142678A JP3056827B2 (en) 1991-05-20 1991-05-20 Article having a diamond-like carbon protective film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04341558A true JPH04341558A (en) 1992-11-27
JP3056827B2 JP3056827B2 (en) 2000-06-26

Family

ID=15320973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3142678A Expired - Fee Related JP3056827B2 (en) 1991-05-20 1991-05-20 Article having a diamond-like carbon protective film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3056827B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841140A3 (en) * 1996-11-12 2000-02-23 Bae Hyeock Chun Method of enhancing releasing effect of mould using low temperature plasma processes
JP2010202978A (en) * 2000-02-25 2010-09-16 Sumitomo Electric Ind Ltd Amorphous carbon covered member
CN114059036A (en) * 2021-11-23 2022-02-18 南京大学 Application of iron film in auxiliary stripping of diamond polycrystalline film
WO2024048261A1 (en) * 2022-08-29 2024-03-07 株式会社神戸製鋼所 Ion bombardment device and ion bombardment processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0841140A3 (en) * 1996-11-12 2000-02-23 Bae Hyeock Chun Method of enhancing releasing effect of mould using low temperature plasma processes
JP2010202978A (en) * 2000-02-25 2010-09-16 Sumitomo Electric Ind Ltd Amorphous carbon covered member
CN114059036A (en) * 2021-11-23 2022-02-18 南京大学 Application of iron film in auxiliary stripping of diamond polycrystalline film
WO2024048261A1 (en) * 2022-08-29 2024-03-07 株式会社神戸製鋼所 Ion bombardment device and ion bombardment processing method

Also Published As

Publication number Publication date
JP3056827B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US5827613A (en) Articles having diamond-like protective film and method of manufacturing the same
Boxman et al. Principles and applications of vacuum arc coatings
JP6329742B2 (en) Remote arc discharge plasma assist treatment
JP3660866B2 (en) Method and apparatus for forming hard carbon film
JP4145361B2 (en) How to coat edges with diamond-like carbon
US5707717A (en) Articles having diamond-like protective film
CN108385066B (en) Preparation method of hydrogen-free metal doped diamond-like coating and product thereof
US20050136656A1 (en) Process for depositing composite coating on a surface
JP2008223105A (en) Treatment apparatus with the use of progressive plasma, treatment method, and article to be treated
JP2837700B2 (en) Method for forming diamond-like thin film
JP3187487B2 (en) Article with diamond-like thin film protective film
Roy et al. A review of plasma-assisted deposition methods for amorphous carbon thin and ultrathin films with a focus on the cathodic vacuum arc technique
JPH04341558A (en) Article with diamondlike protective film and its production
Schiller et al. A new sputter cleaning system for metallic substrates
JP3205363B2 (en) Mold with diamond-like protective film
JPH07258840A (en) Formation of carbon thin film
JP3130094B2 (en) Mold with diamond-like protective film
JP3016748B2 (en) Method for depositing carbon-based high-performance material thin film by electron beam excited plasma CVD
JP3485937B2 (en) Mold having protective film of diamond-like thin film and method of manufacturing the same
JP2000094564A (en) Base with highly functional coat formed and method for forming the base
JP4116144B2 (en) Manufacturing method of hard carbon coating member
JP2717856B2 (en) Method and apparatus for producing diamond-like thin film
JPH05124875A (en) Article having diamond-like thin-film protective film
JPH01234397A (en) Method and apparatus for producing diamond-like thin film
JP2717857B2 (en) Method for producing diamond-like thin film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000328

LAPS Cancellation because of no payment of annual fees