JPH04293782A - Plasma chemical vapor deposition device - Google Patents

Plasma chemical vapor deposition device

Info

Publication number
JPH04293782A
JPH04293782A JP5673391A JP5673391A JPH04293782A JP H04293782 A JPH04293782 A JP H04293782A JP 5673391 A JP5673391 A JP 5673391A JP 5673391 A JP5673391 A JP 5673391A JP H04293782 A JPH04293782 A JP H04293782A
Authority
JP
Japan
Prior art keywords
substrate
holder
plasma
vapor deposition
holding groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5673391A
Other languages
Japanese (ja)
Inventor
Ryosuke Furuishi
亮介 古石
Hitomi Iwafune
岩船 仁美
Naoyuki Yamamoto
山本 尚之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5673391A priority Critical patent/JPH04293782A/en
Publication of JPH04293782A publication Critical patent/JPH04293782A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a hollow frame-shaped substrate holder capable of reducing the stress and strain of a substrate due to the difference in the thermal expansion coefficient when the substrate is heated at the time of forming a thin film on the front and rear of the substrate by plasma CVD with respect to the plasma chemical vapor deposition device, especially, the substrate holder used for the device. CONSTITUTION:The periphery of a disk substrate 5 to be coated with a thin film is held by a half-split annular holder 11 having a holding groove 12 between two opposed electrodes, and a thin film is deposited and formed on the front and rear of the substrate 5 by this plasma chemical vapor deposition device. In the device, an elastic member of a stress relieving conductive polymer member 14 in contact with the substrate 5, etc., is provided in the holding groove 12 of the holder 11, or a longitudinally split groove for relieving stress is furnished on the bottom of the holding groove.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は放電を利用して発生させ
たプラズマを用いて基板面に対し化学気相堆積法(Pl
asma chemical vapor depos
ition 法、以下プラズマCVD法と略称) によ
り薄膜を形成するプラズマ化学気相堆積装置に係り、特
に磁気ディスク装置に用いられる磁気ディスクの製造プ
ロセスに使用して好適なプラズマ化学気相堆積装置にお
ける基板ホルダーの構成に関するものである。
[Industrial Application Field] The present invention utilizes a chemical vapor deposition method (Pl) applied to a substrate surface using plasma generated using an electric discharge.
asma chemical vapor depos
tion method (hereinafter abbreviated as plasma CVD method) to form a thin film, and in particular, a substrate in a plasma chemical vapor deposition device suitable for use in the manufacturing process of a magnetic disk used in a magnetic disk device. This relates to the structure of the holder.

【0002】対向する二つの電極間に中空枠状の基板ホ
ルダーにより保持された基板を配置し、その基板を加熱
した状態で両面にプラズマCVD法により薄膜を堆積形
成する際に、該基板と基板ホルダーとの熱膨張率の違い
により、これら両者の電気的な接触状態が悪くなったり
、また基板に応力が付加されて歪みや破損が生じる傾向
がある。このため、そのようなプラズマCVD法により
基板の両面に薄膜を堆積形成する際に、該基板に応力歪
みが付加されない中空枠状の基板ホルダーが必要とされ
ている。
[0002] A substrate held by a hollow frame-shaped substrate holder is placed between two opposing electrodes, and when a thin film is deposited on both sides of the substrate by the plasma CVD method while the substrate is heated, the substrate and the substrate are heated. Due to the difference in coefficient of thermal expansion between the substrate and the holder, electrical contact between the two tends to deteriorate, and stress is applied to the substrate, causing distortion and damage. Therefore, there is a need for a hollow frame-shaped substrate holder that does not apply stress strain to the substrate when thin films are deposited on both sides of the substrate by such a plasma CVD method.

【0003】0003

【従来の技術】従来、例えば磁気ディスク装置に用いら
れる磁気ディスクの製造プロセスにおいて、磁性膜が被
着されたディスク基板の表裏面にプラズマCVD法によ
りプラズマ重合保護膜を形成するに用いるプラズマ化学
気相堆積装置は、図4に示すように真空容器1内にそれ
ぞれ図示しない支持部材により支持された二つの電極2
,3が対向配置され、その対向した二つの電極2,3間
に、それら両電極面と平行に図5の平面図で示すように
支持具4dを備えた下部保持枠4aと上部保持枠4bと
に分割され、かつそれら内周部に保持溝4cを設けた円
環状の基板ホルダー4の該保持溝4cに嵌合した状態に
保持された、例えばガラス、またはセラミックからなる
円板の表裏面に Ni−Fe合金等からなる磁性膜が被
着されたディスク基板5が配置されている。
2. Description of the Related Art Conventionally, in the manufacturing process of magnetic disks used in magnetic disk devices, for example, plasma chemical vaporization is used to form plasma polymerized protective films by plasma CVD on the front and back surfaces of disk substrates on which magnetic films are adhered. As shown in FIG. 4, the phase deposition apparatus includes two electrodes 2 each supported by a support member (not shown) in a vacuum container 1.
, 3 are arranged facing each other, and between the two opposing electrodes 2 and 3, a lower holding frame 4a and an upper holding frame 4b are provided with supports 4d parallel to the surfaces of both electrodes, as shown in the plan view of FIG. The front and back surfaces of a disk made of glass or ceramic, for example, which is held in a state where it fits into the holding groove 4c of an annular substrate holder 4 which is divided into two parts and has a holding groove 4c in the inner circumference thereof. A disk substrate 5 on which a magnetic film made of Ni--Fe alloy or the like is adhered is arranged.

【0004】そして前記真空容器1内を一旦、高真空に
排気した後、この真空容器1内に、例えば常温で固体で
あるジフェニルエタン(C14H14 ,ジベルジル)
 を60〜200℃に加熱してその溶融溶液中にアルゴ
ンガス(Ar)をバブリングさせた原料ガスを前記真空
容器1内に導入して0.05〜3torrのガス圧に充
満させた状態で、前記円環状の基板ホルダー4に保持さ
れ、かつ200 〜300 ℃に加熱されたディスク基
板5に高周波出力電源(RF電源) 6より50〜50
0 Wの高周波電力を供給してそれぞれ対向する二つの
電極2,3との間で放電させると共に、プラズマを発生
させてガス分子を活性化することにより前記ディスク基
板5の表裏面に比較的低温でジフェニルエタンをモノマ
ーとして堆積した炭素系のプラズマ重合保護膜を形成し
ている。
[0004] After the inside of the vacuum container 1 is once evacuated to a high vacuum, diphenylethane (C14H14, diverdyl), which is solid at room temperature, for example, is placed in the vacuum container 1.
A raw material gas prepared by heating to 60 to 200°C and bubbling argon gas (Ar) into the molten solution is introduced into the vacuum container 1 and filled with a gas pressure of 0.05 to 3 torr, The disk substrate 5 held by the annular substrate holder 4 and heated to 200 to 300° C. is supplied with a high frequency output power source (RF power source) of 50 to 50 ℃.
A relatively low temperature is applied to the front and back surfaces of the disk substrate 5 by supplying high-frequency power of 0 W to cause discharge between the two opposing electrodes 2 and 3, and by generating plasma and activating gas molecules. A carbon-based plasma polymerized protective film is formed using diphenylethane as a monomer.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記したよ
うなプラズマCVD法により前記ディスク基板5の表裏
面にプラズマ重合保護膜を同時に堆積させて成膜する際
に、上述したようにプラズマ重合保護膜の密着性を向上
させるために該ディスク基板5を加熱しているため、図
5に示すように2分割型の前記円環状の基板ホルダー4
における保持溝4cにディスク基板5が嵌め込まれた前
記下部保持枠4a上に対して嵌め合わせた上部保持枠4
bが、該ディスク基板5と円環状の基板ホルダー4との
熱膨張係数の違い等により浮き上がった状態となって両
者の接触状態が不均一になり、これに起因して前記ディ
スク基板5の表裏面に対するプラズマ状態が不均一とな
って均一な膜厚のプラズマ重合保護膜が得られないとい
う問題があった。
[Problems to be Solved by the Invention] By the way, when a plasma polymerized protective film is simultaneously deposited on the front and back surfaces of the disk substrate 5 by the plasma CVD method as described above, the plasma polymerized protective film is not deposited as described above. Since the disk substrate 5 is heated to improve the adhesion, the two-part annular substrate holder 4 is heated as shown in FIG.
The upper holding frame 4 is fitted onto the lower holding frame 4a in which the disk substrate 5 is fitted into the holding groove 4c.
b is raised due to the difference in thermal expansion coefficient between the disk substrate 5 and the annular substrate holder 4, resulting in uneven contact between the two, which causes the surface of the disk substrate 5 to become uneven. There has been a problem in that the plasma state on the back surface is non-uniform, making it impossible to obtain a plasma-polymerized protective film with a uniform thickness.

【0006】また、同様に熱膨張係数の大きい前記円環
状の基板ホルダー4からそれに保持されたディスク基板
5に応力が付加されるため歪みが生じたり、その歪みが
過度な場合、或いは特にディスク基板5が靭性に乏しい
ガラス基板やセラミック基板等である場合には、それら
の基板が破損するという問題も生じていた。
Similarly, stress may be applied from the annular substrate holder 4, which has a large coefficient of thermal expansion, to the disk substrate 5 held therein, causing distortion, or if the distortion is excessive, or in particular, if the disk substrate 5 is When the substrate 5 is a glass substrate, a ceramic substrate, or the like having poor toughness, there has also been a problem that the substrate is damaged.

【0007】本発明は上記した従来の問題点に鑑み、プ
ラズマCVD法により基板の表裏面に薄膜を成膜する際
に、該基板を加熱しても熱膨張係数の違いに起因して基
板に対する応力歪みの付加を低減した中空枠状の基板ホ
ルダーを用いた新規なプラズマ化学気相堆積装置を提供
することを目的とするものである。
In view of the above-mentioned conventional problems, the present invention has been developed to solve the problem that when a thin film is formed on the front and back surfaces of a substrate by the plasma CVD method, even if the substrate is heated, the difference in coefficient of thermal expansion causes The object of the present invention is to provide a novel plasma chemical vapor deposition apparatus using a hollow frame-shaped substrate holder that reduces stress and distortion.

【0008】[0008]

【課題を解決するための手段】本発明は上記した目的を
達成するため、真空容器内に対向する二つの電極と、該
二つの電極間にその電極面と平行に両面に薄膜を被着す
べき基板を設置すべく該基板の外周を保持する保持溝を
有する中空枠状の基板ホルダーとを備え、前記真空容器
内に導入した原料ガスを前記二つの電極と基板間で放電
してプラズマ化し、その基板の両面に薄膜を堆積形成す
るプラズマ化学気相堆積装置において、前記中空枠状の
基板ホルダーの保持溝内に基板と接触する導電性高分子
部材、若しくは導電性ばね部材からなる導電性の弾性部
材を設けた構成とする。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention includes two electrodes facing each other in a vacuum container, and a thin film coated on both sides parallel to the electrode surfaces between the two electrodes. and a hollow frame-shaped substrate holder having a holding groove for holding the outer periphery of the substrate on which the substrate to be removed is placed, and the raw material gas introduced into the vacuum container is discharged between the two electrodes and the substrate to become plasma. , in a plasma chemical vapor deposition apparatus that deposits a thin film on both sides of the substrate, a conductive polymer member or a conductive spring member that contacts the substrate in the holding groove of the hollow frame-shaped substrate holder; The structure includes an elastic member.

【0009】また、真空容器内に対向する二つの電極と
、該二つの電極間にその電極面と平行に両面に薄膜を被
着すべき基板を設置すべく該基板の外周を保持する保持
溝を有する中空枠状の基板ホルダーとを備え、前記真空
容器内に導入した原料ガスを前記二つの電極と基板間で
放電してプラズマ化し、その基板の両面に薄膜を堆積形
成するプラズマ化学気相堆積装置において、前記中空枠
状の基板ホルダーの保持溝の底部に、応力緩和用の縦割
り溝を設けた構成とする。
[0009] Also, in order to install two electrodes facing each other in the vacuum container and a substrate on which a thin film is to be coated on both sides parallel to the electrode surface between the two electrodes, a holding groove is provided to hold the outer periphery of the substrate. a hollow frame-shaped substrate holder having a substrate holder, and a plasma chemical vapor phase in which the source gas introduced into the vacuum container is discharged between the two electrodes and the substrate to become plasma, and a thin film is deposited on both sides of the substrate. In the deposition apparatus, a longitudinal groove for stress relaxation is provided at the bottom of the holding groove of the hollow frame-shaped substrate holder.

【0010】0010

【作用】本発明では、薄膜を成膜すべき基板を二つの対
向する電極間に配置する中空枠状の基板ホルダーの保持
溝の幅を僅かに広げると共に、その保持溝内に基板と接
触するように耐熱性に優れた弾力性を有する導電性高分
子部材、或いは導電性ばね部材からなる導電性弾性部材
を設けた構成とし、かかる中空枠状の基板ホルダーによ
り基板を保持して、その基板を二つの対向する電極間に
配置し、加熱した状態でプラズマCVD法により該基板
の表裏面に薄膜を成膜することにより、その基板を嵌合
保持した保持溝の幅を熱膨張を見越して僅かに広幅とし
たことと、該保持溝内に設けた耐熱性に優れ、かつ弾力
性を有する導電性高分子部材、或いは導電性ばね部材か
らなる緩和機構によって前記基板に対して付加される熱
膨張係数の違いに起因する中空枠状の基板ホルダーから
の応力が、著しく低減されて前記基板に歪みが生じたり
、破損するようなことが解消される。
[Operation] In the present invention, the width of the holding groove of a hollow frame-shaped substrate holder, in which the substrate on which a thin film is to be deposited, is placed between two opposing electrodes is slightly widened, and the substrate is brought into contact with the substrate within the holding groove. The structure includes a conductive elastic member made of a conductive polymer member with excellent heat resistance and elasticity, or a conductive spring member, and the substrate is held by the hollow frame-shaped substrate holder. is placed between two opposing electrodes, and a thin film is formed on the front and back surfaces of the substrate by plasma CVD in a heated state, thereby adjusting the width of the holding groove in which the substrate is fitted and held in anticipation of thermal expansion. The heat applied to the substrate by the slightly wide width and the relaxation mechanism made of a conductive polymer member with excellent heat resistance and elasticity provided in the holding groove or a conductive spring member. The stress from the hollow frame-shaped substrate holder due to the difference in expansion coefficients is significantly reduced, and distortion or damage to the substrate is eliminated.

【0011】また、前記中空枠状の基板ホルダーと基板
は均一な電気的接触が維持されるので、プラズマ状態の
均一化と、それによって均一な膜厚の薄膜を形成するこ
とができる。
Furthermore, since uniform electrical contact is maintained between the hollow frame-shaped substrate holder and the substrate, the plasma state can be made uniform, thereby making it possible to form a thin film with a uniform thickness.

【0012】更に、前記中空枠状の基板ホルダーの保持
溝の深さを多少深くると共に、その保持溝の底部に、応
力緩和用の縦割り溝を設けた構成とし、かかる中空枠状
の基板ホルダーにより基板を保持して、その基板を二つ
の対向する電極間に配置し、加熱した状態でプラズマC
VD法により該基板の表裏面に薄膜を成膜することによ
り、その基板を嵌合保持した保持溝の深さを熱膨張を見
越して僅か深くしたことと、該保持溝の底部に設けた応
力緩和用の縦割り溝によって前記基板に対して付加され
る熱膨張係数の違いに起因する中空枠状の基板ホルダー
からの応力が、著しく低減され、前記基板への歪みの付
加や、破損の発生が解消されると共に、記中空枠状の基
板ホルダーと基板との電気的接触も均一に維持されるの
で、プラズマ状態の均一化と、それにより膜厚の均一な
薄膜を形成することかできる。
Furthermore, the holding groove of the hollow frame-shaped substrate holder is made somewhat deeper, and the bottom of the holding groove is provided with a vertically divided groove for stress relaxation, so that the hollow frame-shaped substrate holder The substrate is held by a holder, placed between two opposing electrodes, and heated with plasma C.
By forming thin films on the front and back surfaces of the substrate using the VD method, the depth of the holding groove that fits and holds the substrate is made slightly deeper in anticipation of thermal expansion, and the stress created at the bottom of the holding groove is reduced. The stress from the hollow frame-shaped substrate holder due to the difference in thermal expansion coefficients that is applied to the substrate by the vertical grooves for relaxation is significantly reduced, causing distortion and damage to the substrate. is eliminated, and the electrical contact between the hollow frame-shaped substrate holder and the substrate is also maintained uniformly, so that the plasma state can be made uniform and a thin film with a uniform thickness can thereby be formed.

【0013】[0013]

【実施例】以下図面を用いて本発明の実施例について詳
細に説明する。図1は本発明に係るプラズマ化学気相堆
積装置における基板ホルダーの第1実施例を磁気ディス
クの製造に用いるディスク基板の基板ホルダーに適用し
た場合の例で示す要部縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a vertical cross-sectional view of a main part showing an example in which a first embodiment of a substrate holder in a plasma chemical vapor deposition apparatus according to the present invention is applied to a substrate holder for a disk substrate used in manufacturing a magnetic disk.

【0014】図において、11はプラズマ重合保護膜を
表裏両面に被着すべく該表裏両面にNi−Fe 合金等
からなる磁性膜 (図示省略) が被着されたガラス、
またはセラミック等からなるディスク基板5を保持する
保持溝12をそれぞれ内周部に設けた下部保持枠11a
 と、その下部保持枠11a 上に嵌合して一体に組合
わせる上部保持枠11bとからなる中空枠状の基板ホル
ダー、例えばステンレス等からなる二分割型の円環状の
基板ホルダーであり、13は下部保持枠11a に具備
した支持具である。
In the figure, reference numeral 11 denotes glass on which a magnetic film (not shown) made of Ni--Fe alloy or the like is adhered on both the front and back surfaces in order to apply a plasma-polymerized protective film to both surfaces;
Or a lower holding frame 11a provided with holding grooves 12 on the inner periphery for holding the disk substrate 5 made of ceramic or the like.
and a lower holding frame 11a, and an upper holding frame 11b that is fitted onto the upper holding frame 11b, and is a hollow frame-shaped substrate holder, for example, a two-part annular substrate holder made of stainless steel or the like. This is a support provided on the lower holding frame 11a.

【0015】そして該下部保持枠11a 及び上部保持
枠11b の内周部に設けた保持溝12はその幅を従来
の溝幅よりも熱膨張を勘案して僅かに広げると共に、そ
の保持溝12内の前記ディスク基板5と接触する部分に
は、例えばポリ弗化エチレン系の樹脂材であるテフロン
等にカーボン、或いは良導電性の金属粉末等を混入した
耐熱性に優れ、かつ弾力性を有する導電性高分子部材1
4を設けている。
The width of the holding grooves 12 provided on the inner peripheries of the lower holding frame 11a and the upper holding frame 11b is slightly wider than the conventional groove width in consideration of thermal expansion. The portion that contacts the disk substrate 5 is made of a conductive material that has excellent heat resistance and elasticity, and is made of a polyfluoroethylene resin material such as Teflon mixed with carbon or highly conductive metal powder. Polymer member 1
There are 4.

【0016】このような構成の二分割型の円環状の基板
ホルダー11に前記表裏両面にNi−Fe合金等からな
る磁性膜 (図示省略) を被着したディスク基板5を
保持し、該ディスク基板5を従来と同様なプラズマ化学
気相堆積装置内の二つの対向する電極間に配置し、プラ
ズマCVD法により加熱した状態の該ディスク基板5の
表裏面に例えば従来と同様にプラズマ重合保護膜を成膜
することにより、その成膜中に前記ディスク基板5に対
して付加される熱膨張係数の違いに起因する円環状の基
板ホルダー11からの熱膨張による応力は、そのディス
ク基板5を嵌合保持した保持溝12の僅かな広幅化と、
該保持溝12内に設けた前記耐熱性に優れ、かつ弾力性
を有する導電性高分子部材14によって吸収緩和されて
著しく低減され、前記ディスク基板5に歪みを生じさせ
たり、該ディスク基板5を破損させるようなこともなく
なる。
The disk substrate 5 having a magnetic film (not shown) made of Ni--Fe alloy or the like coated on both the front and back sides is held in the two-part annular substrate holder 11 having such a structure, and the disk substrate 5 is 5 is disposed between two opposing electrodes in a conventional plasma chemical vapor deposition apparatus, and a plasma polymerized protective film is applied, for example, to the front and back surfaces of the disk substrate 5 heated by plasma CVD. By forming a film, the stress due to thermal expansion from the annular substrate holder 11 due to the difference in thermal expansion coefficients applied to the disk substrate 5 during film formation is removed by fitting the disk substrate 5. Slightly widening the holding groove 12 held,
It is absorbed and relaxed by the conductive polymer member 14 provided in the holding groove 12 and has excellent heat resistance and elasticity, and is significantly reduced, causing distortion in the disk substrate 5 or There will be no chance of damage.

【0017】その上、前記円環状の基板ホルダー11と
ディスク基板5との電気的な接触も前記弾力性を有する
導電性高分子部材14の介在により均一に維持されるの
で、成膜中のプラズマ状態の均一化と、それによって均
一な膜厚のプラズマ重合保護膜を形成することができる
Furthermore, the electrical contact between the annular substrate holder 11 and the disk substrate 5 is maintained uniformly through the presence of the elastic conductive polymer member 14, so that the plasma during film formation is maintained uniformly. By making the condition uniform, it is possible to form a plasma polymerized protective film with a uniform thickness.

【0018】また、図2は本発明に係るプラズマ化学気
相堆積装置における基板ホルダーの第2実施例を磁気デ
ィスクの製造に用いるディスク基板の基板ホルダーに適
用した場合の例で示す要部縦断面図であり、図1と同等
部分には同一符号を付している。
FIG. 2 is a vertical cross-section of a main part showing an example in which the second embodiment of the substrate holder in a plasma chemical vapor deposition apparatus according to the present invention is applied to a substrate holder for a disk substrate used for manufacturing a magnetic disk. 1, in which parts equivalent to those in FIG. 1 are given the same reference numerals.

【0019】この図で示す実施例が図1のそれと異なる
点は、例えばステンレス等からなる二分割型の円環状の
基板ホルダー21における下部保持枠21a 及び上部
保持枠21bの内周部に設けた保持溝22内の前記ディ
スク基板5と接触する部分に、例えば多数の良導電性の
金属ばね部材23を列設したことである。
The embodiment shown in this figure differs from that shown in FIG. 1 in that two-part annular substrate holder 21 made of, for example, stainless steel has a lower holding frame 21a and an upper holding frame 21b provided at the inner periphery thereof. For example, a large number of highly conductive metal spring members 23 are arranged in a row in a portion of the holding groove 22 that contacts the disk substrate 5.

【0020】このような構成の二分割型の円環状の基板
ホルダー21に前記表裏両面にNi−Fe合金等からな
る磁性膜 (図示省略) を被着したガラス、またはセ
ラミック等からなるディスク基板5を保持し、該ディス
ク基板5を従来と同様なプラズマCVD法により加熱し
た状態の該ディスク基板5の表裏面にプラズマ重合保護
膜を成膜することにより、その成膜中に前記ディスク基
板5に対して付加される熱膨張係数の違いに起因する円
環状の基板ホルダー21からの熱膨張による応力は、そ
のディスク基板5を嵌合保持した保持溝22の僅かな広
幅化と、該保持溝22内に列設した前記多数の良導電性
の金属ばね部材23によって吸収緩和されて著しく低減
することができる。
A disk substrate 5 made of glass, ceramic, or the like is coated with a magnetic film (not shown) made of Ni--Fe alloy or the like on both the front and back surfaces of the two-part annular substrate holder 21 having such a structure. By forming a plasma polymerized protective film on the front and back surfaces of the disk substrate 5 while holding the disk substrate 5 and heating it by the conventional plasma CVD method, the disk substrate 5 is heated during the film formation. The stress due to thermal expansion from the annular substrate holder 21 due to the difference in thermal expansion coefficient applied to the disk substrate 5 causes the holding groove 22 that fits and holds the disk substrate 5 to become slightly wider, and the holding groove 22 It is absorbed and relaxed by the large number of highly conductive metal spring members 23 arranged in the interior, and can be significantly reduced.

【0021】従って、図1による実施例と同様に前記デ
ィスク基板5に歪みを生じさせたり、該ディスク基板5
を破損させる問題が解消すると共に、前記円環状の基板
ホルダー21とディスク基板5との電気的な接触も前記
良導電性の金属ばね部材23の介在により均一に維持さ
れ、成膜中のプラズマ状態の均一化と、それによって均
一な膜厚のプラズマ重合保護膜を形成することができる
Therefore, as in the embodiment shown in FIG.
In addition to solving the problem of damaging the disk substrate 5, the electrical contact between the annular substrate holder 21 and the disk substrate 5 is also maintained uniformly by the interposition of the highly conductive metal spring member 23, and the plasma state during film formation is maintained uniformly. This makes it possible to form a plasma-polymerized protective film with a uniform thickness.

【0022】更に、図3は本発明に係るプラズマ化学気
相堆積装置における基板ホルダーの第3実施例を磁気デ
ィスクの製造に用いるディスク基板の基板ホルダーに適
用した場合の例で示す要部縦断面図であり、図1、図2
と同等部分には同一符号を付している。
Further, FIG. 3 is a vertical cross-section of a main part showing an example in which the third embodiment of the substrate holder in a plasma chemical vapor deposition apparatus according to the present invention is applied to a substrate holder for a disk substrate used for manufacturing a magnetic disk. Figures 1 and 2.
The same parts are given the same symbols.

【0023】この図で示す実施例が図1、図2のそれと
異なる点は、例えばステンレス等からなる二分割型の円
環状の基板ホルダー31におけるディスク基板5を嵌合
保持する下部保持枠31a 及び上部保持枠31b の
内周部に設けた保持溝32の深さを熱膨張を見越して僅
かに深くし、その保持溝32の底部に応力緩和用の縦割
り溝33を設け、この縦割り溝33によって前記基板ホ
ルダー31が熱膨張した際に、該保持溝32の溝幅が拡
がり易くしたことである。
The embodiment shown in this figure is different from those shown in FIGS. 1 and 2 in that a two-part annular substrate holder 31 made of stainless steel or the like has a lower holding frame 31a that fits and holds the disk substrate 5; The depth of the holding groove 32 provided on the inner circumference of the upper holding frame 31b is made slightly deeper in anticipation of thermal expansion, and a vertical groove 33 for stress relaxation is provided at the bottom of the holding groove 32. 33 makes it easy for the groove width of the holding groove 32 to expand when the substrate holder 31 thermally expands.

【0024】このような構成の二分割型の円環状の基板
ホルダー31に前記表裏両面にNi−Fe合金等からな
る磁性膜 (図示省略) を被着したガラス、またはセ
ラミック等からなるディスク基板5を保持し、該ディス
ク基板5を従来と同様なプラズマCVD法により加熱し
た状態の該ディスク基板5の表裏面にプラズマ重合保護
膜を成膜することにより、その成膜中に前記ディスク基
板5に対して付加される熱膨張係数の違いに起因する円
環状の基板ホルダー31からの熱膨張による応力は、そ
のディスク基板5を嵌合保持した保持溝32の深さを僅
かに深くしたことと、該保持溝32の幅が底部に設けた
応力緩和用の縦割り溝33により拡がることにより吸収
緩和されて著しく低減することができる。
A disk substrate 5 made of glass, ceramic, or the like is coated with a magnetic film (not shown) made of Ni--Fe alloy or the like on both the front and back surfaces of the two-part annular substrate holder 31 having such a structure. By forming a plasma polymerized protective film on the front and back surfaces of the disk substrate 5 while holding the disk substrate 5 and heating it by the conventional plasma CVD method, the disk substrate 5 is heated during the film formation. The stress due to thermal expansion from the annular substrate holder 31 due to the difference in thermal expansion coefficient applied to the disk substrate 5 can be reduced by slightly increasing the depth of the holding groove 32 that fits and holds the disk substrate 5. The width of the holding groove 32 is expanded by the vertically divided grooves 33 for stress relaxation provided at the bottom, so that the stress is absorbed and relaxed and can be significantly reduced.

【0025】従って、図1、図2による実施例と同様に
前記ディスク基板5に歪みを生じさせたり、該ディスク
基板5を破損させる問題が解消すると共に、前記円環状
の基板ホルダー31とディスク基板5との電気的な接触
も均一に維持され、成膜中のプラズマ状態の均一化と、
それにより均一な膜厚のプラズマ重合保護膜を形成する
ことができる。
Therefore, as in the embodiments shown in FIGS. 1 and 2, the problem of causing distortion or damage to the disk substrate 5 is solved, and the annular substrate holder 31 and the disk substrate The electrical contact with 5 is also maintained uniformly, and the plasma state during film formation is made uniform.
Thereby, a plasma polymerized protective film having a uniform thickness can be formed.

【0026】なお、以上の実施例ではプラズマ化学気相
堆積装置における両面成膜用の中空枠状の基板ホルダー
として、磁気ディスクの製造に用いるディスク基板を対
象とした二分割型の円環状の基板ホルダーに適用した場
合の例で説明したが、本発明はそのような例に限定され
るものではなく、必要に応じて二分割型の矩形、正方形
等の中空額縁枠状の基板ホルダーに用いた場合にも同様
な効果が得られる。
In the above embodiments, a two-part annular substrate intended for disk substrates used in manufacturing magnetic disks was used as a hollow frame-shaped substrate holder for double-sided film formation in a plasma chemical vapor deposition apparatus. Although the present invention has been described as an example in which it is applied to a holder, the present invention is not limited to such an example, and may be used in a hollow frame-shaped substrate holder such as a two-part rectangular or square frame as necessary. A similar effect can be obtained in this case.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
に係るプラズマ化学気相堆積装置によれば、二つの電極
間にその電極面と平行に両面に薄膜を被着すべき基板を
外周で保持する中空枠状の基板ホルダーにおける該基板
と接触する保持溝内に導電性高分子部材、若しくは導電
性ばね部材からなる導電性の弾性部材を設けた構成、或
いは該保持溝の底部に応力緩和用の縦割り溝を設けた構
成とすることにより、該中空枠状の基板ホルダーを用い
て加熱した基板の表裏面にプラズマCVD法により薄膜
を形成した際に、基板に対する熱膨張係数の違いに起因
する中空枠状の基板ホルダーからの熱膨張による応力が
、該基板を保持した保持溝内の前記導電性の弾性部材や
縦割り溝により吸収緩和されて著しく低減され、前記基
板への歪みの付加や、該基板を破損させることが解消す
ると共に、中空枠状の基板ホルダーと基板との電気的接
触も均一に維持され、成膜中のプラズマ状態の均一化と
、それにより均一な膜厚の薄膜を形成することができる
等、実用上優れた効果が発揮される。
As is clear from the above description, according to the plasma chemical vapor deposition apparatus according to the present invention, a substrate on which a thin film is to be coated on both surfaces is placed between two electrodes in parallel with the electrode surfaces. A structure in which a conductive elastic member made of a conductive polymer member or a conductive spring member is provided in a holding groove in contact with the substrate in a hollow frame-shaped substrate holder held by the substrate, or a conductive elastic member made of a conductive spring member is provided at the bottom of the holding groove. By having a structure with vertical grooves for relaxation, when a thin film is formed by plasma CVD on the front and back surfaces of a heated substrate using the hollow frame-shaped substrate holder, the difference in thermal expansion coefficient for the substrate can be reduced. The stress due to thermal expansion from the hollow frame-shaped substrate holder caused by the substrate holder is absorbed and relaxed by the conductive elastic member and the vertical grooves in the holding groove that held the substrate, and is significantly reduced, causing distortion to the substrate. In addition to eliminating the problem of adding heat or damaging the substrate, it also maintains uniform electrical contact between the hollow frame-shaped substrate holder and the substrate, making the plasma state uniform during film formation and resulting in a uniform film. It exhibits excellent practical effects, such as being able to form a thick thin film.

【0028】従って、金属基板以外の、特にガラス基板
やセラミック基板等の靭性に乏しい基板の表面、或いは
表裏面にプラズマCVD法により薄膜を形成するのに適
用して極めて効果的である。
Therefore, the present invention is extremely effective when applied to the formation of thin films by plasma CVD on the surfaces or front and back surfaces of substrates with poor toughness, such as glass substrates and ceramic substrates, other than metal substrates.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明に係るプラズマ化学気相堆積装置に
おける基板ホルダーの第1実施例を磁気ディスクの製造
に用いるディスク基板の基板ホルダーに適用した場合の
例で示す要部縦断面図である。
FIG. 1 is a vertical cross-sectional view of a main part showing an example in which a first embodiment of a substrate holder in a plasma chemical vapor deposition apparatus according to the present invention is applied to a substrate holder for a disk substrate used in manufacturing a magnetic disk.

【図2】  本発明に係るプラズマ化学気相堆積装置に
おける基板ホルダーの第2実施例を磁気ディスクの製造
に用いるディスク基板の基板ホルダーに適用した場合の
例で示す要部縦断面図である。
FIG. 2 is a vertical sectional view of a main part showing an example in which a second embodiment of a substrate holder in a plasma chemical vapor deposition apparatus according to the present invention is applied to a substrate holder for a disk substrate used for manufacturing a magnetic disk.

【図3】  本発明に係るプラズマ化学気相堆積装置に
おける基板ホルダーの第3実施例を磁気ディスクの製造
に用いるディスク基板の基板ホルダーに適用した場合の
例で示す要部縦断面図である。
FIG. 3 is a longitudinal sectional view of a main part showing an example in which a third embodiment of a substrate holder in a plasma chemical vapor deposition apparatus according to the present invention is applied to a substrate holder for a disk substrate used in manufacturing a magnetic disk.

【図4】  従来のプラズマ化学気相堆積装置を説明す
るための概略構成図である。
FIG. 4 is a schematic configuration diagram for explaining a conventional plasma chemical vapor deposition apparatus.

【図5】  従来のプラズマ化学気相堆積装置に用いる
基板ホルダーを説明するための平面図である。
FIG. 5 is a plan view for explaining a substrate holder used in a conventional plasma chemical vapor deposition apparatus.

【符号の説明】[Explanation of symbols]

5    ディスク基板 11,21,31    円環状の基板ホルダー11a
,21a,31a    下部保持枠11b,21b,
31b    上部保持枠12,22,32    保
持溝 13    支持具 14    導電性高分子部材 23    金属ばね部材 33    縦割り溝
5 Disk substrate 11, 21, 31 Annular substrate holder 11a
, 21a, 31a lower holding frame 11b, 21b,
31b Upper holding frame 12, 22, 32 Holding groove 13 Support tool 14 Conductive polymer member 23 Metal spring member 33 Vertical groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  真空容器内に対向する二つの電極と、
該二つの電極間にその電極面と平行に両面に薄膜を被着
すべき基板(5) を設置すべく該基板(5) の外周
を保持する保持溝(12)を有する中空枠状の基板ホル
ダー(11)とを備え、前記真空容器内に導入した原料
ガスを前記二つの電極と基板(5) 間で放電してプラ
ズマ化し、その基板(5) の両面に薄膜を堆積形成す
るプラズマ化学気相堆積装置において、前記中空枠状の
基板ホルダー(11)の保持溝(12)内に基板(5)
 と接触する導電性の弾性部材(14, 23)を設け
てなることを特徴とするプラズマ化学気相堆積装置。
[Claim 1] Two electrodes facing each other in a vacuum container,
A hollow frame-shaped substrate having a holding groove (12) for holding the outer periphery of the substrate (5) for installing the substrate (5) on both sides of which a thin film is to be applied parallel to the electrode surface between the two electrodes. holder (11), the source gas introduced into the vacuum container is discharged between the two electrodes and the substrate (5) to turn it into plasma, and a thin film is deposited on both sides of the substrate (5). In the vapor deposition apparatus, the substrate (5) is placed in the holding groove (12) of the hollow frame-shaped substrate holder (11).
1. A plasma chemical vapor deposition apparatus characterized in that a conductive elastic member (14, 23) is provided in contact with the plasma chemical vapor deposition apparatus.
【請求項2】  真空容器内に対向する二つの電極と、
該二つの電極間にその電極面と平行に両面に薄膜を被着
すべき基板(5) を設置すべく該基板(5) の外周
を保持する保持溝(32)を有する中空枠状の基板ホル
ダー(31)とを備え、前記真空容器内に導入した原料
ガスを前記二つの電極と基板(5) 間で放電してプラ
ズマ化し、その基板(5) の両面に薄膜を堆積形成す
るプラズマ化学気相堆積装置において、前記中空枠状の
基板ホルダー(31)の保持溝(32)の底部に、応力
緩和用の縦割り溝(33)を設けてなることを特徴とす
るプラズマ化学気相堆積装置。
[Claim 2] Two electrodes facing each other in a vacuum container,
A hollow frame-shaped substrate having a holding groove (32) for holding the outer periphery of the substrate (5) for installing the substrate (5) on both sides of which a thin film is to be applied parallel to the electrode surface between the two electrodes. holder (31), the source gas introduced into the vacuum container is discharged between the two electrodes and the substrate (5) to turn it into plasma, and a thin film is deposited on both sides of the substrate (5). In the vapor phase deposition apparatus, the plasma chemical vapor deposition is characterized in that a vertical groove (33) for stress relaxation is provided at the bottom of the holding groove (32) of the hollow frame-shaped substrate holder (31). Device.
JP5673391A 1991-03-20 1991-03-20 Plasma chemical vapor deposition device Withdrawn JPH04293782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5673391A JPH04293782A (en) 1991-03-20 1991-03-20 Plasma chemical vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5673391A JPH04293782A (en) 1991-03-20 1991-03-20 Plasma chemical vapor deposition device

Publications (1)

Publication Number Publication Date
JPH04293782A true JPH04293782A (en) 1992-10-19

Family

ID=13035715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5673391A Withdrawn JPH04293782A (en) 1991-03-20 1991-03-20 Plasma chemical vapor deposition device

Country Status (1)

Country Link
JP (1) JPH04293782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093722A (en) * 2000-09-14 2002-03-29 Mitsubishi Electric Corp Plasma cvd system, method of forming thin film and method of manufacturing solar cell
DE10358909B4 (en) * 2002-12-18 2006-03-09 Sharp Kabushiki Kaisha A plasma CVD apparatus, and a coating method and method of manufacturing a semiconductor device using the same
WO2011062134A1 (en) * 2009-11-19 2011-05-26 昭和電工株式会社 In-line type film forming apparatus and method for manufacturing magnetic recording medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093722A (en) * 2000-09-14 2002-03-29 Mitsubishi Electric Corp Plasma cvd system, method of forming thin film and method of manufacturing solar cell
JP4496401B2 (en) * 2000-09-14 2010-07-07 三菱電機株式会社 Plasma CVD apparatus and method for manufacturing solar cell
DE10358909B4 (en) * 2002-12-18 2006-03-09 Sharp Kabushiki Kaisha A plasma CVD apparatus, and a coating method and method of manufacturing a semiconductor device using the same
US7195673B2 (en) 2002-12-18 2007-03-27 Sharp Kabushiki Kaisha Plasma CVD apparatus, and method for forming film and method for forming semiconductor device using the same
US7565880B2 (en) 2002-12-18 2009-07-28 Sharp Kabushiki Kaisha Plasma CVD apparatus, and method for forming film and method for forming semiconductor device using the same
WO2011062134A1 (en) * 2009-11-19 2011-05-26 昭和電工株式会社 In-line type film forming apparatus and method for manufacturing magnetic recording medium
JP2011108337A (en) * 2009-11-19 2011-06-02 Showa Denko Kk In-line film forming apparatus, and method of manufacturing magnetic recording medium
US9196284B2 (en) 2009-11-19 2015-11-24 Showa Denko K.K. In-line type film forming apparatus and method for manufacturing magnetic recording medium

Similar Documents

Publication Publication Date Title
US3984301A (en) Sputter-etching method employing fluorohalogenohydrocarbon etching gas and a planar electrode for a glow discharge
TW201012306A (en) Temperature controlled hot edge ring assembly
KR940011662A (en) Anisotropic Etching Method and Apparatus
TW200308044A (en) Electrostatic chucking stage and substrate processing apparatus
JPS60181274A (en) Device and method for carrying out coating on substrate
JP2017190526A (en) DC magnetron sputtering
JP3155792B2 (en) Hot plate
JPH04293782A (en) Plasma chemical vapor deposition device
JP4456218B2 (en) Plasma processing equipment
JPH0752749B2 (en) Wafer holding mechanism
JPS63140085A (en) Film forming device
JP3736103B2 (en) Plasma processing apparatus and processing method thereof
JPH06291064A (en) Plasma treatment device
JPH08217596A (en) Formation of diamondlike carbon film and device therefor
JP2002100616A (en) Plasma-processing apparatus
JPH06112302A (en) Plasma processing apparatus and its handling method
JP4890313B2 (en) Plasma CVD equipment
JPH0445261A (en) Method for degassing vacuum member, vacuum member and electron beam generating device
WO2024046078A1 (en) Coating device
JPS622544A (en) Noiseless discharge type gas plasma treating device
JP2001192836A (en) Plasma cvd system
JPH08236508A (en) Method and device for substrate processing
JPS5913321A (en) Susceptor for vacuum cvd
JPH0620965A (en) Holder for heating under vacuum condition and cvd apparatus
JPH07252655A (en) Thin film forming device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514