JP3155792B2 - Hot plate - Google Patents

Hot plate

Info

Publication number
JP3155792B2
JP3155792B2 JP31329591A JP31329591A JP3155792B2 JP 3155792 B2 JP3155792 B2 JP 3155792B2 JP 31329591 A JP31329591 A JP 31329591A JP 31329591 A JP31329591 A JP 31329591A JP 3155792 B2 JP3155792 B2 JP 3155792B2
Authority
JP
Japan
Prior art keywords
electrode
hot plate
cvd
electrostatic chuck
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31329591A
Other languages
Japanese (ja)
Other versions
JPH05129210A (en
Inventor
卓 川崎
雅夫 築地原
孝 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP31329591A priority Critical patent/JP3155792B2/en
Publication of JPH05129210A publication Critical patent/JPH05129210A/en
Application granted granted Critical
Publication of JP3155792B2 publication Critical patent/JP3155792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、導電材料や半導体材料
からなるシリコンウェーハ等の試料に集積回路を形成す
る工程において、試料の加熱に使用するに好適なホット
プレートに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot plate suitable for heating a sample in a process of forming an integrated circuit on a sample such as a silicon wafer made of a conductive material or a semiconductor material.

【0002】[0002]

【従来の技術】シリコンウェーハ等の試料に層間絶縁膜
や保護膜を形成する工程においては、化学気相蒸着(C
VD)法が用いられる。CVD法では、反応温度に加熱
された試料と反応ガスが接触することにより、試料上で
化学反応が生じて膜が形成される。膜の材質は反応ガス
の種類によって選定され、さらに膜質や膜厚はCVDの
圧力、温度、プラズマの有無等の条件で調節される。そ
して、CVDの温度は、抵抗加熱、誘導加熱、赤外線加
熱等の方法で制御される。特に試料を1枚ずつホットプ
レートで加熱する方法は枚葉式と呼ばれ、温度を高精度
で制御するのに適した方法である。
2. Description of the Related Art In a process of forming an interlayer insulating film and a protective film on a sample such as a silicon wafer, a chemical vapor deposition (C
VD) method is used. In the CVD method, when a sample heated to a reaction temperature comes into contact with a reaction gas, a chemical reaction occurs on the sample to form a film. The material of the film is selected according to the type of the reaction gas, and the film quality and the film thickness are adjusted by conditions such as the pressure, temperature, and presence or absence of plasma. The temperature of CVD is controlled by a method such as resistance heating, induction heating, or infrared heating. In particular, a method of heating a sample one by one with a hot plate is called a single-wafer method, and is a method suitable for controlling the temperature with high accuracy.

【0003】しかしながら、従来の枚葉式の加熱におい
ては、加熱により発生する試料のそりによって試料とホ
ットプレートの接触が不均一となって試料面内に温度分
布が生じ膜質や膜厚の分布が不均一になるという問題が
あった。これを改善すべく試料とホットプレートとの間
に熱を伝達しやすいヘリウム等の不活性ガスを介在させ
ることを試みたが、CVDは減圧下で行なわれる場合が
多く、不活性ガスの圧力を高くすることができないた
め、十分な効果は得られなかった。
However, in the conventional single-wafer heating, the contact between the sample and the hot plate becomes uneven due to the warpage of the sample generated by the heating, and a temperature distribution occurs in the sample surface, and the distribution of film quality and film thickness is reduced. There was a problem of non-uniformity. To improve this, an attempt was made to interpose an inert gas such as helium, which easily transfers heat, between the sample and the hot plate. However, CVD is often performed under reduced pressure, and the pressure of the inert gas is reduced. The effect could not be obtained because it could not be increased.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
欠点を解決し、高精度かつ均一な試料の高温加熱を可能
としたホットプレートを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hot plate which solves the above-mentioned drawbacks and enables high-precision and uniform high-temperature heating of a sample.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、熱
分解窒化ほう素(P−BN)からなる基材(1)の一方
の面に静電チャック用電極(2)が、他方の面に加熱用
電極(3)がいずれも熱分解黒鉛(PG)で形成されて
なり、しかも静電チャック用電極の給電部(4)と加熱
用電極の給電部(5)を除く部分に熱分解窒化ほう素
(P−BN)被覆膜(6)が施されてなることを特徴と
するホットプレートである。
That is, according to the present invention, an electrode (2) for electrostatic chuck is provided on one surface of a substrate (1) made of pyrolytic boron nitride (P-BN) and the other surface. Each of the heating electrodes (3) is formed of pyrolytic graphite (PG) , and the portions other than the power supply portion (4) of the electrostatic chuck electrode and the power supply portion (5) of the heating electrode are thermally decomposed. Boron nitride
(P-BN) A hot plate characterized by being provided with a coating film (6).

【0006】以下、さらに詳しく本発明を説明する。本
発明のホットプレートの一例を示す平面図を図1に、そ
れを装備した枚様式CVD装置の概略断面図を図2に示
す。
Hereinafter, the present invention will be described in more detail. FIG. 1 is a plan view showing an example of the hot plate of the present invention, and FIG. 2 is a schematic sectional view of a single-wafer CVD apparatus equipped with the hot plate.

【0007】本発明で使用される基材1は熱分解窒化ほ
う素(P−BN)からなるものである。P−BNとはC
VD法で形成されてなる窒化ほう素(BN)である。基
材1としてP−BN以外の材料を用いると、CVD時に
基材自体の熱分解もしくは基材と反応ガスとの反応が生
じるため好ましくない。また、BN焼結体を基材に用い
ることも考えられるが、BN焼結体は機械的強度が小さ
いために基材の厚さを厚くしなければならず、しかも基
材側面から逃げる熱量も大きいので特に700℃よりも
高い温度に試料を加熱しようとする場合に温度が充分に
上がらないという問題があった。
The substrate 1 used in the present invention is made of pyrolytic boron nitride (P-BN). What is P-BN?
Boron nitride (BN) formed by the VD method. It is not preferable to use a material other than P-BN as the substrate 1 because thermal decomposition of the substrate itself or reaction between the substrate and the reaction gas occurs during CVD. It is also conceivable to use a BN sintered body for the base material. However, since the BN sintered body has low mechanical strength, the thickness of the base material must be increased, and the amount of heat that escapes from the side surface of the base material is also reduced. Because of its large size, there is a problem that the temperature is not sufficiently increased particularly when the sample is to be heated to a temperature higher than 700 ° C.

【0008】基材1の厚さがあまりにも薄いと、静電チ
ャック用電極と加熱用電極との間の絶縁が不充分となる
し、またあまりにも厚いと、厚さ方向に熱が伝わりにく
くなって温度制御の精度が低下するので、0.5 〜10mm
が好ましい。P−BNを基材に用いた場合、静電チャッ
クにそりが発生することがあるが、P−BNは弾力性に
富むため、枚葉式CVD装置に装備する際にネジ等を用
いて力を加えながら固定することにより容易にそれを矯
正することができる。
If the thickness of the substrate 1 is too small, insulation between the electrode for electrostatic chuck and the electrode for heating becomes insufficient, and if it is too large, heat is hardly transmitted in the thickness direction. 0.5 to 10 mm
Is preferred. When P-BN is used for the base material, the electrostatic chuck may be warped. However, P-BN is rich in elasticity. It can be easily corrected by fixing while adding.

【0009】本発明のホットプレートは、上記基材の一
方の面に静電チャック用電極2を、他方の面に加熱用電
極3をそれぞれ熱分解黒鉛(PG)で形成することを要
件としている。PGとはCVD法で形成されてなる黒鉛
をいう。
The hot plate of the present invention requires that the electrode for electrostatic chuck 2 be formed on one surface of the base material and the heating electrode 3 be formed on the other surface by pyrolytic graphite (PG). . PG refers to graphite formed by a CVD method.

【0010】PG以外の材料で上記の電極2又は3を形
成したのでは、P−BN被覆膜6を形成する際やホット
プレートの使用時におけるような高温下においては上記
の電極2又は3と基材1とが反応したり、あるいは両者
の熱膨脹率の違いにより電極が断線したり剥離したりす
る。
When the electrode 2 or 3 is formed of a material other than PG, the electrode 2 or 3 is formed at a high temperature such as when forming the P-BN coating film 6 or when using a hot plate. The electrode and the substrate 1 react with each other, or the electrode is disconnected or peeled off due to a difference in thermal expansion coefficient between the two.

【0011】静電チャック用電極2又は加熱用電極3の
厚さとしては、あまりにも薄いと、加熱用電極の抵抗値
が大となって加熱電源に過大な電圧が必要となるし、一
方、あまりにも厚いと、電極が基材から剥離しやすくな
るので、10μm 〜1mmとするのが好ましい。
If the thickness of the electrode for electrostatic chuck 2 or the electrode for heating 3 is too small, the resistance value of the electrode for heating becomes large and an excessive voltage is required for the heating power source. If the thickness is too large, the electrode tends to peel off from the substrate, so that the thickness is preferably 10 μm to 1 mm.

【0012】本発明において、静電チャック用電極の給
電部4と加熱用電極の給電部5以外の部分をP−BN被
覆膜で構成する理由は、静電チャック力を低下させない
こと及び試料上の素子が漏電等により破壊されるのを防
止するためである。P−BN被覆膜とはCVD法で形成
されてなるBN被覆膜をいい、その膜厚としては10μ
m 〜1mmが好ましい。
In the present invention, the portions other than the power supply portion 4 of the electrode for electrostatic chuck and the power supply portion 5 of the heating electrode are formed of the P-BN coating film because the electrostatic chuck force is not reduced and the sample is not reduced. This is to prevent the upper element from being destroyed due to electric leakage or the like. The P-BN coating film refers to a BN coating film formed by a CVD method and has a thickness of 10 μm.
m to 1 mm is preferred.

【0013】本発明のホットプレートは、例えば、上記
基材1にPGをCVD法により被覆後、機械加工等によ
り不要なPG部分を除去して静電チャック用電極2と加
熱用電極3を形成させ、さらにCVD法によりP−BN
被覆膜6を設けた後、静電チャック用電極の給電部4と
加熱用電極の給電部5となる部分のP−BN被覆膜を除
去することによって製造することができる。
In the hot plate of the present invention, for example, after covering the base material 1 with PG by the CVD method, unnecessary PG portions are removed by machining or the like to form the electrostatic chuck electrode 2 and the heating electrode 3. And P-BN by CVD.
After the coating film 6 is provided, it can be manufactured by removing the P-BN coating film at the portions serving as the power supply portion 4 of the electrode for electrostatic chuck and the power supply portion 5 of the electrode for heating.

【0014】CVD法は、反応室内に配置された基材上
に、又は電極が形成された基材上に、窒素、アルゴンな
どの不活性ガス雰囲気下、圧力 0.1〜50torr、温度1
700〜2000℃の条件で化学反応を起こさせ膜を形
成させるものである。反応ガスとしては、PGでは、プ
ロパン(C3H8) 、アセチレン(C2H2) 等の炭化水素ガス
が、P−BNでは、三塩化ほう素(BCl3) 等のハロゲン
化ほう素とアンモニア(NH3)等の混合ガスが主に用いら
れる。
In the CVD method, a substrate is placed on a substrate placed in a reaction chamber or on a substrate on which electrodes are formed, in an atmosphere of an inert gas such as nitrogen or argon, at a pressure of 0.1 to 50 torr, at a temperature of 1 torr.
This is to form a film by causing a chemical reaction under the condition of 700 to 2000 ° C. As the reaction gas, hydrocarbon gas such as propane (C 3 H 8 ) and acetylene (C 2 H 2 ) is used for PG, and boron halide such as boron trichloride (BCl 3 ) is used for P-BN. A mixed gas such as ammonia (NH 3 ) is mainly used.

【0015】本発明のホットプレートを装備した枚葉式
CVD装置の概略説明図を図2に示す。真空容器8内に
本発明のホットプレート9が置かれ、試料10はホット
プレート上に固定され、加熱される。試料は、静電チャ
ック用電極に電圧を印加することによって発生した静電
引力により固定され、加熱は、加熱用電源17からその
給電部5を介して加熱用電極3に電流を流すことによっ
て行なわれる。なお、18は静電チャック用電極面側に
皿もみが設けられたネジ止め用小孔である。
FIG. 2 is a schematic explanatory view of a single wafer CVD apparatus equipped with a hot plate according to the present invention. The hot plate 9 of the present invention is placed in the vacuum vessel 8, and the sample 10 is fixed on the hot plate and heated. The sample is fixed by electrostatic attraction generated by applying a voltage to the electrode for electrostatic chuck, and heating is performed by passing a current from the heating power supply 17 to the heating electrode 3 via the power supply unit 5. It is. Reference numeral 18 denotes a small screw hole provided with a dish on the electrode surface side of the electrostatic chuck.

【0016】本発明のホットプレートには、ホットプレ
ートから試料への熱の伝達を均一にするため、ヘリウム
等の不活性ガス11を導入するための小孔7を設けてお
くことが好ましい。不活性ガスを導入する場合、その圧
力が試料の単位面積あたりの静電引力をこえると試料が
浮き上がるので注意が必要である。
The hot plate of the present invention is preferably provided with small holes 7 for introducing an inert gas 11 such as helium in order to uniformly transfer heat from the hot plate to the sample. When introducing an inert gas, care must be taken because if the pressure exceeds the electrostatic attractive force per unit area of the sample, the sample will float.

【0017】上記のとおりに試料が固定された後は、真
空ポンプ13により排気口12から排気が行なわれ、真
空容器内が一定圧力に保持される。さらにホットプレー
トが加熱され真空容器内が一定温度に保持される。その
後、ガス導入口14より反応ガス15が導入され、試料
表面にCVD膜が施される。
After the sample is fixed as described above, air is exhausted from the exhaust port 12 by the vacuum pump 13 to maintain the inside of the vacuum vessel at a constant pressure. Further, the hot plate is heated and the inside of the vacuum vessel is kept at a constant temperature. Thereafter, a reaction gas 15 is introduced from the gas inlet 14 and a CVD film is formed on the sample surface.

【0018】本発明のホットプレートの用途は、CVD
法により、試料に層間絶縁膜や保護膜を形成する工程に
限られるものではなく、例えばエピタキシャル成長、プ
ラズマCVD、物理気相蒸着、プラズマエッチングなど
の試料加熱処理工程に用いることができる。
The hot plate of the present invention is used for CVD.
The method is not limited to the step of forming an interlayer insulating film or a protective film on a sample, but can be used for a sample heat treatment step such as epitaxial growth, plasma CVD, physical vapor deposition, or plasma etching.

【0019】[0019]

【実施例】以下、実施例と比較例をあげてさらに具体的
に本発明を説明する。
The present invention will be described below more specifically with reference to examples and comparative examples.

【0020】実施例1 長さ500mm、幅250mm、厚さ5mmの黒鉛板からなる
基材を反応容器内に置き、温度1950℃、圧力1torr
に保持して窒素ガスで希釈した三塩化ほう素とアンモニ
アの混合ガスを導入してP−BNのCVDを行なった。
CVD後、反応容器を室温まで冷却して基材を取り出
し、析出したP−BNを基材から離型した。得られたP
−BN板の機械加工を行ない、外径200mm、厚さ2mm
のP−BN円板を作製し基材とした。
Example 1 A substrate made of a graphite plate having a length of 500 mm, a width of 250 mm and a thickness of 5 mm was placed in a reaction vessel, at a temperature of 1950 ° C. and a pressure of 1 torr.
And a mixed gas of boron trichloride and ammonia diluted with nitrogen gas was introduced to carry out P-BN CVD.
After CVD, the reaction vessel was cooled to room temperature, the substrate was taken out, and the deposited P-BN was released from the substrate. P obtained
-Machined BN plate, outer diameter 200mm, thickness 2mm
Was prepared as a substrate.

【0021】上記P−BN円板からなる基材を反応容器
内に置き、温度1850℃、圧力6torrに保持後、窒素
ガスで希釈したプロパンガスを反応容器内に導入してP
GのCVDを行なった。CVD後、反応容器を室温まで
冷却して基材を取り出し、不要部分のPGを機械加工で
除去し、一方の片面には静電チャック用電極を、もう一
方の面には加熱用電極を形成した。電極のPGの厚さは
いずれも50μm であった。
The substrate made of the above-mentioned P-BN disk is placed in a reaction vessel and maintained at a temperature of 1850 ° C. and a pressure of 6 torr, and then propane gas diluted with nitrogen gas is introduced into the reaction vessel.
G CVD was performed. After CVD, the reaction vessel is cooled down to room temperature, the substrate is taken out, the unnecessary parts of PG are removed by machining, and an electrode for electrostatic chuck is formed on one side and a heating electrode is formed on the other side. did. The PG thickness of each electrode was 50 μm.

【0022】次いで、電極が形成された上記基材を再度
反応容器内に置き、温度1950℃、圧力1torrに保持
後、窒素ガスで希釈した三塩化ほう素とアンモニアの混
合ガスを導入して熱分解窒化ほう素(P−BN)のCV
Dを行なった。CVD後、反応容器を室温まで冷却して
基材を取り出し、静電チャック用電極の給電部と加熱用
電極の給電部のP−BN除去及び表面の研磨仕上げを行
なってホットプレートを作製した。なお、P−BN被覆
膜の厚さは150μm であった。
Next, the substrate on which the electrodes are formed is again placed in the reaction vessel, and after maintaining the temperature at 1950 ° C. and the pressure at 1 torr, a mixed gas of boron trichloride and ammonia diluted with nitrogen gas is introduced and heated. CV of decomposed boron nitride (P-BN)
D was performed. After CVD, the reaction vessel was cooled to room temperature, the substrate was taken out, and P-BN was removed from the power supply section of the electrostatic chuck electrode and the power supply section of the heating electrode, and the surface was polished to prepare a hot plate. Incidentally, the thickness of the P-BN coating film was 150 μm.

【0023】上記ホットプレートを10-3torrの真空中
で800℃に加熱し、静電チャック用電源からその給電
部を介して静電チャック用電極に3KVの直流電圧を印
加して150mmφシリコンウェーハの吸着試験を行なっ
たところ、25gf/cm2 の静電吸着力が得られた。
The above hot plate is heated to 800 ° C. in a vacuum of 10 −3 torr, and a DC voltage of 3 KV is applied to an electrode for electrostatic chuck from a power supply for electrostatic chuck through a power supply unit to apply a 150 mmφ silicon wafer. Was conducted, an electrostatic attraction force of 25 gf / cm 2 was obtained.

【0024】次いで、上記ホットプレートを枚葉式CV
D装置に静電チャック用電極側が上向きになるように取
り付けた。150mmφシリコンウェーハをホットプレー
ト上に置き、静電チャック用電極に3KVの直流電圧を
印加してシリコンウェーハを固定し、装置内を真空排気
しながら加熱用電極の給電部に電流を通じてシリコンウ
ェーハを700℃まで加熱した。
Next, the hot plate is placed on a single-wafer CV.
It was attached to the D apparatus so that the electrode side for the electrostatic chuck faced upward. A 150 mmφ silicon wafer is placed on a hot plate, and a DC voltage of 3 KV is applied to the electrode for electrostatic chuck to fix the silicon wafer. Heated to ° C.

【0025】温度がほぼ一定になった時点におけるシリ
コンウェーハ面内の温度分布は、±30℃のばらつきで
あった。その後、装置内の圧力を1torrにして、モノシ
ラン(SiH4) 、アンモニア(NH3) 及び水素(H2)の混合ガ
スを導入して窒化けい素(Si3N4) のCVDを行なった。
膜厚1μm のSi3N4 を析出させた後、シリコンウェーハ
面内のSi3N4 の厚さ分布を測定したところ、±20%の
ばらつきがあった。
The temperature distribution in the plane of the silicon wafer at the time when the temperature became substantially constant varied ± 30 ° C. Thereafter, the pressure in the apparatus was set to 1 torr, and a mixed gas of monosilane (SiH 4 ), ammonia (NH 3 ), and hydrogen (H 2 ) was introduced to perform CVD of silicon nitride (Si 3 N 4 ).
After depositing a Si 3 N 4 film having a thickness of 1 μm, the thickness distribution of the Si 3 N 4 in the silicon wafer surface was measured and found to have a variation of ± 20%.

【0026】比較例1 静電チャック用電極を形成させないホットプレートを用
いたこと以外は実施例1と同様にして試験した。その結
果、温度がほぼ一定になった時点におけるシリコンウェ
ーハ面内の温度分布は、±120℃のばらつきであっ
た。また、膜厚1μm のSi3N4 を析出させた後のシリコ
ンウェーハ面内のSi3N4 の厚さ分布は、±60%のばら
つきであった。
Comparative Example 1 A test was performed in the same manner as in Example 1 except that a hot plate on which an electrode for an electrostatic chuck was not formed was used. As a result, the temperature distribution in the plane of the silicon wafer at the time when the temperature became substantially constant had a variation of ± 120 ° C. The thickness distribution the Si 3 N 4 in the silicon wafer surface after precipitating Si 3 N 4 having a thickness of 1μm was variation in the ± 60%.

【0027】実施例2 外径250mm、厚さ3mmのP−BN円板の中心から80
mmの位置に等間隔に直径5mmの不活性ガス導入用小孔を
4個あけた。その後、実施例1と同様にしてホットプレ
ートを作製し、枚葉式CVD装置に取り付けてシリコン
ウェーハを加熱した。
Example 2 The center of a P-BN disc having an outer diameter of 250 mm and a thickness of 3 mm is 80
Four small holes for introducing an inert gas having a diameter of 5 mm were formed at equal positions at a distance of mm. Thereafter, a hot plate was prepared in the same manner as in Example 1, and was attached to a single-wafer CVD apparatus to heat a silicon wafer.

【0028】シリコンウェーハの温度がほぼ一定になっ
た時点で、ホットプレートの不活性ガス導入用小孔より
ヘリウムガスを5torrの圧力で導入して1時間保持した
ところ、シリコンウェーハ面内の温度分布は、±10℃
のばらつきであった。その後、装置内の圧力を1torrに
して、モノシラン(SiH4) 、アンモニア(NH3) 及び水素
(H2)の混合ガスを導入して窒化けい素(Si3N4) のCVD
を行なった。膜厚1μm のSi3N4 を析出させた後、シリ
コンウェーハ面内のSi3N4 の厚さ分布を測定したとこ
ろ、±10%のばらつきであった。
When the temperature of the silicon wafer became substantially constant, helium gas was introduced at a pressure of 5 torr from the small holes for introducing an inert gas in the hot plate and held for 1 hour. Is ± 10 ° C
Was the variation. Then, the pressure in the apparatus was set to 1 torr, and monosilane (SiH 4 ), ammonia (NH 3 ) and hydrogen
CVD of silicon nitride (Si 3 N 4 ) by introducing a mixed gas of (H 2 )
Was performed. After depositing a Si 3 N 4 film having a thickness of 1 μm, the thickness distribution of the Si 3 N 4 in the silicon wafer surface was measured to be ± 10%.

【0029】比較例2 静電チャック用電極を形成させないホットプレートを用
いたこと、及び小孔からのヘリウムガスの導入圧力を1
torrにしたこと以外は実施例2と同様にして試験した。
その結果、ヘリウムガス導入1時間後のシリコンウェー
ハ面内の温度分布は、±80℃のばらつきであった。ま
た、膜厚1μm のSi3N4 を析出させた後のシリコンウェ
ーハ面内のSi3N4の厚さ分布は、±40%のばらつきで
あった。
Comparative Example 2 A hot plate on which an electrode for electrostatic chuck was not formed was used, and the pressure of helium gas introduced from the small holes was 1
The test was performed in the same manner as in Example 2 except that torr was used.
As a result, the temperature distribution in the silicon wafer surface one hour after the introduction of the helium gas varied ± 80 ° C. The thickness distribution the Si 3 N 4 in the silicon wafer surface after precipitating Si 3 N 4 having a thickness of 1μm was variation in the ± 40%.

【0030】実施例3 実施例2と同一の基材を反応容器内に置き、温度190
0℃、圧力10torrに保持後、窒素ガスで希釈したプロ
パンガスを反応容器内に導入してPGのCVDを行なっ
た。CVD後、反応容器を室温まで冷却して基材を取り
出し、不要部分のPGを機械加工で除去し、一方の片面
には静電チャック用電極を、もう一方の面には加熱用電
極を形成した。両電極のPGの厚さはいずれも80μm
であった。
Example 3 The same base material as in Example 2 was placed in a reaction vessel and heated at a temperature of 190.
After maintaining at 0 ° C. and a pressure of 10 torr, propane gas diluted with nitrogen gas was introduced into the reaction vessel to perform PG CVD. After CVD, the reaction vessel is cooled down to room temperature, the substrate is taken out, the unnecessary parts of PG are removed by machining, and an electrode for electrostatic chuck is formed on one side and a heating electrode is formed on the other side. did. Both electrodes have a PG thickness of 80 μm
Met.

【0031】次いで、電極が形成された上記基材を再度
反応容器内に置き、温度2000℃、圧力1torrに保持
後、窒素ガスで希釈した三塩化ほう素とアンモニアの混
合ガスを反応容器内に導入してP−BNのCVDを行な
った。CVD後、反応容器を室温まで冷却して基材を取
り出し、静電チャック用電極の給電部と加熱用電極の給
電部のP−BN除去及び表面の研磨仕上げを行なってホ
ットプレートを作製した。なお、P−BN被覆膜の厚さ
は200μm であった。
Next, the substrate on which the electrodes are formed is again placed in the reaction vessel, and after maintaining the temperature at 2000 ° C. and the pressure at 1 torr, a mixed gas of boron trichloride and ammonia diluted with nitrogen gas is placed in the reaction vessel. Introduced, P-BN CVD was performed. After CVD, the reaction vessel was cooled to room temperature, the substrate was taken out, and P-BN was removed from the power supply section of the electrostatic chuck electrode and the power supply section of the heating electrode, and the surface was polished to prepare a hot plate. Incidentally, the thickness of the P-BN coating film was 200 μm.

【0032】比較例3 基材としてP−BN円板のかわりに窒化アルミニウム
(AlN)焼結体円板を用いたこと以外は実施例3と同一の
条件でPGのCVDを行なったところ、AlN が分解・気
化して基材が著しく変形しホットプレートの作製は不可
能であった。
COMPARATIVE EXAMPLE 3 PG CVD was performed under the same conditions as in Example 3 except that an aluminum nitride (AlN) sintered disk was used instead of the P-BN disk as the base material. Decomposed and vaporized to significantly deform the base material, making it impossible to prepare a hot plate.

【0033】実施例4 外径70mm、厚さ0.9 mmのP−BN円板を基材として反
応容器内に置き、温度1800℃、圧力3torrに保持
後、窒素ガスで希釈したプロパンガスを反応容器内に導
入してPGのCVDを行なった。CVD後、反応容器を
室温まで冷却して基材を取り出し、不要部分のPGを機
械加工で除去し、一方の片面には静電チャック用電極
を、もう一方の面には加熱用電極を形成した。両電極の
PGの厚さはいずれも30μm であった。
Example 4 A P-BN disc having an outer diameter of 70 mm and a thickness of 0.9 mm was placed in a reaction vessel as a base material, kept at a temperature of 1800 ° C. and a pressure of 3 torr, and then propane gas diluted with nitrogen gas was added to the reaction vessel. And PG CVD was performed. After CVD, the reaction vessel is cooled down to room temperature, the substrate is taken out, the unnecessary parts of PG are removed by machining, and an electrode for electrostatic chuck is formed on one side and a heating electrode is formed on the other side. did. The PG thickness of both electrodes was 30 μm.

【0034】次いで、電極が形成された上記基材を再度
反応容器内に置き、温度2000℃、圧力1torrに保持
後、窒素ガスで希釈した三塩化ほう素とアンモニアの混
合ガスを反応容器内に導入してP−BNのCVDを行な
った。CVD後、反応容器を室温まで冷却して基材を取
り出し、静電チャック用電極の給電部と加熱用電極の給
電部のP−BN除去及び表面の研磨仕上げを行ない、さ
らに静電チャック用電極面側に皿もみを設けたネジ止め
用小孔を、中央付近に1個、縁部に等間隔に4個、電極
を損傷しない位置にあけて図1に示すホットプレートを
作製した。なお、P−BN被覆膜の厚さは100μm で
あった。このホットプレートを定盤上に置き、ハイトゲ
ージを用いてホットプレート中央部と端部との高さの差
を求めそり量を測定したところ、300μm であった。
Next, the substrate on which the electrodes are formed is again placed in the reaction vessel, and after maintaining the temperature at 2000 ° C. and the pressure at 1 torr, a mixed gas of boron trichloride and ammonia diluted with nitrogen gas is placed in the reaction vessel. Introduced, P-BN CVD was performed. After CVD, the reaction vessel is cooled to room temperature, the substrate is taken out, the P-BN is removed from the power supply portion of the electrostatic chuck electrode and the power supply portion of the heating electrode, and the surface is polished. A hot plate shown in FIG. 1 was prepared by piercing one small screw hole having a dished fir on the surface side near the center and four equally spaced edges at positions where the electrodes would not be damaged. Incidentally, the thickness of the P-BN coating film was 100 μm. This hot plate was placed on a surface plate, and the height difference between the center and the end of the hot plate was measured using a height gauge, and the amount of warpage was measured to be 300 μm.

【0035】続いて、ネジ止め用小孔に皿ネジを通し、
あらかじめネジ穴をあけた固定台に上記ホットプレート
をネジ止めで固定した。この時、ホットプレートが変形
してそりが矯正されたため固定後のそり量は5μm であ
った。このホットプレートを用いて0.1 torrの真空中で
静電チャック用電源からホットプレートの給電部を介し
て静電チャック用電極に1.2 KVの直流電圧を印加して
50mmφシリコンウェーハの吸着試験を行なったとこ
ろ、20gf/cm2 の静電吸着力が得られた。さらに加熱
用電極の給電部に電流を通じてシリコンウェーハの加熱
を行なったところ、1000℃以上まで加熱することが
できた。
Subsequently, a flathead screw is passed through the small hole for screwing,
The hot plate was fixed to a fixing table having a screw hole in advance by screwing. At this time, since the hot plate was deformed and the warpage was corrected, the warpage after fixing was 5 μm. Using this hot plate, a DC voltage of 1.2 KV was applied from a power supply for the electrostatic chuck to the electrode for the electrostatic chuck through a power supply section of the hot plate in a vacuum of 0.1 torr to perform a suction test of a 50 mmφ silicon wafer. However, an electrostatic attraction force of 20 gf / cm 2 was obtained. Further, when the silicon wafer was heated by passing a current through the power supply portion of the heating electrode, the silicon wafer could be heated to 1000 ° C. or higher.

【0036】比較例4 基材としてP−BN円板のかわりにBN焼結体円板を用
いたこと以外は実施例4と同一の条件でホットプレート
を作製したところ、そり量は400μm であった。この
ホットプレートを実施例4と同様にしてネジ止めで固定
台に固定しようとしたが、ネジ止め用小孔を起点として
ホットプレートに亀裂が生じて破損した。比較例5 基材としてP−BN円板のかわりに外径70mm、厚さ5
mmのBN焼結体円板を用いたこと以外は実施例4と同一
の条件でホットプレートを作製したところ、そり量は1
0μm であった。このホットプレートを実施例4と同様
にしてネジ止めで固定台に固定したところ、ホットプレ
ートに亀裂は起こらず、また、ネジ止め前後においてそ
り量は変化しなかった。
Comparative Example 4 A hot plate was manufactured under the same conditions as in Example 4 except that a BN sintered disk was used instead of the P-BN disk as the base material. The warpage was 400 μm. Was. An attempt was made to fix the hot plate to the fixing table by screwing in the same manner as in Example 4, but the hot plate was cracked and damaged starting from the small hole for screwing. Comparative Example 5 An outer diameter of 70 mm and a thickness of 5 instead of a P-BN disk as a base material
A hot plate was manufactured under the same conditions as in Example 4 except that a BN sintered compact disk of 1 mm was used.
It was 0 μm. When this hot plate was fixed to the fixing table by screwing in the same manner as in Example 4, no crack occurred in the hot plate, and the amount of warping did not change before and after screwing.

【0037】このホットプレートを用いて実施例4と同
一の条件でシリコンウェーハの吸着試験を行なったとこ
ろ、18gf/cm2 の静電吸着力が得られた。さらに実施
例4と同様にしてシリコンウェーハの加熱を行なったと
ころ、700℃までしかそれを加熱することができなか
った。
Using this hot plate, a silicon wafer adsorption test was conducted under the same conditions as in Example 4, and an electrostatic adsorption force of 18 gf / cm 2 was obtained. Further, when the silicon wafer was heated in the same manner as in Example 4, it could only be heated up to 700 ° C.

【0038】実施例5 実施例3で作製したホットプレートを10-5torrの真空
中で800℃に加熱し、静電チャック用電極に5KVの
直流電圧を印加して200mmφシリコンウェーハの吸着
試験を行なったところ、40gf/cm2 の静電吸着力が得
られた。この時のホットプレートのP−BN被覆膜の基
材面に垂直方向における比抵抗は、1.2×1012Ω・cm
であった。
Example 5 The hot plate prepared in Example 3 was heated to 800 ° C. in a vacuum of 10 −5 torr, and a DC voltage of 5 KV was applied to the electrode for electrostatic chuck to perform an adsorption test on a 200 mmφ silicon wafer. As a result, an electrostatic attraction force of 40 gf / cm 2 was obtained. At this time, the specific resistance of the P-BN coating film of the hot plate in the direction perpendicular to the substrate surface was 1.2 × 10 12 Ω · cm.
Met.

【0039】比較例6 実施例3において、静電チャック用電極と加熱用電極を
タングステンで形成した。タングステンの厚さは20μ
m であった。その後、これを反応容器内に置き、P−B
N被覆膜を実施例3と同一の方法で形成したところ、タ
ングステン電極とP−BN基材の界面付近及びタングス
テン電極とP−BN被覆膜の界面付近でほう化タングス
テンと窒化タングステンが生成していた。
Comparative Example 6 In Example 3, the electrode for electrostatic chuck and the electrode for heating were formed of tungsten. Tungsten thickness is 20μ
m. Thereafter, this is placed in a reaction vessel, and P-B
When the N coating film was formed in the same manner as in Example 3, tungsten boride and tungsten nitride were formed near the interface between the tungsten electrode and the P-BN base material and near the interface between the tungsten electrode and the P-BN coating film. Was.

【0040】上記ホットプレートの静電吸着力と比抵抗
を実施例5と同一の方法で測定したところ、静電吸着力
は静電チャック用電極からシリコンウェーハへの漏電が
著しく5KVの直流電圧の印加が不可能であったため、
測定不能であった。この時のホットプレートのP−BN
被覆膜の基材面に垂直方向における比抵抗は8×104
Ω・cmであった。
When the electrostatic attraction force and the specific resistance of the hot plate were measured in the same manner as in Example 5, the electrostatic attraction force showed a remarkable electric leakage from the electrode for electrostatic chuck to the silicon wafer at a DC voltage of 5 KV. Because it was impossible to apply
Measurement was not possible. P-BN of hot plate at this time
The specific resistance of the coating film in the direction perpendicular to the substrate surface is 8 × 10 4
Ω · cm.

【0041】比較例7 P−BN被覆膜のかわりに熱分解窒化アルミニウム(P
−AlN )被覆膜を形成させたこと以外は実施例3と同一
の方法でホットプレートの作製を試みた。なお、P−Al
N 被覆膜は、温度1000℃、圧力1torrに保持後、窒
素ガスで希釈した塩化アルミニウムガス(Al2Cl6) とア
ンモニアの混合ガスを反応容器内に導入してCVDを行
ない、形成させた。その結果、P−AlN 被覆膜のCVD
後、反応容器を室温まで冷却し基材を取り出した時点で
P−AlN 被覆膜に多数の亀裂が生じており、触れるだけ
その膜は容易に剥離したのでホットプレートの作製は不
可能であった。
Comparative Example 7 Instead of the P-BN coating film, pyrolytic aluminum nitride (P
-AlN) An attempt was made to produce a hot plate in the same manner as in Example 3 except that a coating film was formed. In addition, P-Al
After maintaining the temperature at 1000 ° C. and the pressure of 1 torr, the N 2 coating film was formed by introducing a mixed gas of aluminum chloride gas (Al 2 Cl 6 ) diluted with nitrogen gas and ammonia into the reaction vessel and performing CVD. . As a result, CVD of P-AlN coating film
After that, when the reaction vessel was cooled to room temperature and the substrate was taken out, a large number of cracks were formed in the P-AlN coating film, and the film was easily peeled off only by touching, so that it was impossible to prepare a hot plate. Was.

【0042】[0042]

【発明の効果】本発明のホットプレートをCVD装置に
用いることにより、従来困難であったシリコンウェーハ
等の試料を高精度かつ均一に高温加熱をすることができ
る。従って、シリコンウェーハ等の試料上に膜質や膜厚
が均一な層間絶縁膜や保護膜などを形成することが可能
となり半導体素子の生産性や品質の向上に大きく寄与す
る。
By using the hot plate of the present invention in a CVD apparatus, it is possible to heat a sample such as a silicon wafer or the like, which has been conventionally difficult, with high precision and uniformity at a high temperature. Therefore, it is possible to form an interlayer insulating film or a protective film having a uniform film quality and thickness on a sample such as a silicon wafer, which greatly contributes to improvement in productivity and quality of semiconductor elements.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例4で作製されたホットプレー
トの平面図。
FIG. 1 is a plan view of a hot plate manufactured in Example 4 of the present invention.

【図2】 本発明例の実施例4で作製されたホットプレ
ートを装備した枚葉式CVD装置の概略断面図。
FIG. 2 is a schematic cross-sectional view of a single wafer CVD apparatus equipped with a hot plate manufactured in Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 基材 2 静電チャック用電極 3 加熱用電極 4 静電チャック用電極の給電部 5 加熱用電極の給電部 6 熱分解窒化ほう素被覆膜 7 不活性ガス導入用小孔 8 真空容器 9 ホットプレート 10 試料 11 不活性ガス 12 排気口 13 真空ポンプ 14 ガス導入口 15 反応ガス 16 静電チャック用電源 17 加熱用電源 18 ネジ止め用小孔 DESCRIPTION OF SYMBOLS 1 Base material 2 Electrode for electrostatic chuck 3 Electrode for heating 4 Power supply part of electrode for electrostatic chuck 5 Power supply part of electrode for heating 6 Thermal decomposition boron nitride coating film 7 Small hole for introducing inert gas 8 Vacuum container 9 Hot plate 10 Sample 11 Inert gas 12 Exhaust port 13 Vacuum pump 14 Gas inlet 15 Reactant gas 16 Power supply for electrostatic chuck 17 Power supply for heating 18 Small hole for screwing

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/68 H01L 21/68 R (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C23C 16/46 H01L 21/31 H01L 21/324 H01L 21/68 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 identification code FI H01L 21/68 H01L 21/68 R (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/205 C23C 16 / 46 H01L 21/31 H01L 21/324 H01L 21/68

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱分解窒化ほう素(P−BN)からなる
基材(1)の一方の面に静電チャック用電極(2)が、
他方の面に加熱用電極(3)がいずれも熱分解黒鉛(P
G)で形成されてなり、しかも静電チャック用電極の給
電部(4)と加熱用電極の給電部(5)を除く部分に熱
分解窒化ほう素(P−BN)被覆膜(6)が施されてな
ることを特徴とするホットプレート。
An electrode (2) for an electrostatic chuck is provided on one surface of a substrate (1) made of pyrolytic boron nitride (P-BN) .
On the other surface, all the heating electrodes (3) are provided with pyrolytic graphite (P
G) , and a pyrolytic boron nitride (P-BN) coating film (6) on portions other than the power supply portion (4) of the electrode for electrostatic chuck and the power supply portion (5) of the electrode for heating. A hot plate characterized by being subjected to.
JP31329591A 1991-11-01 1991-11-01 Hot plate Expired - Fee Related JP3155792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31329591A JP3155792B2 (en) 1991-11-01 1991-11-01 Hot plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31329591A JP3155792B2 (en) 1991-11-01 1991-11-01 Hot plate

Publications (2)

Publication Number Publication Date
JPH05129210A JPH05129210A (en) 1993-05-25
JP3155792B2 true JP3155792B2 (en) 2001-04-16

Family

ID=18039504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31329591A Expired - Fee Related JP3155792B2 (en) 1991-11-01 1991-11-01 Hot plate

Country Status (1)

Country Link
JP (1) JP3155792B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591269A (en) * 1993-06-24 1997-01-07 Tokyo Electron Limited Vacuum processing apparatus
US5883778A (en) * 1994-02-28 1999-03-16 Applied Materials, Inc. Electrostatic chuck with fluid flow regulator
JP3406488B2 (en) * 1997-09-05 2003-05-12 東京エレクトロン株式会社 Vacuum processing equipment
TW432578B (en) 1997-09-18 2001-05-01 Tokyo Electron Ltd A vacuum processing apparatus
JP3963788B2 (en) 2002-06-20 2007-08-22 信越化学工業株式会社 Heating device with electrostatic adsorption function
JP4082985B2 (en) 2002-11-01 2008-04-30 信越化学工業株式会社 Heating device having electrostatic adsorption function and method of manufacturing the same
JP4309714B2 (en) 2003-08-27 2009-08-05 信越化学工業株式会社 Heating device with electrostatic adsorption function
JP4435742B2 (en) 2005-08-09 2010-03-24 信越化学工業株式会社 Heating element
KR101329630B1 (en) 2006-04-13 2013-11-14 신에쓰 가가꾸 고교 가부시끼가이샤 Heating element
JP4654153B2 (en) 2006-04-13 2011-03-16 信越化学工業株式会社 Heating element
JP4524268B2 (en) 2006-04-28 2010-08-11 信越化学工業株式会社 Ceramic heater with electrostatic chuck function and manufacturing method thereof
US7838800B2 (en) * 2006-09-25 2010-11-23 Tokyo Electron Limited Temperature controlled substrate holder having erosion resistant insulating layer for a substrate processing system
JP2008159900A (en) * 2006-12-25 2008-07-10 Shin Etsu Chem Co Ltd Ceramic heater with electrostatic chuck
JP5597072B2 (en) * 2010-09-07 2014-10-01 株式会社日本セラテック Shaft and support device

Also Published As

Publication number Publication date
JPH05129210A (en) 1993-05-25

Similar Documents

Publication Publication Date Title
JP3155792B2 (en) Hot plate
US5663865A (en) Ceramic electrostatic chuck with built-in heater
JP3081279B2 (en) Hot plate
JPS6169116A (en) Susceptor for continuous cvd coating on silicon wafer
JPH07307377A (en) Ceramic heater with electrostatic chuck
JPH10214880A (en) Substrate support member
EP1376660B1 (en) Wafer heating apparatus with electrostatic attraction function
JPH07297268A (en) Ceramic heater with electrostatic chuck
US6949726B2 (en) Heating apparatus having electrostatic adsorption function
JPH0945756A (en) Semiconductor manufacturing device and manufacturing method
JPS60200519A (en) Heating element
JP4456218B2 (en) Plasma processing equipment
JPH0610140A (en) Thin film deposition device
JPH0774451B2 (en) Film forming equipment
JPH04238882A (en) High-temperature insulated article
JPH1116991A (en) Carbon support for semiconductor manufacturing apparatus
US20200279764A1 (en) Wafer supporting device
JP3693470B2 (en) Manufacturing method and manufacturing apparatus for silicon wafer with protective film
JPH0639709B2 (en) Plasma CVD equipment
JPH0653139A (en) Susceptor
JP3259452B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JP5264384B2 (en) Vapor growth apparatus and vapor growth method
JP3835491B2 (en) Wafer heating apparatus having electrostatic adsorption function
US5744403A (en) Dielectric film deposition method and apparatus
JP2915750B2 (en) Ceramic heater with electrostatic chuck

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees