JPH04309245A - Manufacture of film carrier - Google Patents

Manufacture of film carrier

Info

Publication number
JPH04309245A
JPH04309245A JP10308791A JP10308791A JPH04309245A JP H04309245 A JPH04309245 A JP H04309245A JP 10308791 A JP10308791 A JP 10308791A JP 10308791 A JP10308791 A JP 10308791A JP H04309245 A JPH04309245 A JP H04309245A
Authority
JP
Japan
Prior art keywords
cutting
film carrier
thickness
metal conductor
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10308791A
Other languages
Japanese (ja)
Inventor
Hidenori Furukawa
秀範 古川
Shigenori Tokunaga
徳永 重則
Akio Takahashi
昭雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14344855&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04309245(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP10308791A priority Critical patent/JPH04309245A/en
Publication of JPH04309245A publication Critical patent/JPH04309245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To improve the machining precision of a cutting machine, by measuring, from time to time during a cutting process, the thickness of a metal conductor layer under an aperture part for which machining has been ended, feeding back measurement results to a machining control part, and automatically performing the Z-axis control of a cutting machined to be used. CONSTITUTION:When a bonding hole of a semiconductor element, or a lead hole for leading out a connection lead and/or a positioning hole and other aperture parts which are used at the time of assembling-packaging are formed, the thickness of a metal conductor layer 1 under an aperture part 3 for which machining has been ended is measured from time to time with a thickness meter 5. The measured value is compared with the previously set thickness, In order to correct the difference, compared results are fed back to a machining control part, and the Z-axis control of a cutting machine to be used is automatically performed. Thereby the machining precision of the cutting machine can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体組立用フィルム
キャリアテープの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a film carrier tape for semiconductor assembly.

【0002】0002

【従来の技術】近年、電子機器は高機能化・軽薄短小化
が進められ、それに搭載される半導体も高集積化が求め
られ、そのパッケージにも小型化・薄型化が要求されて
いる。この様な要求に答えるべく、フィルムキャリアテ
ープを用いたTAB(Tape Automated 
Bonding)方式による実装方法が登場した。この
TAB方式に用いられるフィルムキャリアには、金属導
体層と有機絶縁層とを接着剤を介して貼着した3層構造
のフィルムキャリアと、金属導体層と有機絶縁層とを直
接密着させた2層構造のフィルムキャリアがある。3層
構造のフィルムキャリアは、介在する接着剤層にエポキ
シ系の材料を使用しているため、フィルムキャリアとし
ての耐熱性が低くなる事や、接着剤層に含まれる不純物
塩素イオンのため、実装された半導体装置の信頼性に欠
ける問題点を有している。この様な問題点を克服するフ
ィルムキャリアが、金属導体層と有機絶縁層のみからな
る2層構造フィルムキャリアである。
2. Description of the Related Art In recent years, electronic devices have become more sophisticated, lighter, thinner, and smaller. The semiconductors installed in these devices are also required to be highly integrated, and their packages are also required to be smaller and thinner. In order to meet these demands, TAB (Tape Automated) using film carrier tape has been developed.
A mounting method using the bonding method has appeared. The film carrier used in this TAB method includes a three-layer film carrier in which a metal conductor layer and an organic insulating layer are bonded together with an adhesive, and a two-layer film carrier in which a metal conductor layer and an organic insulating layer are directly adhered to each other. There is a layered film carrier. The three-layer film carrier uses an epoxy material for the intervening adhesive layer, so the heat resistance as a film carrier is low, and the impurity chlorine ions contained in the adhesive layer makes it difficult to mount. However, there is a problem in that the reliability of the semiconductor device is lacking. A film carrier that overcomes these problems is a two-layer structure film carrier consisting only of a metal conductor layer and an organic insulating layer.

【0003】フィルムキャリアは、半導体素子の装着孔
や、接続用リードの取り出しの為のリードホール、及び
または、組立実装時に用いる位置決めホールその他開孔
部を有機絶縁層に形成する必要があり、2層構造のフィ
ルムキャリアの場合、開孔部の形成方法として、ウエッ
トエッチング法やドライエッチング法、及びまたはレー
ザーエッチング法が挙げられる。ウエットエッチング法
は、リソグラフィ工程を必要とし、工程が長く、経済性
に劣るほか、有機絶縁層の材質が限定される問題点を有
している。ドライエッチング法としては、スパッタ法や
イオンミリング法が知られているが、いづれも高価で大
がかりな装置を必要とし、しかも、連続生産ができず、
経済性や生産性、作業性に問題がある。近年、注目され
ているレーザーエッチング法は、熱による金属導体層の
溶融破損や、除去困難なカーボンの発生、付着の問題が
ある。以上のような問題点を有さない、2層構造のフィ
ルムキャリアの製造方法として、切削加工による開孔部
の形成方法が挙げられる。
[0003] In the film carrier, mounting holes for semiconductor elements, lead holes for taking out connection leads, and/or positioning holes and other openings used during assembly and mounting must be formed in the organic insulating layer. In the case of a layered film carrier, methods for forming the openings include wet etching, dry etching, and/or laser etching. The wet etching method requires a lithography process, is long, is not economical, and has the problem that the material of the organic insulating layer is limited. Sputtering methods and ion milling methods are known as dry etching methods, but both require expensive and large-scale equipment and cannot be continuously produced.
There are problems with economy, productivity, and workability. Laser etching, which has been attracting attention in recent years, has problems such as melting and damage of the metal conductor layer due to heat, generation of carbon that is difficult to remove, and adhesion. As a method for manufacturing a two-layer film carrier that does not have the above-mentioned problems, there is a method for forming openings by cutting.

【0004】0004

【発明が解決しようとする課題】この切削加工による開
孔部の形成方法について、種々検討を重ねた結果、以下
の問題点を有している事が判明した。すなわち、■フィ
ルムキャリアの製造に供される金属導体層および有機絶
縁層の厚みは、例えば銅箔とポリイミドの場合、それぞ
れ9〜70μm、25〜125μmと非常に薄く、この
両層が重なってできた2層基板の有機絶縁層のみを切削
加工で除去し、同加工部下の金属導体層を残すことは、
数μm以下のZ軸の加工精度を必要とし、一般の切削加
工機では加工が困難であること、■精密加工が可能なN
C制御機構を備えた加工機でも、加工作業を行う雰囲気
の温度、湿度の影響や、連続運転時の駆動機構部や切削
切り刃の熱膨張や摩耗等の影響を受けて、数μm以下の
加工精度は困難であること、また、■NC制御部と、加
工ヘッドのZ軸の位置決めを行うエンコーダの間では、
電気信号上の1μm以下の制御が可能だが、実際は加工
ヘッドの移動を行うボールネジ等の駆動機構の精度不足
のため、エンコーダが示す変位量と加工ヘッドの移動量
との間に差異が生じることである。上記の原因により、
切削加工による開孔部の形成の際、加工寸法にばらつき
が生じ、有機絶縁層が残存して、その後形成された金属
導体層の接続用リードの導電不良を引き起こしたり、有
機絶縁層との界面近くの金属導体層が過剰に除去され、
後に形成された接続用リードの厚みが薄くなり、導電性
が小さくなったり、強度が小さくなると言う問題、さら
には切削加工時に開孔部下の金属導体層の破損が起き、
フィルムキャリア製造時の歩留まりが悪化すると言う問
題が生じる。本発明は、かかる背景下になされたもので
あり、安価で簡単な装置による、経済性や生産性、作業
性の良い、しかも、加工後の性状が良い、優れた性能の
2層構造のフィルムキャリアの製造方法を提供する事を
目的とする。上記の目的を達成するために、鋭意検討を
重ねた結果、切削加工による開孔部形成の際、用いる切
削加工機の加工精度を、簡単な装置と方法で向上させる
事を見いだした。
[Problems to be Solved by the Invention] As a result of various studies regarding this method of forming an opening by cutting, it has been found that the method has the following problems. That is, (1) the thickness of the metal conductor layer and organic insulating layer used in the production of the film carrier is very thin, for example, in the case of copper foil and polyimide, 9 to 70 μm and 25 to 125 μm, respectively, and the thickness of these two layers overlaps. It is possible to remove only the organic insulating layer of the two-layer substrate by cutting and leave the metal conductor layer under the same process.
It requires Z-axis machining accuracy of several μm or less, which is difficult to process with a general cutting machine;
Even processing machines equipped with a C control mechanism are affected by the temperature and humidity of the atmosphere in which processing is performed, as well as thermal expansion and wear of the drive mechanism and cutting blades during continuous operation, resulting in defects of several micrometers or less. Machining accuracy is difficult;
Although it is possible to control electric signals within 1 μm or less, in reality, due to the lack of precision in the drive mechanism such as the ball screw that moves the processing head, a difference occurs between the amount of displacement indicated by the encoder and the amount of movement of the processing head. be. Due to the above reasons,
When forming openings by cutting, variations in processing dimensions may occur, and the organic insulating layer may remain, causing poor conductivity in the connecting leads of the metal conductor layer formed afterwards, or causing problems at the interface with the organic insulating layer. Excessive removal of nearby metal conductor layers
The thickness of the connection lead formed later becomes thinner, resulting in lower conductivity and strength, and furthermore, the metal conductor layer under the hole may be damaged during cutting.
A problem arises in that the yield during production of the film carrier deteriorates. The present invention was made against this background, and provides an excellent two-layer structure film that is economical, productive, and workable using inexpensive and simple equipment, and has good properties after processing. The purpose is to provide a method for manufacturing carriers. In order to achieve the above object, as a result of intensive studies, it was discovered that the processing accuracy of the cutting machine used when forming the opening by cutting can be improved using a simple device and method.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は金属
導体層と有機絶縁層からなる、2層構造のフィルムキャ
リアの製造方法において、半導体素子の接着孔や、接続
用リードの取り出しの為のリードホール、及びまたは、
組立実装時に用いる位置決めホールその他の開孔部を、
切削加工により形成する際、随時、加工済みの開孔部の
下の金属導体層の厚みを計測し、該厚みをあらかじめ設
定していた所定の厚みと比較し、その差異を補正すべく
、結果を加工機制御部にフィードバックすることにより
、用いる切削加工機のZ軸制御を自動的に行う事、さら
には、加工機ヘッド部に固定した変位センサーにより、
Z軸の変位量を測定し、切削加工機の加工機ヘッド部の
Z軸方向の位置決めを行う事を特徴とするフィルムキャ
リアの製造方法である。
[Means for Solving the Problems] That is, the present invention provides a method for manufacturing a film carrier having a two-layer structure consisting of a metal conductor layer and an organic insulating layer. lead hole and/or
Positioning holes and other openings used during assembly and mounting,
When forming the metal conductor layer by cutting, the thickness of the metal conductor layer under the processed hole is measured at any time, and the thickness is compared with a predetermined thickness, and the result is calculated to correct the difference. By feeding back the information to the processing machine control unit, the Z-axis control of the cutting machine used can be automatically performed, and furthermore, the displacement sensor fixed to the processing machine head can
This method of manufacturing a film carrier is characterized in that the amount of displacement in the Z-axis is measured to determine the position of a processing machine head portion of a cutting machine in the Z-axis direction.

【0006】以下、本発明を添付図を用いて詳細に説明
する。ただし、各図面に共通する符号はそれぞれ同じ名
称を有する。図2は、2層構造のフィルムキャリアの製
造工程において、切削加工により開孔部3を形成する際
の、従来の加工機のZ軸制御に関する信号系統概念図で
ある。図2のように、Z軸の制御は該軸に固定されたエ
ンコーダ4の示す変位量によってのみ行われ、加工済み
の開孔部の下の金属導体層1の厚みには無関係である。 図1は、本発明の1例を示す加工機の信号系統概念図で
ある。図2のように、切削加工により開孔部3を形成す
る際、随時、加工済みの開孔部の下の金属導体層1の厚
みを厚み計5により計測し、該厚みをあらかじめ設定し
ていた所定の厚みと比較し、その差異を補正すべく、結
果を加工機制御部にフィードバックすることで、用いる
切削加工機のZ軸制御を自動的に行う。図3は、請求項
2記載の本発明の1例を示す加工機の信号系統概念図で
ある。図3のように、切削加工により開孔部3を形成す
る際、加工機ヘッド部9に固定した変位センサー6によ
り、Z軸の変位量を測定し、切削加工機の加工機ヘッド
部9のZ軸方向の位置決めを行う。
The present invention will be explained in detail below with reference to the accompanying drawings. However, the symbols common to each drawing have the same names. FIG. 2 is a conceptual diagram of a signal system related to Z-axis control of a conventional processing machine when forming an opening 3 by cutting in the manufacturing process of a two-layer film carrier. As shown in FIG. 2, the Z-axis is controlled only by the amount of displacement indicated by the encoder 4 fixed to the axis, and is unrelated to the thickness of the metal conductor layer 1 under the machined opening. FIG. 1 is a conceptual diagram of a signal system of a processing machine showing an example of the present invention. As shown in FIG. 2, when forming the opening 3 by cutting, the thickness of the metal conductor layer 1 under the processed opening is measured using a thickness gauge 5, and the thickness is set in advance. The Z-axis control of the cutting machine used is automatically performed by comparing the thickness with a predetermined thickness and feeding back the result to the processing machine control unit in order to correct the difference. FIG. 3 is a conceptual diagram of a signal system of a processing machine showing an example of the present invention as set forth in claim 2. As shown in FIG. 3, when forming the opening 3 by cutting, the displacement sensor 6 fixed to the processing machine head 9 measures the amount of Z-axis displacement, and the displacement of the processing machine head 9 of the cutting machine is measured. Performs positioning in the Z-axis direction.

【0007】ここで、金属導電層1の材料としては、た
とえばCu、Cuを主成分とする合金、Al、Ag、A
u及び42アロイ等の鉄系合金などが挙げられる。有機
絶縁層2の材料としては、たとえばポリイミド、ポリエ
チレンテレフタレート、ガラスエポキシ複合材、ポリパ
ラバン酸樹脂、ポリエチレン、ポリプロピレン、ポリス
チレン、ポリカーボネート、ポリエーテルエーテルケト
ン、ポリエーテルスルホン、ポリフェニレンサルファイ
ド、ポリサルフォン、アラミド樹脂などが挙げられる。 切削加工の方法としては、数値制御のマシニングセンタ
ー、フライス盤、ルーター加工機による溝削り、段削り
、座ぐりが挙げられる。厚み計5としては、電気信号出
力機能を備えたダイヤルゲージやマイクロメーター、リ
ニアゲージを用いたエンコーダ、変位センサーが挙げら
れ、測定方法としては、加工済みの開孔部の下の金属導
体層1の表面の変位を上方から測定する方法や、非加工
部の有機絶縁層2の表面と加工済みの開孔部の下の金属
導体層1の表面との差異から加工深さを算出する方法ま
たは、加工済みの開孔部の下の金属導体層1の上下から
厚み計で変位を測定し厚みを算出する方法が挙げられる
。変位センサーとしては、レーザー式、光電式、超音波
式、渦電流式の変位センサーや位置決めセンサーが挙げ
られる。なお、上に挙げた各種の材料は一例を示したに
過ぎず、本発明の方法では、半導体や電子部品、プリン
ト基板の製造分野で公知のものが使用可能である。
[0007] Examples of the material for the metal conductive layer 1 include Cu, an alloy containing Cu as a main component, Al, Ag, and Al.
Examples include iron-based alloys such as U and 42 alloys. Examples of materials for the organic insulating layer 2 include polyimide, polyethylene terephthalate, glass epoxy composite, polyparabanic acid resin, polyethylene, polypropylene, polystyrene, polycarbonate, polyether ether ketone, polyether sulfone, polyphenylene sulfide, polysulfone, aramid resin, etc. Can be mentioned. Cutting methods include grooving, step cutting, and counterbore using numerically controlled machining centers, milling machines, and router machines. Examples of the thickness gauge 5 include a dial gauge with an electrical signal output function, a micrometer, an encoder using a linear gauge, and a displacement sensor. A method of measuring the displacement of the surface from above, a method of calculating the processing depth from the difference between the surface of the organic insulating layer 2 in the unprocessed part and the surface of the metal conductor layer 1 under the processed opening part, or , a method of calculating the thickness by measuring the displacement from above and below the metal conductor layer 1 under the processed opening using a thickness gauge. Examples of the displacement sensor include laser type, photoelectric type, ultrasonic type, and eddy current type displacement sensors and positioning sensors. Note that the various materials listed above are merely examples, and in the method of the present invention, materials known in the field of manufacturing semiconductors, electronic components, and printed circuit boards can be used.

【0008】[0008]

【作用】上記のように、開孔部形成の際、用いる切削加
工機のZ軸制御を自動的に行う事で、加工作業を行う雰
囲気の温度、湿度の影響や、連続運転時の駆動機構部や
切削切り刃8の熱膨張や摩耗等の影響を、随時、補正す
ることが可能となる。また、加工機ヘッド部9に固定し
た変位センサー6により、Z軸方向の位置決めを行う事
で、ボールネジ7等の駆動機構の精度に関係なく、用い
たセンサーの精度で位置決めを行うことができる。
[Function] As mentioned above, by automatically controlling the Z-axis of the cutting machine used when forming the opening, the influence of the temperature and humidity of the atmosphere in which the processing work is performed, and the drive mechanism during continuous operation can be controlled. It becomes possible to correct the effects of thermal expansion, wear, etc. of the parts and the cutting edge 8 at any time. Further, by positioning in the Z-axis direction using the displacement sensor 6 fixed to the processing machine head 9, positioning can be performed with the accuracy of the sensor used, regardless of the accuracy of the drive mechanism such as the ball screw 7.

【0009】[0009]

【発明の効果】本発明により、切削加工による開孔部の
形成の際の加工精度が向上するため、以下の効果が期待
できる。有機絶縁層の残存が無くなるため、その後形成
された金属導体層の接続用リードの導電不良が無くなる
。また、有機絶縁層との界面近くの金属導体層の過剰な
除去が無くなるため、後に形成された接続用リードにお
いて、厚みが薄くなって導電性が小さくなったり、強度
が小さくなると言う問題が解消する。このことにより、
半導体素子を装着する組立工程や、基板に接続する実装
工程において、歩留まりが向上し、また、本発明の方法
で製造されたフィルムキャリアを使用した電子機器や部
品の信頼性が高くなる。さらには切削加工時に開孔部下
の金属導体層の破損が起きないため、フィルムキャリア
製造時の歩留まりが向上する。
[Effects of the Invention] According to the present invention, the processing accuracy when forming an opening by cutting is improved, so that the following effects can be expected. Since there is no residual organic insulating layer, conductivity defects in the connection leads of the metal conductor layer formed thereafter are eliminated. In addition, since excessive removal of the metal conductor layer near the interface with the organic insulating layer is eliminated, the problem of thinner conductivity and strength in connection leads formed later is resolved. do. Due to this,
Yields are improved in the assembly process for mounting semiconductor elements and the mounting process for connecting them to substrates, and the reliability of electronic devices and components using the film carrier manufactured by the method of the present invention is increased. Furthermore, since the metal conductor layer under the hole is not damaged during cutting, the yield during film carrier production is improved.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、請求項1記載の本発明の1例を示す加工機の信
号系統概念図である。図2は、請求項2記載の本発明の
1例を示す加工機の信号系統概念図である。図3は、2
層構造のフィルムキャリアの製造工程において、切削加
工により開孔部を形成する際の、従来の加工機のZ軸制
御に関する信号系統概念図である。 各図において  1・・・金属導体層、2・・・有機絶
縁層、3・・・切削加工により形成された開孔部、4・
・・エンコーダ、5・・・厚み計、6・・・変位センサ
ー、7・・・ボールネジ、8・・・切削切り刃、9・・
・加工機ヘッド、10・・・Z軸基準面、11・・・Z
軸駆動モータである。
FIG. 1 is a conceptual diagram of a signal system of a processing machine showing an example of the present invention as set forth in claim 1. FIG. 2 is a conceptual diagram of a signal system of a processing machine showing an example of the present invention as set forth in claim 2. Figure 3 shows 2
FIG. 2 is a conceptual diagram of a signal system related to Z-axis control of a conventional processing machine when forming an opening by cutting in the manufacturing process of a layered film carrier. In each figure, 1...metal conductor layer, 2...organic insulating layer, 3...opening formed by cutting, 4...
...Encoder, 5...Thickness gauge, 6...Displacement sensor, 7...Ball screw, 8...Cutting blade, 9...
・Processing machine head, 10...Z-axis reference plane, 11...Z
It is a shaft drive motor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  金属導体層と有機絶縁層からなる、2
層構造のフィルムキャリアの製造方法において、2層構
造のフィルムキャリア本体に半導体素子の装着孔や、接
続用リードの取り出しの為のリードホール、及びまたは
、組立実装時に用いる位置決めホールその他開孔部を、
切削加工により形成する際、該切削加工中、随時、加工
済みの開孔部の下の金属導体層の厚みを計測し、該厚み
をあらかじめ設定していた所定の厚みと比較し、その差
異を補正すべく、該計測結果を加工機制御部にフィード
バックすることにより、用いる切削加工機のZ軸制御を
自動的に行う事を特徴とするフィルムキャリアの製造方
法。
[Claim 1] Consisting of a metal conductor layer and an organic insulating layer, 2
In a method for manufacturing a layered film carrier, a mounting hole for a semiconductor element, a lead hole for taking out connection leads, a positioning hole used during assembly and mounting, and other openings are formed in a two-layered film carrier body. ,
When forming by cutting, the thickness of the metal conductor layer under the processed hole is measured at any time during the cutting process, and the thickness is compared with a predetermined thickness that has been set in advance, and the difference is calculated. A method for manufacturing a film carrier, characterized in that Z-axis control of a cutting machine to be used is automatically performed by feeding back the measurement results to a processing machine control section for correction.
【請求項2】  加工機ヘッド部に固定した変位センサ
ーにより、Z軸の変位量を測定し、切削加工機の加工機
ヘッド部のZ軸方向の位置決めを行う請求項1記載のフ
ィルムキャリアの製造方法。
2. The production of the film carrier according to claim 1, wherein a displacement sensor fixed to the processing machine head measures the amount of Z-axis displacement and positions the processing machine head of the cutting machine in the Z-axis direction. Method.
JP10308791A 1991-04-08 1991-04-08 Manufacture of film carrier Pending JPH04309245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10308791A JPH04309245A (en) 1991-04-08 1991-04-08 Manufacture of film carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10308791A JPH04309245A (en) 1991-04-08 1991-04-08 Manufacture of film carrier

Publications (1)

Publication Number Publication Date
JPH04309245A true JPH04309245A (en) 1992-10-30

Family

ID=14344855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10308791A Pending JPH04309245A (en) 1991-04-08 1991-04-08 Manufacture of film carrier

Country Status (1)

Country Link
JP (1) JPH04309245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189093A1 (en) * 2018-03-29 2019-10-03 キョーラク株式会社 Structure manufacturing method
JP2019171865A (en) * 2018-03-29 2019-10-10 キョーラク株式会社 Manufacturing method of structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189093A1 (en) * 2018-03-29 2019-10-03 キョーラク株式会社 Structure manufacturing method
JP2019171865A (en) * 2018-03-29 2019-10-10 キョーラク株式会社 Manufacturing method of structure

Similar Documents

Publication Publication Date Title
CN107484356B (en) Manufacturing method of thick copper sandwich aluminum substrate
CN112864024A (en) Ceramic circuit board and manufacturing method thereof
CN109195313A (en) A kind of Novel back drilling testing hole production method
CN113141712A (en) Method for manufacturing double-sided aluminum substrate
US5843806A (en) Methods for packaging tab-BGA integrated circuits
JPH04309245A (en) Manufacture of film carrier
US8493173B2 (en) Method of cavity forming on a buried resistor layer using a fusion bonding process
JP2609825B2 (en) Method for manufacturing multilayer wiring board
JP3425251B2 (en) Apparatus and method for cutting out inner layer circuit for electronic component package
JP2777425B2 (en) Method of manufacturing pin grid array having multi-stage bonding terminal structure, apparatus for cutting out inner layer terminal thereof, and multilayer substrate for pin grid array
JPH1022643A (en) Printed wiring board with cavity, its manufacture and its manufacturing equipment
JPH05243747A (en) Manufacture of multilayer wiring board
JPH06177211A (en) Manufacture of film carrier
CN109526147A (en) A kind of method of taping of PCB production board
JPH04287337A (en) Manufacture of film carrier
JP2003179180A (en) Device and method for carving inner layer circuit for electronic component package
JPS63245995A (en) Method of forming intermediate layer terminal of multilayer printed interconnection board
KR20120045639A (en) The printed circuit board and the method for manufacturing the same
JP3077776B2 (en) Mechanism for detecting through hole position in manufacturing printed wiring board, printed wiring board, and method for manufacturing the same
JP3034656B2 (en) Package for semiconductor device
JP2570625B2 (en) Counterbore device
JPH0366626B2 (en)
JPH03183190A (en) Manufacture of printed-circuit board
US20110253440A1 (en) Supporting substrate and method for fabricating the same
CN116075054A (en) Method for designing detection circuit of thickness of medium between any layers