JP2002093722A - Plasma cvd system, method of forming thin film and method of manufacturing solar cell - Google Patents

Plasma cvd system, method of forming thin film and method of manufacturing solar cell

Info

Publication number
JP2002093722A
JP2002093722A JP2000279782A JP2000279782A JP2002093722A JP 2002093722 A JP2002093722 A JP 2002093722A JP 2000279782 A JP2000279782 A JP 2000279782A JP 2000279782 A JP2000279782 A JP 2000279782A JP 2002093722 A JP2002093722 A JP 2002093722A
Authority
JP
Japan
Prior art keywords
film
substrate
electrode plate
plasma cvd
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000279782A
Other languages
Japanese (ja)
Other versions
JP4496401B2 (en
Inventor
Takashi Ishihara
隆 石原
Yoshinori Matsuno
吉徳 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000279782A priority Critical patent/JP4496401B2/en
Publication of JP2002093722A publication Critical patent/JP2002093722A/en
Application granted granted Critical
Publication of JP4496401B2 publication Critical patent/JP4496401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a wafer holder for a film-forming apparatus, which can simultaneously form films on both front and rear surfaces of a wafer in one process, a plasma CVD system using this wafer holder, a method of forming thin films on both front and rear surface by using this device, and to provide a method of manufacturing a solar cell using this film-forming method. SOLUTION: A method for forming a thin film comprises a process in which a desired thin film is simultaneously formed on both sides of the substrate by means of a plasma CVD device provided with a specified anode plate and/or cathode plate, wherein an opening is formed in substantially identical shape with the substrate to be processed. Further, a method for manufacturing a solar cell comprises a process in which a thin film is simultaneously formed on both sides of the substrate, acting as an anti-reflection film on the surface of the silicon substrate and as a protective film on the back side thereof by means of the same plasma CVD device as used for thin film forming process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、プラズマCVD
装置、このプラズマCVD装置を用いた薄膜形成方法、
および太陽電池の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
Apparatus, a thin film forming method using the plasma CVD apparatus,
And a method for manufacturing a solar cell.

【0002】[0002]

【従来の技術】従来のプラズマCVD(Chemical Vapor
Deposition)装置を図8に基づいて説明する。図8にお
いて1は成膜用材料ガスが封入されたガスボンベ、2は
ガス供給コントローラ、3はガス供給ノズル、4は真空
チャンバー、5はアノード電極板、6はカソード電極
板、7は複数のアノード電極板間あるいはカソード電極
板間を電気的に接続するコネクタ、8は被成膜基板、9
は高周波電源、10は高周波電源により発生したプラズ
マ、11は真空排気系をそれぞれ示す。
2. Description of the Related Art Conventional plasma CVD (Chemical Vapor)
The Deposition device will be described with reference to FIG. 8, reference numeral 1 denotes a gas cylinder in which a material gas for film formation is sealed, 2 denotes a gas supply controller, 3 denotes a gas supply nozzle, 4 denotes a vacuum chamber, 5 denotes an anode electrode plate, 6 denotes a cathode electrode plate, and 7 denotes a plurality of anodes. A connector for electrically connecting between the electrode plates or between the cathode electrode plates;
Denotes a high-frequency power source, 10 denotes plasma generated by the high-frequency power source, and 11 denotes a vacuum exhaust system.

【0003】次に図8に示されたプラズマCVD装置の
動作について説明する。成膜用材料ガスが封入されたガ
スボンベ1からガス供給コントローラ2を通して所望の
流量に制御された成膜用材料ガスは、ガス供給ノズル3
を経て真空排気系11により所望の真空度まで減圧した
真空チャンバー4内へ導入される。高周波電源9からア
ノード電極板5に供給され、一方のカソード電極板6と
の両電極板間で発生する高周波プラズマ10によって、
材料ガスはプラズマ分解され、カソードおよびアノード
電極板5,6に載置された被成膜基板8の成膜に供され
る。
Next, the operation of the plasma CVD apparatus shown in FIG. 8 will be described. A film forming material gas controlled to a desired flow rate through a gas supply controller 2 from a gas cylinder 1 in which a film forming material gas is sealed is supplied to a gas supply nozzle 3.
Is introduced into the vacuum chamber 4 evacuated to a desired degree of vacuum by the evacuation system 11. The high-frequency plasma 10 is supplied from the high-frequency power supply 9 to the anode electrode plate 5 and is generated between the two electrode plates with one cathode electrode plate 6.
The material gas is plasma-decomposed and used for film formation on the film-forming substrate 8 placed on the cathode and anode electrode plates 5 and 6.

【0004】なお、図8の従来のプラズマCVD装置で
は、成膜1回当りの処理枚数の向上を図るためアノード
電極板5およびカソード電極板6を複数枚具備した装置
構成を具体例として挙げている。複数のアノードおよび
カソード電極板間を電気的に接続するため、コネクタ7
がそれぞれ取り付けられている。
In the conventional plasma CVD apparatus shown in FIG. 8, a specific example of an apparatus configuration having a plurality of anode electrode plates 5 and cathode electrode plates 6 in order to increase the number of processed sheets per film formation is given. I have. A connector 7 is used to electrically connect a plurality of anode and cathode electrode plates.
Are attached.

【0005】また、図9は従来のプラズマCVD装置の
アノード電極あるいはカソード電極を構成する電極板1
8の上面図である。図8に示すような表面が水平面であ
る電極板上に被成膜基板8を載置して成膜する装置構成
では、電極板の表面は一般に平坦であるが、被成膜基板
8が定形である場合には、被成膜基板8を安定に保持す
るため、電極板18中に被成膜基板形状に対応した座ぐ
りが形成されている場合もある。
FIG. 9 shows an electrode plate 1 constituting an anode electrode or a cathode electrode of a conventional plasma CVD apparatus.
FIG. 8 is a top view of FIG. In the apparatus configuration shown in FIG. 8 in which the film formation substrate 8 is mounted on an electrode plate having a horizontal surface, the surface of the electrode plate is generally flat. In this case, a counterbore corresponding to the shape of the deposition target substrate may be formed in the electrode plate 18 in order to stably hold the deposition target substrate 8.

【0006】座ぐりの有無に係わらず、従来の電極板1
8では高周波プラズマ10は被成膜基板8の裏面側には
殆ど回り込まないので、被成膜基板8で高周波プラズマ
10に曝される側にのみ成膜される。この結果、図8に
示した従来のプラズマCVD装置を用いて被成膜基板8
の両面にそれぞれ成膜したい場合は、一旦真空チャンバ
ー4内を大気圧に戻して被成膜基板8を真空チャンバー
4外部に取り出し、再度所望の面を高周波プラズマに曝
さらすよう、被成膜基板8を両電極板5,6上に配置し
て再度成膜する必要があった。
[0006] Regardless of the presence or absence of counterbore, the conventional electrode plate 1
In FIG. 8, the high-frequency plasma 10 hardly reaches the back surface of the film-forming substrate 8, so that the film is formed only on the side of the film-forming substrate 8 that is exposed to the high-frequency plasma 10. As a result, using the conventional plasma CVD apparatus shown in FIG.
When it is desired to form a film on both surfaces of the substrate, the inside of the vacuum chamber 4 is once returned to the atmospheric pressure, the substrate 8 is taken out of the vacuum chamber 4, and the desired surface is exposed again to the high-frequency plasma. 8 had to be arranged on both the electrode plates 5 and 6 to form a film again.

【0007】次に図10に基づき従来の一般的な結晶シ
リコン(Si)系太陽電池の素子構造を説明する。図1
0において、100は例えばp型の多結晶Si基板、1
01はp型多結晶Si基板100の表面に形成されたn
型拡散層、102はp型多結晶Si基板100と上記n
型拡散層101との間に形成されたpn接合、103は
p型多結晶Si基板100の裏面側に形成されたp+
裏面電界(Back-Surface-Field,BSF)層、104は
n型拡散層101上に形成された例えば窒化膜(Si
N)からなる反射防止膜、105は電極をそれぞれ示
す。
Next, an element structure of a conventional general crystalline silicon (Si) solar cell will be described with reference to FIG. FIG.
At 0, 100 is, for example, a p-type polycrystalline Si substrate, 1
01 denotes n formed on the surface of the p-type polycrystalline Si substrate 100.
Diffusion layer 102 is a p-type polycrystalline Si substrate 100
Pn junction formed between the diffusion layer 101, 103 is a p-type polycrystalline Si p + -type back surface field formed on the back surface side of the substrate 100 (Back-Surface-Field, BSF) layer, 104 an n-type For example, a nitride film (Si) formed on the diffusion layer 101
N), an anti-reflection film, and 105 each represent an electrode.

【0008】次に図10の太陽電池の動作について説明
する。光照射により多結晶Si基板内で発生した電子―
正孔対はp型の多結晶Si基板100と表面側に形成さ
れたn型拡散層101との間のpn接合102によって
分離され、電子はn型拡散層101へ、また正孔は裏面
側に形成されたBSF層103へ移動して、それぞれの
面に形成された電極105により収集される。なお、表
面側に形成された反射防止膜104は表面での光反射を
抑制し、p型多結晶Si基板100内へ入射する光の量
を多くする機能がある。
Next, the operation of the solar cell of FIG. 10 will be described. Electrons generated in polycrystalline Si substrate by light irradiation
Hole pairs are separated by a pn junction 102 between a p-type polycrystalline Si substrate 100 and an n-type diffusion layer 101 formed on the front surface side, electrons are transferred to the n-type diffusion layer 101, and holes are transferred to the back side. Is moved to the BSF layer 103 formed on the surface, and is collected by the electrodes 105 formed on the respective surfaces. The antireflection film 104 formed on the front surface has a function of suppressing light reflection on the surface and increasing the amount of light incident on the p-type polycrystalline Si substrate 100.

【0009】プラズマCVD法で形成したSiNからな
る反射防止膜104では、材料ガスとしてシラン(Si
4)およびアンモニア(NH3)が一般的に用いられ、
これらの材料ガスをプラズマで分解および成膜する際に
多量の水素原子やラジカルが発生する。この水素原子が
被成膜基板8である多結晶Si基板100中の結晶欠陥
を不活性化することで、素子特性に大きな影響を与える
少数キャリア拡散長を、反射防止膜形成処理、すなわち
水素プラズマ処理前に比べて著しく増大させることがで
き、この結果、素子特性が大幅に改善される。
In the anti-reflection film 104 made of SiN formed by the plasma CVD method, silane (Si
H 4 ) and ammonia (NH 3 ) are commonly used,
When these material gases are decomposed and formed into films by plasma, a large amount of hydrogen atoms and radicals are generated. The hydrogen atoms inactivate crystal defects in the polycrystalline Si substrate 100, which is the film-forming substrate 8, so that the minority carrier diffusion length, which greatly affects the device characteristics, is reduced by an antireflection film forming process, that is, hydrogen plasma It can be significantly increased as compared to before the processing, and as a result, the device characteristics are greatly improved.

【0010】しかしながら、図9に示すような電極板1
8の構造および図10に示すような太陽電池の素子構造
では、表面側の成膜時に裏面側からの水素原子による結
晶欠陥の不活性化は困難であった。
However, the electrode plate 1 shown in FIG.
In the structure of FIG. 8 and the element structure of the solar cell as shown in FIG. 10, it was difficult to inactivate crystal defects due to hydrogen atoms from the back side during film formation on the front side.

【0011】このため、多結晶Si基板100の裏面側
からも水素原子やラジカルの供給を行う目的で、裏面側
にも再度SiN薄膜を形成する方法が試みられている。
この場合の太陽電池の断面構造を図6に示す。図6にお
いて図10と同一番号は同一、あるいは同等の部分を意
味し、106は裏面側に形成されたSiN薄膜を表す。
図6に示した素子構造では裏面側にSiN薄膜を形成す
る際に、裏面側からも水素原子やラジカルの供給ができ
るので、裏面側に存在する結晶欠陥の不活性化に対して
有効であった。したがって、多結晶Si基板100の表
面側のみから水素処理を行った太陽電池よりも良好な素
子特性を示す太陽電池作製の報告がなされていた。
For this reason, a method of forming a SiN thin film again on the back surface side for the purpose of supplying hydrogen atoms and radicals also from the back surface side of the polycrystalline Si substrate 100 has been attempted.
FIG. 6 shows a cross-sectional structure of the solar cell in this case. 6, the same reference numerals as those in FIG. 10 denote the same or equivalent parts, and 106 denotes a SiN thin film formed on the back surface side.
In the device structure shown in FIG. 6, when a SiN thin film is formed on the back side, hydrogen atoms and radicals can be supplied from the back side, which is effective in inactivating crystal defects existing on the back side. Was. Therefore, there has been reported a solar cell fabrication exhibiting better device characteristics than a solar cell subjected to hydrogen treatment only from the surface side of the polycrystalline Si substrate 100.

【0012】しかし、この場合、被成膜基板8、すなわ
ち多結晶Si基板100の裏面側から水素原子やラジカ
ルを供給するには、表面側の反射防止膜104、すなわ
ちSiN薄膜を形成した後に真空を破り一旦大気圧に戻
し、被成膜基板8を裏返してカソードやアノード電極板
5,6上に載置した後、再度真空引きを行い、裏面側に
SiN薄膜を成膜せねばならなかった。
However, in this case, in order to supply hydrogen atoms and radicals from the backside of the film-forming substrate 8, ie, the polycrystalline Si substrate 100, a vacuum is formed after forming the antireflection film 104, ie, the SiN thin film on the front side. To once return to the atmospheric pressure, turn the film-forming substrate 8 upside down and place it on the cathode and anode electrode plates 5 and 6, and then evacuate again to form a SiN thin film on the back surface side. .

【0013】[0013]

【発明が解決しようとする課題】以上のように多結晶S
i基板の表面側のみにSiN薄膜を形成した多結晶Si
太陽電池では、裏面側での欠陥の不活性化効果が無く、
変換効率の向上が図れなかった。
As described above, the polycrystalline S
Polycrystalline Si with SiN thin film formed only on the front side of i-substrate
In solar cells, there is no effect of inactivating defects on the back side,
Conversion efficiency could not be improved.

【0014】また、素子特性向上のために従来のプラズ
マCVD装置を用いて多結晶Si基板の両面に成膜を行
うには、表面側と裏面側の2回に分けて成膜を行うた
め、片面のみの成膜の場合と比して2倍の処理時間を要
するのでスループットが低下することに加えて、最初に
成膜した面が再度の成膜時には電極板に接触するため薄
膜に損傷を与えたり、被成膜基板の加熱冷却工程を2度
繰り返すために多結晶Si基板そのものの品質の低下を
引き起こしたりする問題があった。
Further, in order to form a film on both sides of a polycrystalline Si substrate using a conventional plasma CVD apparatus in order to improve element characteristics, the film is formed in two steps, a front side and a back side. Since the processing time is twice as long as that of the case where only one side is formed, the throughput is reduced. In addition, the thin film is damaged because the first formed side comes into contact with the electrode plate when the film is formed again. In addition, there is a problem that the quality of the polycrystalline Si substrate itself is deteriorated because the heating or cooling process of the deposition target substrate is repeated twice.

【0015】[0015]

【課題を解決するための手段】この発明に係るプラズマ
CVD装置は、真空チャンバーと、真空チャンバー内で
交互に対向配置されたアノード電極板およびカソード電
極板と、両電極板に高周波を印加して両電極板間に高周
波プラズマを発生させる高周波電源とを備え、アノード
電極板、カソード電極板の両方または一方の被成膜基板
を載置する領域に被成膜基板に略一致した形状を呈し、
被成膜基板の両面を高周波プラズマに曝さらす開口部を
少なくとも1以上有することとしたものである。
According to the plasma CVD apparatus of the present invention, a high frequency is applied to a vacuum chamber, an anode electrode plate and a cathode electrode plate alternately arranged in the vacuum chamber, and both electrode plates. A high-frequency power supply for generating high-frequency plasma between the two electrode plates, and an anode electrode plate, a cathode electrode plate or both or one of the regions on which the film formation substrate is mounted, has a shape substantially coincident with the film formation substrate,
At least one opening for exposing both surfaces of the film-forming substrate to high-frequency plasma is provided.

【0016】また、この発明に係るプラズマCVD装置
は、上述の開口部の内周部分に被成膜基板を保持するた
めの突起部を設けたものである。
In the plasma CVD apparatus according to the present invention, a projection for holding a substrate on which a film is to be formed is provided at an inner peripheral portion of the opening.

【0017】また、この発明に係るプラズマCVD装置
は、上述の開口部で被成膜基板を載置する面と反対側に
面する部分に所望のパターン形状に対応した遮蔽領域が
設られているものである。
Further, in the plasma CVD apparatus according to the present invention, a shielding area corresponding to a desired pattern shape is provided in a portion of the opening facing the side opposite to the surface on which the film formation substrate is mounted. Things.

【0018】この発明に係る薄膜形成方法は、被成膜基
板に略一致した形状を呈する開口部が設けられた所定の
アノード電極板および/またはカソード電極板を具備し
たプラズマCVD装置により、所望の薄膜を被成膜基板
の両面に同時に形成する工程を備えたこととしたもので
ある。
According to the thin film forming method of the present invention, a plasma CVD apparatus provided with a predetermined anode electrode plate and / or a cathode electrode plate provided with an opening having a shape substantially conforming to a substrate on which a film is to be formed is provided. The method includes a step of simultaneously forming a thin film on both surfaces of the deposition target substrate.

【0019】この発明に係る太陽電池の製造方法は、シ
リコン基板に略一致した形状を呈する開口部が設けられ
た所定のアノード電極板および/またはカソード電極板
を具備したプラズマCVD装置により、シリコン基板の
表面に対しては反射防止膜として機能し、裏面に対して
は保護膜として機能する薄膜を同時に形成する工程を備
えたこととしたものである。
The method for manufacturing a solar cell according to the present invention is directed to a method for manufacturing a solar cell using a plasma CVD apparatus provided with a predetermined anode electrode plate and / or cathode electrode plate provided with an opening having a shape substantially coinciding with the silicon substrate. And a step of simultaneously forming a thin film that functions as an anti-reflection film on the front surface and functions as a protective film on the back surface.

【0020】[0020]

【発明の実施の形態】実施の形態1.図1は本発明に係
るプラズマCVD装置の概略構成図である。図中、1は
成膜用材料ガスが封入されたガスボンベ、2はガス供給
コントローラ、3はガス供給ノズル、4は真空チャンバ
ー、5はアノード電極板、6はカソード電極板、7は複
数のアノード電極板間あるいはカソード電極板間を電気
的に接続するコネクタ、8は被成膜基板、9は高周波電
源、10は高周波電源により発生したプラズマ、11は
真空排気系、50は端部アノード電極板、51は中央部
アノード電極板、60は端部カソード電極板、61は中
央部カソード電極板、をそれぞれ示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a schematic configuration diagram of a plasma CVD apparatus according to the present invention. In the figure, 1 is a gas cylinder in which a material gas for film formation is sealed, 2 is a gas supply controller, 3 is a gas supply nozzle, 4 is a vacuum chamber, 5 is an anode electrode plate, 6 is a cathode electrode plate, and 7 is a plurality of anodes. A connector for electrically connecting between the electrode plates or between the cathode electrode plates, 8 is a substrate on which film is to be formed, 9 is a high-frequency power supply, 10 is plasma generated by a high-frequency power supply, 11 is a vacuum exhaust system, 50 is an end anode electrode plate. , 51 are a central anode electrode plate, 60 is an end cathode electrode plate, and 61 is a central cathode electrode plate.

【0021】本発明に係るプラズマCVD装置における
成膜方法について説明する。なお、中央部アノード電極
板51および中央部カソード電極板61以外は図8に示
す従来のプラズマCVD装置と同一である。
A film forming method in the plasma CVD apparatus according to the present invention will be described. The components other than the central anode electrode plate 51 and the central cathode electrode plate 61 are the same as those of the conventional plasma CVD apparatus shown in FIG.

【0022】成膜用材料ガスを封入したガスボンベ1か
らガス供給コントローラ2を通して所望の流量に制御さ
れた材料ガスがガス供給ノズル3を経て真空チャンバー
4内へ導入される。真空排気系11により所望の真空度
まで減圧した真空チャンバ−4内に導入された材料ガス
は、高周波電源9により端部アノード電極板50および
中央部アノード電極板51に供給され一方の端部カソー
ド電極板60および中央部カソード電極板61との間で
発生する高周波プラズマ10によってプラズマ分解さ
れ、被成膜基板8の成膜に供される。
A material gas controlled to a desired flow rate through a gas supply controller 2 is introduced into a vacuum chamber 4 through a gas supply nozzle 3 from a gas cylinder 1 containing a film forming material gas. The material gas introduced into the vacuum chamber 4 depressurized to a desired degree of vacuum by the vacuum evacuation system 11 is supplied to the end anode electrode plate 50 and the center anode electrode plate 51 by the high frequency power supply 9 and one end cathode is provided. The high-frequency plasma 10 generated between the electrode plate 60 and the central cathode electrode plate 61 is plasma-decomposed and used for film formation on the film-forming substrate 8.

【0023】なお、実施の形態1では成膜1回当たりの
処理枚数の向上を図るためアノード電極板50,51お
よびカソード電極板60,61を複数具備した装置構成
を具体例として挙げている。複数のアノードあるいはカ
ソード電極板間を電気的に接続するため、コネクタ7が
それぞれ取り付けられている。
In the first embodiment, in order to improve the number of substrates to be processed per film formation, a specific example of an apparatus configuration including a plurality of anode electrode plates 50 and 51 and cathode electrode plates 60 and 61 is given. In order to electrically connect a plurality of anode or cathode electrode plates, connectors 7 are respectively attached.

【0024】次に本発明のプラズマCVD装置のアノー
ドおよびカソード電極板について説明する。図2の上面
図に示すように、中央部アノード電極板51および中央
部カソード電極板61のような電極板13には開口部1
4が設けられている。かかる開口部を塞ぐように載置さ
れた被成膜基板8では、図3に示すように1回の成膜プ
ロセスで表面側には被成膜基板8の全面に薄膜15が形
成され、さらに裏面側にも開口部14に対応した形状で
薄膜16が形成される。なお、端部アノード電極板50
および端部カソード電極板60にはかかる開口部は設け
られていない。
Next, the anode and cathode electrode plates of the plasma CVD apparatus of the present invention will be described. As shown in the top view of FIG. 2, an electrode plate 13 such as a central anode electrode plate 51 and a central cathode electrode plate 61 has openings 1
4 are provided. As shown in FIG. 3, the thin film 15 is formed on the entire surface of the film formation substrate 8 on the front surface side by one film formation process as shown in FIG. A thin film 16 is also formed on the back surface in a shape corresponding to the opening 14. The end anode electrode plate 50
Such an opening is not provided in the end cathode electrode plate 60.

【0025】成膜中に被成膜基板8をより安定に保持す
べく、上述の中央部アノード電極板51および中央部カ
ソード電極板61の開口部14の内周部分に、図4の断
面図に示すような突起12を設けてもよい。
In order to more stably hold the substrate 8 on which the film is to be formed during the film formation, the inner peripheral portion of the opening 14 of the central anode electrode plate 51 and the central cathode electrode plate 61 is provided with a sectional view of FIG. A projection 12 as shown in FIG.

【0026】実施の形態2.実施の形態1では電極板1
3の開口部14を覆うように被成膜基板8を載置して成
膜を行ったが、この場合には図3に示すように被成膜基
板8の表面側全面15および裏面側の中央部16に所望
の膜を成膜することができる。一方、載置する被成膜基
板8の表面側あるいは裏面側のどちらか一方に意図的に
部分的に成膜を行う必要がある場合には、例えば図5に
示すように、開口部14を所望の形に加工することによ
り、開口部の形状に対応した裏面側の中央部に成膜しな
い部分を残すような薄膜17を形成することも容易に可
能である。この結果、裏面の薄膜のパターニングを写真
製版工程を経ることなく形成できる。
Embodiment 2 FIG. In the first embodiment, the electrode plate 1
The film formation was performed by placing the film formation substrate 8 so as to cover the opening 14 of the film formation substrate 3. In this case, as shown in FIG. A desired film can be formed on the central portion 16. On the other hand, when it is necessary to intentionally partially form a film on either the front surface side or the back surface side of the deposition target substrate 8 to be mounted, as shown in FIG. By processing into a desired shape, it is also possible to easily form a thin film 17 that leaves a portion where no film is formed at the center on the back side corresponding to the shape of the opening. As a result, patterning of the thin film on the back surface can be formed without going through a photomechanical process.

【0027】このように、裏面の所望の部分に成膜がで
きるよう開口部の形状を自由に設計することができ、裏
面側の設計に大きな自由度がある特徴を有する。もちろ
ん表裏面いずれにもパターン化された部分的な成膜を必
要とする場合には、裏面側は開口部に加工を施すことに
より、また表面側は所望のパターンが形成された遮蔽用
マスクを被成膜基板8上に配置することにより、被成膜
基板両面に対して所望の部分にのみ成膜を行うことがで
きることは言うまでもない。
As described above, the shape of the opening can be freely designed so that a film can be formed on a desired portion of the back surface, and the design of the back surface has a great degree of freedom. Of course, if partial patterned film formation is required on both the front and back sides, the back side should be processed into the opening, and the front side should have a shielding mask with the desired pattern formed. It is needless to say that the film can be formed only on a desired portion on both surfaces of the film formation substrate by disposing the film on the film formation substrate 8.

【0028】従来の製造方法では裏面全体に薄膜を形成
すると裏面のp型電極と多結晶Si基板との導通が取れ
なくなり、p型電極を形成するべき部分の薄膜は除去す
るか、あるいは始めからその部分には薄膜が成膜しない
ようにする必要があったが、かかる製造方法を用いれ
ば、p型電極形成を行う部分のみ成膜されない様にマス
クパターンを電極板の開口部に予め形成しておくと、後
工程で該当部分の除去しなくてもよい。
In the conventional manufacturing method, when a thin film is formed on the entire back surface, conduction between the p-type electrode on the back surface and the polycrystalline Si substrate cannot be established, and the thin film in the portion where the p-type electrode is to be formed is removed or from the beginning. Although it was necessary to prevent a thin film from being formed in that portion, using such a manufacturing method, a mask pattern was previously formed in the opening of the electrode plate so that only the portion for forming the p-type electrode was not formed. If this is done, it is not necessary to remove the relevant portion in a later step.

【0029】また、本発明の実施の形態1および2で
は、被成膜基板8を水平に配置する構造のプラズマCV
D装置を実施例として示したが、図7に示すように被成
膜基板8を垂直に配置する構造のプラズマCVD装置で
も全く同様に適用できることは言うまでも無い。垂直配
置の場合には、電極板に被成膜基板8を保持するための
機構が必要となるが、それ以外の構造および動作は水平
配置のプラズマCVD装置と何ら変わることは無い。
In the first and second embodiments of the present invention, the plasma CV having a structure in which the substrate 8 to be deposited is arranged horizontally is used.
Although the D apparatus has been described as an example, it goes without saying that a plasma CVD apparatus having a structure in which the substrate 8 is vertically arranged as shown in FIG. In the case of the vertical arrangement, a mechanism for holding the film formation substrate 8 on the electrode plate is required, but other structures and operations are not different from those of the horizontal arrangement of the plasma CVD apparatus.

【0030】さらに、本実施例ではアノードおよびカソ
ード電極板対が2組のものを図示したが、3組以上であ
っても同様の成膜が可能であることは言うまでも無い。
また、本発明の実施例では主に太陽電池の特性向上を目
的としたものであるが、太陽電池以外の半導体デバイ
ス、たとえば多結晶Si薄膜トランジスタ等で基板両面
に同一の薄膜を成膜することが必要な場合に適用できる
のは言うまでも無い。
Further, in the present embodiment, two pairs of anode and cathode electrode plates are shown, but it is needless to say that the same film formation is possible even with three or more pairs.
Further, although the embodiments of the present invention are mainly aimed at improving the characteristics of the solar cell, it is possible to form the same thin film on both surfaces of the substrate using a semiconductor device other than the solar cell, for example, a polycrystalline Si thin film transistor or the like. It goes without saying that it can be applied when necessary.

【0031】実施の形態3.本発明に係るプラズマCV
D装置を用いてSiN薄膜形成を行う太陽電池を作製す
べく、被成膜基板である多結晶Si基板の表裏両面にS
iN薄膜を形成する場合は、通常の結晶系太陽電池と同
様のプロセスでn型拡散層101と裏面側のBSF層1
03を形成した多結晶Si基板に、表面側の反射防止膜
104および裏面側のSiN薄膜106を、1回の成膜
プロセスで同時に形成する。電極105はこれらのSi
N薄膜104、106の成膜後に形成する。図6に電極
105形成後の太陽電池の素子断面図を示す。かかる工
程を採用した結果、変換効率の高い太陽電池を高スルー
プットで製造することができる。
Embodiment 3 Plasma CV according to the present invention
In order to manufacture a solar cell on which a SiN thin film is formed using a D apparatus, S
When forming an iN thin film, the n-type diffusion layer 101 and the BSF layer 1 on the back side are formed in the same process as that of a normal crystalline solar cell.
The anti-reflection film 104 on the front side and the SiN thin film 106 on the back side are simultaneously formed on the polycrystalline Si substrate on which the substrate 03 has been formed by one film forming process. The electrode 105 is made of these Si
It is formed after the N thin films 104 and 106 are formed. FIG. 6 shows a cross-sectional view of the solar cell after the formation of the electrode 105. As a result of adopting such a process, a solar cell with high conversion efficiency can be manufactured with high throughput.

【0032】[0032]

【発明の効果】この発明に係るプラズマCVD装置で
は、真空チャンバーと、真空チャンバー内で交互に対向
配置されたアノード電極板およびカソード電極板と、両
電極板に高周波を印加して両電極板間に高周波プラズマ
を発生させる高周波電源とを備え、アノード電極板、カ
ソード電極板の両方または一方の被成膜基板を載置する
領域に被成膜基板に略一致した形状を呈し、被成膜基板
の両面を高周波プラズマに曝さらす開口部を少なくとも
1以上有することとしたので、1回の成膜工程で基板の
両面に薄膜を形成できる効果がある。
According to the plasma CVD apparatus of the present invention, a vacuum chamber, an anode electrode plate and a cathode electrode plate which are alternately arranged in the vacuum chamber, and a high frequency applied to both electrode plates to cause a gap between the two electrode plates. A high-frequency power supply for generating high-frequency plasma, and a region on which both or one of the anode electrode plate and the cathode electrode plate is mounted has a shape substantially coinciding with the film formation substrate. Has at least one opening for exposing both sides of the substrate to high-frequency plasma, so that there is an effect that thin films can be formed on both sides of the substrate in one film forming step.

【0033】また、この発明に係るプラズマCVD装置
では、上述の開口部の内周部分に被成膜基板を保持する
ための突起部を設けたので、被成膜基板を安定に保持し
つつ1回の成膜工程で被成膜基板の両面に薄膜を成膜で
きる効果がある。
In the plasma CVD apparatus according to the present invention, since the projection for holding the substrate on which the film is to be formed is provided at the inner peripheral portion of the above-mentioned opening, it is possible to stably hold the substrate on which the film is to be formed. There is an effect that thin films can be formed on both surfaces of the substrate on which the film is to be formed in a single film forming process.

【0034】また、この発明に係るプラズマCVD装置
では、上述の開口部で被成膜基板を載置する面と反対側
に面する部分に所望のパターン形状に対応した遮蔽領域
が設られているので、1回の成膜工程で被成膜基板の両
面に複数毎の薄膜を成膜でき、かつ裏面側に形成された
薄膜のパターニングを写真製版工程を経ることなく実現
できる。
Further, in the plasma CVD apparatus according to the present invention, a shield region corresponding to a desired pattern shape is provided in a portion of the above-described opening facing the side opposite to the surface on which the film formation substrate is mounted. Therefore, a plurality of thin films can be formed on both surfaces of the substrate to be formed in one film forming process, and the thin films formed on the back surface can be patterned without performing a photoengraving process.

【0035】この発明に係る薄膜形成方法では、被成膜
基板に略一致した形状を呈する開口部が設けられた所定
のアノード電極板および/またはカソード電極板を具備
したプラズマCVD装置により被成膜基板の両面に同時
に所定の薄膜を形成する工程を備えることとしたので、
スループットが高く、かつ最初に成膜した面が再度の成
膜時に電極板に接触するため薄膜に損傷を与えたり、被
成膜基板の加熱冷却工程を複数回繰り返すために被成膜
基板そのものの品質の低下を引き起こしたりする不具合
を回避することができる。
In the method of forming a thin film according to the present invention, a film is formed by a plasma CVD apparatus provided with a predetermined anode electrode plate and / or cathode electrode plate provided with an opening having a shape substantially conforming to the film formation substrate. Since it was decided to include a step of forming a predetermined thin film on both sides of the substrate at the same time,
The throughput is high, and the surface on which the film is formed first contacts the electrode plate when the film is formed again, causing damage to the thin film. It is possible to avoid problems that cause deterioration in quality.

【0036】この発明に係る太陽電池の製造方法では、
シリコン基板に略一致した形状を呈する開口部が設けら
れた所定のアノード電極板および/またはカソード電極
板を具備したプラズマCVD装置によりシリコン基板の
表面に対しては反射防止膜として機能し、裏面に対して
は保護膜として機能する薄膜を同時に形成する工程と、
を備えたので、変換効率の高い太陽電池を高スループッ
トで製造することができる。
In the method for manufacturing a solar cell according to the present invention,
A plasma CVD apparatus provided with a predetermined anode electrode plate and / or cathode electrode plate provided with an opening having a shape substantially conforming to the silicon substrate functions as an anti-reflection film on the surface of the silicon substrate and on the back surface Simultaneously forming a thin film functioning as a protective film,
, Solar cells with high conversion efficiency can be manufactured with high throughput.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1を示すプラズマCVD
装置の概略構造図である。
FIG. 1 shows plasma CVD showing Embodiment 1 of the present invention.
It is a schematic structure figure of an apparatus.

【図2】 本発明の実施の形態1を示すプラズマCVD
装置の電極板の上面図である。
FIG. 2 shows plasma CVD showing Embodiment 1 of the present invention.
It is a top view of the electrode plate of an apparatus.

【図3】 本発明の実施の形態1を示す被成膜基板表裏
への成膜の様子を示した概略図である。
FIG. 3 is a schematic diagram showing a state of film formation on the front and back surfaces of a film formation substrate according to Embodiment 1 of the present invention.

【図4】 本発明の実施の形態1を示すプラズマCVD
装置の電極板の開口部分の断面図である。
FIG. 4 is a plasma CVD showing the first embodiment of the present invention.
It is sectional drawing of the opening part of the electrode plate of an apparatus.

【図5】 本発明の実施の形態2を示す被成膜基板表裏
への成膜の様子を示した概略図である。
FIG. 5 is a schematic view showing a state of film formation on the front and back surfaces of a film formation substrate according to Embodiment 2 of the present invention.

【図6】 本発明の実施の形態3である多結晶Si基板
表裏へSiN薄膜形成を行った太陽電池の素子構造の断
面図である。
FIG. 6 is a sectional view of an element structure of a solar cell in which a SiN thin film is formed on the front and back of a polycrystalline Si substrate according to a third embodiment of the present invention.

【図7】 本発明の別の実施の形態である被成膜基板を
垂直に保持する構造のプラズマCVD装置の概略構造図
である。
FIG. 7 is a schematic structural view of a plasma CVD apparatus according to another embodiment of the present invention, which has a structure in which a deposition target substrate is held vertically.

【図8】 従来のプラズマCVD装置の装置構成図であ
る。
FIG. 8 is an apparatus configuration diagram of a conventional plasma CVD apparatus.

【図9】 従来のプラズマCVD装置の電極板の上面図
である。
FIG. 9 is a top view of an electrode plate of a conventional plasma CVD apparatus.

【図10】 従来の多結晶Si基板の表面側のみにSi
N薄膜の形成を施した太陽電池の素子構造の断面図であ
る。
FIG. 10 shows that only the surface of the conventional polycrystalline Si substrate has Si
It is sectional drawing of the element structure of the solar cell in which formation of the N thin film was performed.

【符号の説明】[Explanation of symbols]

1 材料ガスボンベ、 2 ガス供給コントローラ、
3 ガス供給ノズル、4 真空チャンバー、 5 アノ
ード電極板、 6 カソード電極板、 7 コネクタ、
8 被成膜基板、 9 高周波電源、 10 高周波
プラズマ、 11 真空排気系、 12 開口部の内周
部分に設けられた突起、 13 開口部を具備する電極
板、 14 開口部、 15 表面側の薄膜形成部、
16 裏面側の薄膜形成部、 17 開口部を所望の形
状に加工した薄膜、 18 電極板、 50 端部アノ
ード電極板、 51 中央部アノード電極板、 60
端部カソード電極板、 61 中央部カソード電極板、
100 p型多結晶Si基板、 101 n型拡散
層、 102 pn接合、 103 BSF層、 10
4 反射防止膜、 105 電極、 106 裏面側の
SiN薄膜
1 material gas cylinder, 2 gas supply controller,
3 gas supply nozzle, 4 vacuum chamber, 5 anode electrode plate, 6 cathode electrode plate, 7 connector,
Reference Signs List 8 Deposition substrate, 9 High frequency power supply, 10 High frequency plasma, 11 Vacuum exhaust system, 12 Protrusion provided on inner peripheral portion of opening, 13 Electrode plate having opening, 14 Opening, 15 Thin film on front side Forming part,
16 a thin film forming portion on the back surface side; 17 a thin film having an opening processed into a desired shape; 18 electrode plate; 50 end anode electrode plate; 51 central anode electrode plate;
End cathode electrode plate, 61 Central cathode electrode plate,
100 p-type polycrystalline Si substrate, 101 n-type diffusion layer, 102 pn junction, 103 BSF layer, 10
4. Antireflection film, 105 electrode, 106 SiN thin film on the back side

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 AA06 AA13 BA29 BA40 BB11 BB14 CA04 FA03 GA01 KA08 LA16 5F045 AB33 AC01 AC12 AF03 BB08 CA13 DP13 EH14 5F051 AA02 CB12 GA04 GA06  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K030 AA06 AA13 BA29 BA40 BB11 BB14 CA04 FA03 GA01 KA08 LA16 5F045 AB33 AC01 AC12 AF03 BB08 CA13 DP13 EH14 5F051 AA02 CB12 GA04 GA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバーと、前記真空チャンバー
内で交互に対向配置されたアノード電極板およびカソー
ド電極板と、前記両電極板に高周波を印加して両電極板
間に高周波プラズマを発生させる高周波電源と、を備
え、前記アノード電極板、カソード電極板の両方または
一方の被成膜基板を載置する領域に前記被成膜基板に略
一致した形状を呈し、前記被成膜基板の両面を前記高周
波プラズマに曝さらす開口部を少なくとも1以上有する
ことを特徴とするプラズマCVD装置。
1. A vacuum chamber, an anode electrode plate and a cathode electrode plate alternately arranged in the vacuum chamber, and a high frequency for applying a high frequency to the two electrode plates to generate a high frequency plasma between the two electrode plates. A power supply, and the anode electrode plate, the cathode electrode plate, or both or one of the regions on which the film formation substrate is to be mounted has a shape substantially coinciding with the film formation substrate, and both surfaces of the film formation substrate A plasma CVD apparatus having at least one opening for exposure to the high-frequency plasma.
【請求項2】 前記開口部の内周部分に前記被成膜基板
を保持するための突起部を設けたことを特徴とする請求
項1記載のプラズマCVD装置。
2. The plasma CVD apparatus according to claim 1, wherein a projection for holding the film-forming substrate is provided at an inner peripheral portion of the opening.
【請求項3】 前記開口部で前記被成膜基板を載置する
面と反対側に面する部分に所望のパターン形状に対応し
た遮蔽領域が設られていることを特徴とする請求項1記
載のプラズマCVD装置。
3. A shielding area corresponding to a desired pattern shape is provided at a portion of the opening facing the side opposite to the surface on which the film-forming substrate is mounted. Plasma CVD apparatus.
【請求項4】 被成膜基板に略一致した形状を呈する開
口部が設けられた所定のアノード電極板および/または
カソード電極板を具備したプラズマCVD装置により、
所望の薄膜を前記被成膜基板の両面に同時に形成する工
程を備えたことを特徴とする薄膜形成方法。
4. A plasma CVD apparatus provided with a predetermined anode electrode plate and / or cathode electrode plate provided with an opening having a shape substantially coinciding with a substrate on which a film is to be formed.
A method for forming a thin film, comprising a step of forming a desired thin film simultaneously on both surfaces of the substrate on which the film is to be formed.
【請求項5】 シリコン基板に略一致した形状を呈する
開口部が設けられた所定のアノード電極板および/また
はカソード電極板を具備したプラズマCVD装置によ
り、前記シリコン基板の表面に対しては反射防止膜とし
て機能し、裏面に対しては保護膜として機能する薄膜を
同時に形成する工程を備えたことを特徴とする太陽電池
の製造方法。
5. A plasma CVD apparatus having a predetermined anode electrode plate and / or a cathode electrode plate provided with an opening having a shape substantially coinciding with a silicon substrate, thereby preventing reflection on the surface of the silicon substrate. A method for manufacturing a solar cell, comprising a step of simultaneously forming a thin film functioning as a film and functioning as a protective film on a back surface.
JP2000279782A 2000-09-14 2000-09-14 Plasma CVD apparatus and method for manufacturing solar cell Expired - Fee Related JP4496401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279782A JP4496401B2 (en) 2000-09-14 2000-09-14 Plasma CVD apparatus and method for manufacturing solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279782A JP4496401B2 (en) 2000-09-14 2000-09-14 Plasma CVD apparatus and method for manufacturing solar cell

Publications (2)

Publication Number Publication Date
JP2002093722A true JP2002093722A (en) 2002-03-29
JP4496401B2 JP4496401B2 (en) 2010-07-07

Family

ID=18764736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279782A Expired - Fee Related JP4496401B2 (en) 2000-09-14 2000-09-14 Plasma CVD apparatus and method for manufacturing solar cell

Country Status (1)

Country Link
JP (1) JP4496401B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005280A (en) * 2002-05-21 2005-01-06 Otb Group Bv Method for passivating semiconductor substrate
WO2006137322A1 (en) * 2005-06-22 2006-12-28 Kyocera Corporation Solar cell element and solar cell element manufacturing method
JP2008261010A (en) * 2007-04-12 2008-10-30 Ulvac Japan Ltd Film deposition system
WO2010064303A1 (en) * 2008-12-02 2010-06-10 三菱電機株式会社 Method for manufacturing solar battery cell
US20120015474A1 (en) * 2010-07-19 2012-01-19 Yung-Chun Wu Method for fabricating silicon heterojunction solar cells
KR101199210B1 (en) * 2010-10-28 2012-11-07 한국에너지기술연구원 Apparatus, method and system for depositing layer of solar cell
JP2015211094A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Method of manufacturing solar cell element
KR20190134183A (en) * 2018-05-25 2019-12-04 주성엔지니어링(주) Apparatus for supporting substrate and apparatus for processing substrate comprising the same
KR20210149540A (en) * 2020-06-02 2021-12-09 주식회사 한화 Both Side Processing Apparatus of Substrate

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480023A (en) * 1987-09-21 1989-03-24 Kanegafuchi Chemical Ind Formation of thin film and apparatus therefor
WO1989003587A1 (en) * 1987-10-14 1989-04-20 The Furukawa Electric Co., Ltd. Method and apparatus for thin film formation by plasma cvd
JPH01130517A (en) * 1987-11-17 1989-05-23 Furukawa Electric Co Ltd:The Plasma cvd device
JPH01168021A (en) * 1987-12-23 1989-07-03 Furukawa Electric Co Ltd:The Outer work holder
JPH0330326A (en) * 1989-06-27 1991-02-08 Mitsubishi Electric Corp Semiconductor manufacturing apparatus
JPH042143A (en) * 1990-04-19 1992-01-07 Fujitsu Ltd Method of measuring crystal growth rate
JPH04293782A (en) * 1991-03-20 1992-10-19 Fujitsu Ltd Plasma chemical vapor deposition device
JPH05251354A (en) * 1991-04-22 1993-09-28 Nippon Ee S M Kk Thin-film formation raw material used for chemical vapor growth as well as method and apparatus for chemical vapor growth used to form thin film on substrate by using said raw material
JPH06128747A (en) * 1992-10-14 1994-05-10 Asahi Daiyamondo Kogyo Kk Method and device for forming hard carbonaceous thin film by chemical vapor phase synthesis
JPH10173289A (en) * 1996-12-06 1998-06-26 Hitachi Ltd Manufacture of semiconductor device
JPH11124675A (en) * 1997-10-16 1999-05-11 Sharp Corp Plasma treating device
JPH11307792A (en) * 1998-04-27 1999-11-05 Kyocera Corp Solar cell element
JP2000114559A (en) * 1998-09-30 2000-04-21 Kyocera Corp Manufacture of solar battery element

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480023A (en) * 1987-09-21 1989-03-24 Kanegafuchi Chemical Ind Formation of thin film and apparatus therefor
WO1989003587A1 (en) * 1987-10-14 1989-04-20 The Furukawa Electric Co., Ltd. Method and apparatus for thin film formation by plasma cvd
JPH01130517A (en) * 1987-11-17 1989-05-23 Furukawa Electric Co Ltd:The Plasma cvd device
JPH01168021A (en) * 1987-12-23 1989-07-03 Furukawa Electric Co Ltd:The Outer work holder
JPH0330326A (en) * 1989-06-27 1991-02-08 Mitsubishi Electric Corp Semiconductor manufacturing apparatus
JPH042143A (en) * 1990-04-19 1992-01-07 Fujitsu Ltd Method of measuring crystal growth rate
JPH04293782A (en) * 1991-03-20 1992-10-19 Fujitsu Ltd Plasma chemical vapor deposition device
JPH05251354A (en) * 1991-04-22 1993-09-28 Nippon Ee S M Kk Thin-film formation raw material used for chemical vapor growth as well as method and apparatus for chemical vapor growth used to form thin film on substrate by using said raw material
JPH06128747A (en) * 1992-10-14 1994-05-10 Asahi Daiyamondo Kogyo Kk Method and device for forming hard carbonaceous thin film by chemical vapor phase synthesis
JPH10173289A (en) * 1996-12-06 1998-06-26 Hitachi Ltd Manufacture of semiconductor device
JPH11124675A (en) * 1997-10-16 1999-05-11 Sharp Corp Plasma treating device
JPH11307792A (en) * 1998-04-27 1999-11-05 Kyocera Corp Solar cell element
JP2000114559A (en) * 1998-09-30 2000-04-21 Kyocera Corp Manufacture of solar battery element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005280A (en) * 2002-05-21 2005-01-06 Otb Group Bv Method for passivating semiconductor substrate
JP4837662B2 (en) * 2005-06-22 2011-12-14 京セラ株式会社 Method for manufacturing solar cell element
WO2006137322A1 (en) * 2005-06-22 2006-12-28 Kyocera Corporation Solar cell element and solar cell element manufacturing method
JPWO2006137322A1 (en) * 2005-06-22 2009-01-15 京セラ株式会社 Solar cell element and method for manufacturing solar cell element
JP2008261010A (en) * 2007-04-12 2008-10-30 Ulvac Japan Ltd Film deposition system
JP5197760B2 (en) * 2008-12-02 2013-05-15 三菱電機株式会社 Method for manufacturing solar battery cell
US8377734B2 (en) 2008-12-02 2013-02-19 Mitsubishi Electric Corporation Method for manufacturing solar battery cell
WO2010064303A1 (en) * 2008-12-02 2010-06-10 三菱電機株式会社 Method for manufacturing solar battery cell
US20120015474A1 (en) * 2010-07-19 2012-01-19 Yung-Chun Wu Method for fabricating silicon heterojunction solar cells
KR101199210B1 (en) * 2010-10-28 2012-11-07 한국에너지기술연구원 Apparatus, method and system for depositing layer of solar cell
JP2015211094A (en) * 2014-04-25 2015-11-24 京セラ株式会社 Method of manufacturing solar cell element
KR20190134183A (en) * 2018-05-25 2019-12-04 주성엔지니어링(주) Apparatus for supporting substrate and apparatus for processing substrate comprising the same
KR102544875B1 (en) 2018-05-25 2023-06-19 주성엔지니어링(주) Apparatus for supporting substrate and apparatus for processing substrate comprising the same
KR20210149540A (en) * 2020-06-02 2021-12-09 주식회사 한화 Both Side Processing Apparatus of Substrate
KR102371772B1 (en) 2020-06-02 2022-03-07 주식회사 한화 Both Side Processing Apparatus of Substrate

Also Published As

Publication number Publication date
JP4496401B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
US8460469B2 (en) Apparatus for etching substrate and method of etching substrate using the same
US10840395B2 (en) Deposition approaches for emitter layers of solar cells
US8592230B2 (en) Method for patterning a substrate using ion assisted selective depostion
KR101279353B1 (en) Plasma Generating Apparatus
JP2002093722A (en) Plasma cvd system, method of forming thin film and method of manufacturing solar cell
JP5520834B2 (en) Method for forming passivation film and method for manufacturing solar cell element
KR101147658B1 (en) Plasma processing apparatus and method
US20130109133A1 (en) Rear-point-contact process or photovoltaic cells
TW201304162A (en) Method for rear point contact fabrication for solar cells
JP3898600B2 (en) Manufacturing method of solar cell
KR101555955B1 (en) Method for manufacturing Wafer type Solar Cell
KR20110020062A (en) Method of manufacturing back junction solar cell by using plasma doping and diffusion and the solar cell
JP2009272428A (en) Antireflective film coating method and antireflective film coating apparatus
JP6024417B2 (en) Sample holder
JP4683454B2 (en) Solar cell manufacturing method and manufacturing apparatus
JP2003101048A (en) Method for manufacturing photovoltaic device
JP5977540B2 (en) Solar cell manufacturing method, manufacturing apparatus, and solar cell
JP2001026878A (en) Thin film forming device and formation of semiconductor thin film
JP3898604B2 (en) Manufacturing method of solar cell
KR20010044058A (en) Ashing apparatus for processing glass substrate or waper
JP4184814B2 (en) Parallel plate type plasma CVD apparatus and method for manufacturing film formation substrate
JP3261795B2 (en) Plasma processing equipment
KR20130016719A (en) Method and apparatus for manufacturing of solar cell
JPH09162173A (en) Method and system for ashing
JP2013258280A (en) Method for manufacturing solar cell and solar cell manufacturing apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees