JPH04281359A - Linear synchronous machine - Google Patents

Linear synchronous machine

Info

Publication number
JPH04281359A
JPH04281359A JP3764791A JP3764791A JPH04281359A JP H04281359 A JPH04281359 A JP H04281359A JP 3764791 A JP3764791 A JP 3764791A JP 3764791 A JP3764791 A JP 3764791A JP H04281359 A JPH04281359 A JP H04281359A
Authority
JP
Japan
Prior art keywords
armature
armature core
synchronous machine
field
linear synchronous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3764791A
Other languages
Japanese (ja)
Inventor
Toshiharu Watabe
渡部 俊春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3764791A priority Critical patent/JPH04281359A/en
Publication of JPH04281359A publication Critical patent/JPH04281359A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE:To suppress fluctuation of acceleration of a vehicle mounted primary system linear synchronous machine constituted such that the length of armature core is shorter than that of the field CONSTITUTION:Inclining parts are provided at the opposite ends of an armature core so that the difference of electromagnetic forces produced at the opposite ends of the armature core, i.e., the fluctuation of thrust, is suppressed. When the inclining parts are composed of iron pieces, constitution and dimension of the armature core are not required to be modified and an inexpensive steel member can be employed as the iron piece. Furthermore, when the iron piece is constituted to have L-type cross-section, it can be fixed easily to the armature core. Alternatively, protruding dimension o the tooth of the armature core is modified to provide an inclining part thus setting the dimension in the moving direction of armature conventionally. When protrusions are provided at the opposite ends of the armature core to provide an inclining parts, the iron pieces are not required. When these arrangements are combined, dimensions at the inclining part are ensured and the dimension in the moving direction of the armature can be minimized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、直線往復動シミレー
タ、搬送装置を駆動するリニア同期機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear reciprocating simulator and a linear synchronous machine for driving a conveying device.

【0002】0002

【従来の技術】リニア同期機の電機子鉄心の長さLが界
磁の長さよりも短く構成されている車上一次方式のリニ
ア同期機では、電機子巻線に多相電源を接続して界磁の
全区間で電機子が加速、減速、一定速度、停止や反復往
復運動ができるように制御される。
[Prior Art] In an on-board primary type linear synchronous machine in which the length L of the armature core of the linear synchronous machine is shorter than the length of the field, a multiphase power supply is connected to the armature winding. The armature is controlled to accelerate, decelerate, maintain constant speed, stop, and repeatedly move back and forth throughout the field.

【0003】図6は従来のリニア同期機の断面図であり
後述の図7のB−B断面でもある。また、図7は図6の
A−A断面図である。これらの図において、図7のレー
ル32の上を走行する車輪31で移動可能の架台30に
取付けられた電機子1と固定して設けられる界磁2とか
らなり、電機子1は電機子鉄心11と電機子巻線12と
からなり、電機子巻線12は電機鉄心11に多数設けら
れているスロット13に納められており、このスロット
13は電機子鉄心11の界磁2側に突出する歯14の間
に形成されている。界磁2は界磁鉄心21及び界磁巻線
22からなる界磁極23とこの界磁極が固定される継鉄
24とからなっている。この継鉄24は互いに極性が交
互に反転して並べられている界磁極23を磁気的に連結
する磁気回路を形成している。
FIG. 6 is a sectional view of a conventional linear synchronous machine, and is also a BB cross section in FIG. 7, which will be described later. Moreover, FIG. 7 is a sectional view taken along the line AA in FIG. 6. In these figures, the armature 1 is made up of an armature 1 mounted on a frame 30 that is movable by wheels 31 running on rails 32 in FIG. 7, and a field 2 that is fixedly provided. 11 and an armature winding 12, the armature winding 12 is housed in a number of slots 13 provided in the electric machine core 11, and these slots 13 protrude toward the field 2 side of the armature core 11. It is formed between the teeth 14. The field 2 consists of a field pole 23 consisting of a field core 21 and a field winding 22, and a yoke 24 to which this field pole is fixed. The yoke 24 forms a magnetic circuit that magnetically connects the field poles 23 which are arranged with their polarities alternately reversed.

【0004】電機子巻線12は多くは3相交流電源で励
磁される3相巻線になっていて回転機が回転磁場を形成
する原理と同様に電機子鉄心11と界磁鉄心12とのあ
いだの空隙15に進行磁場を形成する。この進行磁場と
界磁2が生成する磁場の相互作用によって電機子1と界
磁2との間に電磁力が働き電子1及びこれが取付けられ
ている架台30の推進力となって図6の左右の方向、図
7では紙面に垂直の方向に移動する。
The armature winding 12 is often a three-phase winding excited by a three-phase AC power supply, and the armature core 11 and the field core 12 are connected to each other in the same way as a rotating machine forms a rotating magnetic field. A traveling magnetic field is formed in the air gap 15 between them. Due to the interaction between this traveling magnetic field and the magnetic field generated by the field 2, an electromagnetic force is generated between the armature 1 and the field 2, which becomes a propulsive force for the electron 1 and the pedestal 30 on which it is attached. , in the direction perpendicular to the plane of the paper in FIG.

【0005】図8は電機子1が一定速度で移動している
ときの速度の時間変化の一例を示すグラフである。この
図において、横軸は時間、縦軸は速度であり、実線Bは
実際の速度であり図に示すように周期τで正弦波状に変
化していることが実測される。鎖線Aはその平均速度で
ある。
FIG. 8 is a graph showing an example of a change in speed over time when the armature 1 is moving at a constant speed. In this figure, the horizontal axis is time, the vertical axis is velocity, and the solid line B is the actual velocity, which is actually measured to change sinusoidally with a period τ as shown in the figure. The dashed line A is the average speed.

【0006】このような速度の変動は電機子1に働く推
進力が時間とともに周期的に変化することから生ずるも
のであり、電磁力の変動の発生は次のような理由による
ものである。
[0006] Such fluctuations in speed occur because the propulsive force acting on the armature 1 changes periodically over time, and the fluctuations in electromagnetic force occur for the following reasons.

【0007】図9は図6の電機子1の左右端を拡大しこ
の部分の漏れ磁束分布を追記した断面図であり、構造的
には図6と同様なので断面のハッチ及び符号の記載を省
略してある。この図において、電機子鉄心11は強磁性
体でありその比透磁率は1に比べてはるかに大きいので
、周知のように電機子鉄心11の表面から漏れ出す磁束
は表面に直角になりこれによって生ずる磁気力の方向も
面に垂直になる。電機子鉄心11の右表面の漏れ磁束Φ
R によって生ずる磁気力を図のようにFR 、左表面
の漏れ磁束ΦL によって生ずる磁気力を図のようにF
L とそれぞれすると、これらの磁気力FR,FL は
図示のように反対方向なので、それぞれの値が同じ場合
には電機子1の推進力にはなんら影響はない。しかし、
界磁2との位置関係から磁気力FR ,FL は電機子
1が界磁2の極ピッチTだけ移動するごとに周期的に変
動する。この変動がFR とFL とで一致していない
ために結果的にFR とFL との差の力が推進力の時
間的変動ΔFA となり図8の速度の変動となって表れ
るものである。
FIG. 9 is an enlarged cross-sectional view of the left and right ends of the armature 1 in FIG. 6 and the leakage flux distribution in this part is added. Since the structure is the same as that in FIG. 6, the cross-sectional hatches and symbols are omitted. It has been done. In this figure, the armature core 11 is a ferromagnetic material and its relative magnetic permeability is much larger than 1, so as is well known, the magnetic flux leaking from the surface of the armature core 11 is perpendicular to the surface. The direction of the generated magnetic force is also perpendicular to the plane. Leakage flux Φ on the right surface of armature core 11
The magnetic force generated by R is FR as shown in the figure, and the magnetic force generated by the leakage magnetic flux ΦL on the left surface is F as shown in the figure.
Since these magnetic forces FR and FL are in opposite directions as shown in the figure, there is no effect on the propulsive force of the armature 1 if their respective values are the same. but,
Due to the positional relationship with the field 2, the magnetic forces FR and FL vary periodically every time the armature 1 moves by the pole pitch T of the field 2. Since this fluctuation does not match between FR and FL, the difference in force between FR and FL results in the temporal fluctuation ΔFA of the propulsive force, which appears as the speed fluctuation shown in FIG. 8.

【0008】[0008]

【発明が解決しようとする課題】前述のような速度又は
加速度が時間的に変動すると、例えば、自動車の走行を
シミュレーションするのに使用される直線往復動シミュ
レータの場合には、架台30の上に図示しない座席に座
る乗員が加速度の変動による振動を体感し不快感を持つ
という問題がある。また、物体を搬送するための搬送装
置の場合には、搬送する物体が振動によって損傷する可
能性が生ずるという問題がある。
[Problems to be Solved by the Invention] When the speed or acceleration as described above changes over time, for example, in the case of a linear reciprocating motion simulator used to simulate the driving of an automobile, the There is a problem in that an occupant sitting in a seat (not shown) experiences vibrations due to changes in acceleration and feels uncomfortable. Further, in the case of a conveying device for conveying an object, there is a problem that the object being conveyed may be damaged by vibration.

【0009】この発明の目的はこのような問題を解決し
、速度及び加速度の時間的変動の小さなリニア同期機を
提供することにある。
An object of the present invention is to solve these problems and provide a linear synchronous machine with small temporal fluctuations in velocity and acceleration.

【0010】0010

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、可動体に取付けられた電機子と
この電機子と対向して固定して配置された界磁からなる
リニア同期機において、前記電機子の鉄心である電機子
鉄心の移動方向の前端と後端の両端部に、前記界磁との
間の空隙寸法が外側に向かって所定の角度で増大する傾
斜部を設けてなるものとし、また、傾斜部が、界磁との
間の空隙寸法が外側に向かって増大する傾斜を持つ鉄片
からなり、この鉄片を電機子鉄心の両端面に取付けてな
るものとし、また、鉄片がL字形の断面を持ち、L字の
一方の辺が電機子鉄心の移動方向の前端と後端の両端面
に取付けられ、他方の辺が界磁に対して傾斜が設けられ
てなるものとし、又は、電機子鉄心の両端近傍が傾斜部
を構成してなり、前期電機子鉄心の界磁に対向する側に
並べて設けられている歯の突出寸法を外側に近いほど小
さくしてなる傾斜部を形成してなるものとし、電機子鉄
心の両端部が移動方向にそれぞれ突出し、この突出部の
界磁と対向する面が傾斜部を形成してなるものとし、更
に、歯を切り欠いて形成する傾斜部と、鉄片又は電機子
鉄心の突出部が形成する傾斜部とが実質的に1つの傾斜
部を形成してなることを特徴とする請求項2、3又は5
と、4とを併用してなるものとする。
[Means for Solving the Problems] In order to solve the above problems, according to the present invention, a linear motor comprising an armature attached to a movable body and a field fixedly disposed opposite to the armature is provided. In the synchronous machine, the armature iron core, which is the iron core of the armature, has inclined portions at both front and rear ends in the moving direction of the armature core, in which the gap size with the field increases outward at a predetermined angle. Further, the inclined portion is made of an iron piece having an inclination such that the gap size between the field and the magnetic field increases toward the outside, and the iron piece is attached to both end faces of the armature core, In addition, the iron piece has an L-shaped cross section, one side of the L shape is attached to both end faces of the front end and rear end in the moving direction of the armature core, and the other side is inclined with respect to the field. Or, the vicinity of both ends of the armature core constitutes an inclined part, and the protruding dimensions of the teeth arranged side by side on the side facing the field of the former armature core are made smaller as they are closer to the outside. Both ends of the armature core protrude in the direction of movement, and the surface of the protrusion facing the field forms an inclined part. Claim 2, 3, or 5, characterized in that the slope portion formed by the chipping and the slope portion formed by the protruding portion of the iron piece or the armature core substantially form one slope portion.
and 4 in combination.

【0011】[0011]

【作用】この発明の構成において、電機子鉄心の移動方
向の前端と後端の両端部に、界磁との間の空隙寸法が外
側に向かって所定の角度で増大する傾斜部を設けること
によって、電機子鉄心の端部に発生する漏れ磁場によっ
て発生する両端の磁気力の差が減少する。また、傾斜部
を、界磁との間の空隙寸法が外側に向かって増大する傾
斜を持つ鉄片で構成することにより、電機子鉄心の構成
、寸法を変更する必要がないとともに鉄片に安価な鋼材
を使用することができる。また、鉄片をL字形断面で構
成して一方の辺を電機子鉄心の移動方向の前端と後端の
両端面に取付けることによってボルト締めなどの方法で
容易に取付けが可能であり、他方の辺を界磁に対して傾
斜を設けることにより傾斜部を容易に形成することがで
きる。又は、電機子鉄心の界磁に対向する側に並べて設
けられている歯の突出寸法を外側に近いほど小さくする
ことによって傾斜部を形成することによって、電機子の
進行方向寸法を従来と同じにできる。また、電機子鉄心
の両端部を移動方向にそれぞれ突出させた形状とし、こ
の突出部の界磁と対向する面を前述と同じように傾斜さ
せて傾斜部を形成することにより鉄片を取付ける必要が
なくなる。更に、電機子鉄心の歯を切り欠いて形成する
傾斜部と鉄片又は電機子鉄心の突出部が形成する傾斜部
とが実質的に1つの傾斜部を形成するようにすることに
より、必要とする傾斜部の移動方向寸法を確保してしか
も電機子の移動方向寸法の増大を最小限にすることがで
きる。
[Operation] In the structure of the present invention, by providing inclined portions at both the front and rear ends of the armature core in the moving direction, the gap size between the armature and the field increases toward the outside at a predetermined angle. , the difference in magnetic force between the ends of the armature core due to the leakage magnetic field generated at the ends of the armature core is reduced. In addition, by configuring the inclined part with a piece of iron with a slope in which the gap size between the field and the magnetic field increases toward the outside, there is no need to change the configuration or dimensions of the armature core, and the piece is made of inexpensive steel. can be used. In addition, by configuring the iron piece with an L-shaped cross section and attaching one side to both the front and rear end faces in the direction of movement of the armature core, it can be easily attached by bolting or other methods. By providing a slope with respect to the field, the slope portion can be easily formed. Alternatively, the dimensions of the armature in the advancing direction can be kept the same as before by forming an inclined part by making the protruding dimensions of the teeth arranged on the side facing the field of the armature core smaller toward the outside. can. In addition, it is necessary to attach the iron piece by making both ends of the armature core protrude in the direction of movement, and by slanting the surface of the protruding part facing the field in the same manner as described above to form a sloping part. It disappears. Furthermore, by making the inclined part formed by cutting out the teeth of the armature core and the inclined part formed by the iron piece or the protruding part of the armature core substantially form one inclined part, the required It is possible to secure the dimension of the inclined portion in the direction of movement, and to minimize the increase in the dimension of the armature in the direction of movement.

【0012】0012

【実施例】以下この発明を実施例に基づいて説明する。 図1はこの発明の実施例を示すリニア同期機の断面図で
あり、図6と同じ部材については共通の符号を付けるこ
とにより詳しい説明を省略する。この図において、電機
子鉄心11の図の左右の端面に鉄片41,42を取付け
てある点が図6と異なる。鉄片41,4の界磁2と対向
する側の面は電機子1の移動方向に対してθの角度の傾
斜を持たせてある。
EXAMPLES The present invention will be explained below based on examples. FIG. 1 is a sectional view of a linear synchronous machine showing an embodiment of the present invention, and the same members as those in FIG. 6 are given the same reference numerals and detailed explanations will be omitted. This figure differs from FIG. 6 in that iron pieces 41 and 42 are attached to the left and right end faces of the armature core 11 in the figure. The surfaces of the iron pieces 41 and 4 facing the field 2 are inclined at an angle of θ with respect to the moving direction of the armature 1.

【0013】鉄片41,42は強磁性体でありその比透
磁率はら1に対して充分大きいのでこれを設けることに
よって電機子鉄心11の両端の漏れ磁束の分布は主にこ
れら鉄片41,42の傾斜面と界磁2との間に分布する
The iron pieces 41 and 42 are ferromagnetic and their relative magnetic permeability is sufficiently large relative to 1, so by providing them, the leakage flux distribution at both ends of the armature core 11 is mainly controlled by the iron pieces 41 and 42. It is distributed between the inclined surface and the field 2.

【0014】図2は後述の条件の基に図1のリニア同期
機について図8と同様に速度の時間変動を求めた結果を
示すグラフであり、図8と共通な事項は説明を省略する
。一点鎖線で示す直線Aは速度平均値、実線Bで示す正
弦波は従来のリニア同期機の速度であり図8を再掲した
ものである。点線Cで示す正弦波は鉄片41,42を設
けた図1のリニア同期機の速度である。これらの値を求
めたリニア同期機の寸法緒言はそれぞれ、界磁2の極ピ
ッチ;T=100mm、鉄片41,42の移動方向寸法
A=120mm、同じく傾斜角度θ=10°。その他の
緒言は図5の従来のリニア同期機と同じである。
FIG. 2 is a graph showing the results of the time variation of speed obtained for the linear synchronous machine of FIG. 1 in the same way as FIG. 8 based on the conditions described later, and the explanation of the same items as FIG. 8 will be omitted. Straight line A shown by a dashed-dotted line is the speed average value, and a sine wave shown by solid line B is the speed of a conventional linear synchronous machine, which is a reproduction of FIG. The sine wave indicated by dotted line C is the speed of the linear synchronous machine shown in FIG. 1 provided with iron pieces 41 and 42. The dimensions of the linear synchronous machine for which these values were obtained are as follows: pole pitch of field 2; T = 100 mm; dimension A in the moving direction of iron pieces 41 and 42 = 120 mm; and angle of inclination θ = 10°. Other introductions are the same as the conventional linear synchronous machine shown in FIG.

【0015】図2から分かるように、鉄片41,42を
設けることによって速度の変動成分は従来のリニア同期
機に比べて約3分の1に低下している。寸法Aや角度θ
を数種類変えた条件で求めた結果から、前述の緒言が最
適に近い条件であることが分かっている。すなわち、寸
法Aが小さすぎると鉄片41,42を設ける効果が期待
できない。また、寸法Aを大きくし過ぎるのはリニア同
期機の移動方向の長さ寸法を増大させるという問題が生
ずるとともに、寸法に対応した大きな効果を得ることは
できないので、結局界磁2の極ピッチTより少し大きい
程度が妥当という結論になった。また、角度θを大きく
し過ぎるのも鉄片41,42を設ける効果が小さくなり
、零にすると設けないのと同じになる。5°ピッチで最
適条件を求めた結果が前述の10°である。
As can be seen from FIG. 2, by providing the iron pieces 41 and 42, the speed fluctuation component is reduced to about one third compared to the conventional linear synchronous machine. Dimension A and angle θ
From the results obtained under several different conditions, it has been found that the conditions described above are close to optimal. That is, if the dimension A is too small, the effect of providing the iron pieces 41 and 42 cannot be expected. Furthermore, if the dimension A is made too large, there will be a problem of increasing the length dimension in the moving direction of the linear synchronous machine, and it will not be possible to obtain a large effect corresponding to the dimension, so in the end, the pole pitch T of field 2 It was concluded that a slightly larger degree is appropriate. Furthermore, if the angle θ is too large, the effect of providing the iron pieces 41 and 42 will be reduced, and if the angle θ is set to zero, it will be the same as not providing the iron pieces. The above-mentioned 10° is the result of finding the optimum condition at a pitch of 5°.

【0016】図3は図1の電機子1の左右端を拡大しそ
の漏れ磁束分布を追記した断面図であり、構造的には図
1と同様なので、図9と同様断面のハッチ及び符号の記
載を省略してある。この図において、電機子鉄心11の
両端面と界磁鉄心21との間に生ずる漏れ磁束ΦL 、
ΦR を磁束線で示してあるが、この漏れ磁束ΦL 、
ΦR は鉄片41,42の界磁2に対向する面から主に
漏れ出しているが、この面はθの角度を持っているので
漏れ磁束の漏れ出す方向も界磁2の方向に対してθの角
度を持っており、これによる磁気力FR ,FL も同
様にθの角度になっている。推進力として働く成分はこ
の磁気力FR ,FL の図の左右の方向成分であるF
RA,FLAとなる。これらはFR ,FL 及びθと
の間に次式の関係がある。
FIG. 3 is an enlarged cross-sectional view of the left and right ends of the armature 1 in FIG. 1, with the leakage flux distribution added thereto. Since the structure is the same as that in FIG. 1, the cross-sectional hatches and symbols are similar to those in FIG. Description has been omitted. In this figure, leakage magnetic flux ΦL generated between both end faces of armature core 11 and field core 21,
ΦR is shown as a magnetic flux line, but this leakage magnetic flux ΦL,
ΦR mainly leaks from the surface of the iron pieces 41 and 42 that faces the field 2, but since this surface has an angle of θ, the leaking direction of the leakage flux is also θ with respect to the direction of the field 2. The magnetic forces FR and FL caused by this also have an angle of θ. The component that acts as a propulsive force is F, which is the left and right direction component of the magnetic force FR, FL in the diagram.
They become RA and FLA. These have the following relationship with FR, FL, and θ.

【0017】FRA=FR sin θ,  FLA=
FL sin θこれらの差としての推進力の変動成分
ΔFA は、ΔFA =FRA−FLA=(FR −F
L )sin θとなる。
[0017]FRA=FR sin θ, FLA=
FL sin θ The fluctuation component ΔFA of the propulsive force as the difference between these is ΔFA = FRA - FLA = (FR - F
L) sin θ.

【0018】この式によればθ=0にすると推進力の変
動成分ΔFA は左右の磁気力FR ,FL の如何に
係わらず零になるという結果になるが、実際にはこの図
に示さない漏れ磁束があり、この影響でθ=0のときは
かっえて変動成分ΔFA は大きくなるという結果にな
る。したがって、前述の式は説明だけのためのものであ
って実際の変動成分ΔFAの計算には磁場解析が必要で
ある。
According to this formula, when θ=0, the fluctuation component ΔFA of the propulsive force becomes zero regardless of the left and right magnetic forces FR and FL, but in reality there is a leakage that is not shown in this figure. There is a magnetic flux, and due to this influence, when θ=0, the fluctuation component ΔFA becomes even larger. Therefore, the above equation is for explanation only, and magnetic field analysis is required to actually calculate the fluctuation component ΔFA.

【0019】図4は磁場解析によって算出した推進力の
変化を示すグラフである。この図において、横軸は電機
子1と界磁2との相対位置を表す寸法であり変動成分が
零になる位置を原点にとってある。変動分は界磁2の極
間寸法Tを周期とした変化をするので横軸の範囲をこの
極間寸法Tとしている。なお、図2、図8の周期τはこ
の極間寸法Tを速度で除した値になる。縦軸は推進力の
変動分ΔFA である。また、鎖線Dは図6の、実線E
は図1の場合である。なお、縦軸の目盛りは実線Eの最
大値を1として目盛ってある。この図から明らかなよう
に鎖線Dの最大値は約3であり、このことは推進力変動
分ΔFA が従来の技術である図6に比べてこの発明の
実施例である図1の方が3分の1に低減されたことを表
している。推進力変動分が3分の1に低減することによ
り図2の速度変動分も同じ割合で減少することになる。 なお、低減効果としての3分の1という値は条件によっ
て変化するものであり、条件によっては更に大きな低減
効果が期待できるが、別の条件ではより小さな効果しか
得られない場合もある。
FIG. 4 is a graph showing changes in propulsive force calculated by magnetic field analysis. In this figure, the horizontal axis is a dimension representing the relative position of the armature 1 and the field 2, and the origin is the position where the fluctuation component is zero. Since the variation changes with the cycle of the distance between poles T of the field 2, the range of the horizontal axis is defined as the distance between poles T. Note that the period τ in FIGS. 2 and 8 is the value obtained by dividing the distance T between the poles by the speed. The vertical axis is the variation in propulsive force ΔFA. Also, the chain line D is the solid line E in FIG.
is the case in FIG. Note that the scale on the vertical axis is set with the maximum value of the solid line E as 1. As is clear from this figure, the maximum value of the dashed line D is about 3, which means that the propulsive force variation ΔFA is 3 more in FIG. 1, which is an embodiment of the present invention, than in FIG. This means that it has been reduced to one-fold. By reducing the propulsive force variation to one-third, the speed variation shown in FIG. 2 is also reduced at the same rate. Note that the value of 1/3 as the reduction effect changes depending on the conditions, and a larger reduction effect can be expected depending on the conditions, but a smaller effect may be obtained under other conditions.

【0020】図5はこの発明の別の実施例を示す電機子
の断面図であり、界磁2は図1と同じなので電機子鉄心
11Aと対向する面の位置だけを図示してある。この図
において、電機子鉄心11Aは両端近傍の複数本の歯1
4Aを斜めに切り欠いて角度θの傾斜を持たせた構成と
したものである。その他の構成は図1の電機子鉄心11
と同じであり、電機子巻線12は共通である。一般にリ
ニア同期機の電機子巻線12は回転機の電機子巻線と同
様に亀の子又は波状に形成されたコイルの往路導体と復
路導体とがそれぞれ約1極ピッチ離れた位置のスロット
13Aに挿入され、1つのスロット13Aには異なるコ
イルの往路と復路の導体2本の導体が挿入される。
FIG. 5 is a sectional view of an armature showing another embodiment of the present invention. Since the field 2 is the same as that in FIG. 1, only the position of the surface facing the armature core 11A is shown. In this figure, the armature core 11A has a plurality of teeth 1 near both ends.
4A is cut out diagonally to give an inclination of an angle θ. The other configuration is the armature core 11 in Figure 1.
, and the armature winding 12 is common. In general, the armature winding 12 of a linear synchronous machine is formed into a tortoise-like or wavy shape, similar to the armature winding of a rotating machine.The outgoing conductor and the incoming conductor of the coil are each placed in a slot 13A at a position approximately one pole pitch apart. Two conductors for the outgoing and return paths of different coils are inserted into one slot 13A.

【0021】リニア同期機の特徴として両端部では一方
が往路のコイル導体がなく、他方が復路のコイルがない
ために1本のコイル導体だけが挿入されるスロットがそ
れぞれ約1極ピッチ分存在する。このことは図6や図1
では無視ているが、図5では概略的に示してある。この
電機子鉄心11Aの両端部に1本のコイル導体しか挿入
されない1つのスロット13Aの存在を利用して前述の
傾斜を設けたものである。このように、電機子鉄心11
Aに傾斜部を設けて界磁2との間の空隙15Aが外側に
向かって徐々に大きくなる構成を採用することによって
も前述の鉄片41,42を設けたのと同じように推進力
の変動を低減することができる。この構成の場合は、電
機子鉄心11Aの移動方向の寸法Lは図6の従来の電機
子鉄心11のそれと同じなので、この発明を適用したた
めに電機子1Aの寸法が増大することはないという利点
がある。
[0021] A feature of the linear synchronous machine is that at both ends, one has no outgoing coil conductor and the other has no incoming coil, so there are slots corresponding to approximately one pole pitch each into which only one coil conductor is inserted. . This can be seen in Figures 6 and 1.
Although this is ignored in FIG. 5, it is schematically shown in FIG. The above-mentioned inclination is provided by utilizing the presence of one slot 13A in which only one coil conductor is inserted at both ends of the armature core 11A. In this way, the armature core 11
By providing an inclined portion in A and adopting a configuration in which the air gap 15A between it and the field 2 gradually increases toward the outside, fluctuations in the propulsion force can be reduced in the same way as by providing the iron pieces 41 and 42 described above. can be reduced. In the case of this configuration, the dimension L of the armature core 11A in the moving direction is the same as that of the conventional armature core 11 shown in FIG. 6, so the advantage is that the dimension of the armature 1A does not increase due to the application of this invention. There is.

【0022】図5では歯14Aの界磁2側の先端も角度
θの傾斜で切り欠いた形状を示してあるが、切り欠きの
角度は零にして歯14Aの突出長さだけ外側程短くする
ことでも同じ効果を得ることができる。また、このよう
な傾斜部を設けた電機子鉄心11Aに図1の鉄片41,
42を設ける構成を採用することができる。この場合に
は電機子鉄心11Aの傾斜部と鉄片41,42の傾斜部
とが実質的に連続するように構成する。このように2つ
の実施例を併用することによって、コイル導体が1本挿
入されるスロットだけを利用すると必要とする傾斜部の
移動方向の長さAが確保できないときに、電機子の移動
方向の寸法の増大を小さくしてしかも傾斜部の寸法を確
保することができる。
FIG. 5 shows a shape in which the tip of the tooth 14A on the field 2 side is also notched at an angle θ, but the angle of the notch is zero and the length of the tooth 14A is shortened toward the outside by the protruding length. You can also get the same effect. In addition, the armature core 11A provided with such an inclined portion is provided with the iron piece 41 of FIG.
42 can be adopted. In this case, the inclined portion of the armature core 11A and the inclined portions of the iron pieces 41 and 42 are configured to be substantially continuous. By using these two embodiments together, when the required length A in the direction of movement of the inclined part cannot be secured by using only the slot into which one coil conductor is inserted, the length A in the direction of movement of the armature can be secured. The size of the inclined portion can be secured while reducing the increase in size.

【0023】なお、図1の初めの実施例では傾斜部を鉄
片41,42で構成したが、これの代わりに電機子鉄心
11の形状を鉄片41,42をも含む断面形状にして傾
斜部を電機子鉄心で構成することも可能である。この場
合も図5の傾斜部の構成との併用は可能である。このよ
うに鉄片を設けない構成による実施例では電機子鉄心の
形状が複雑になるが鉄片の取付けが不要になって電機子
鉄心を取り巻く周辺の構成が簡単になるという利点があ
る。
Note that in the first embodiment shown in FIG. 1, the inclined portion was constructed of the iron pieces 41 and 42, but instead of this, the shape of the armature core 11 is made to have a cross-sectional shape that also includes the iron pieces 41 and 42, and the inclined portion is made up of iron pieces 41 and 42. It is also possible to configure it with an armature core. In this case as well, it is possible to use the structure of the inclined portion shown in FIG. 5 together. In the embodiment in which no iron pieces are provided, the shape of the armature core becomes complicated, but there is an advantage that the installation of iron pieces becomes unnecessary and the surrounding structure surrounding the armature iron core becomes simpler.

【0024】[0024]

【発明の効果】この発明は前述のように、電機子鉄心の
両端部に、界磁との間の空隙寸法が外側に向かって所定
の角度で増大する傾斜部を設けることによって、電機子
鉄心の端部に発生する漏れ磁場による両端の電磁力の差
である推進力の変動分が減少するので、電機子が移動す
ることによる推進力の時間的変動、これによる速度の変
動が低下し、このリニア同期機を直線往復動シミュレー
タに使用した場合に乗員に与える不快感が低減し、荷物
を搬送する搬送装置に使用した場合には荷物の損傷の危
険性が低下するなどの効果が得られる。また、傾斜部を
鉄片で構成することにより、電機子鉄心の構成、寸法を
変更する必要がないとともに鉄片に安価な鋼材を使用す
ることができることからこの発明を適用する上での価格
の上昇を低減することができる。また、また、鉄片をL
字形断面にして、一方の辺を電機子鉄心の端面に取付け
ることによってボルト締めなどの方法で容易に取付けが
可能であり、他方の辺を界磁に対して傾斜を設けること
により傾斜部を容易に形成することができる。又は、電
機子鉄心の界磁に対向する側に並べて設けられている歯
の突出寸法を外側に近いほど小さくすることによって傾
斜部を形成することによって、電機子の移動方向寸法が
従来と同じにすることができる。また、電機子鉄心の両
端部を移動方向にそれぞれ突出させた形状とし、この突
出部で傾斜部を形成することにより鉄片を取付ける必要
がなくなる。更に、電機子鉄心の歯を切り欠いて形成す
る傾斜部と鉄片又は電機子鉄心の突出部が形成する傾斜
部とを実質的に1つの傾斜部を形成するように構成する
ことにより、必要とする傾斜部の移動方向寸法を確保し
てしかも電機子の移動方向寸法の増大を最小限にするこ
とができるという効果が得られる。
Effects of the Invention As described above, the present invention provides sloped portions at both ends of the armature core in which the gap size between the armature core and the field magnet increases at a predetermined angle toward the outside. The fluctuation in the propulsive force, which is the difference between the electromagnetic force at both ends due to the leakage magnetic field generated at the end of the armature, is reduced, so the temporal fluctuation in the propulsive force due to armature movement and the resulting speed fluctuation are reduced. When this linear synchronous machine is used in a linear reciprocating motion simulator, it reduces the discomfort caused to passengers, and when used in a transport device that transports cargo, it reduces the risk of damage to the cargo. . Furthermore, by constructing the inclined portion with a piece of iron, there is no need to change the configuration or dimensions of the armature core, and an inexpensive steel material can be used for the piece of iron, which reduces the cost increase when applying this invention. can be reduced. Also, the iron piece L
By making the cross section into a shape and attaching one side to the end face of the armature core, it can be easily installed using methods such as bolt tightening, and by making the other side inclined with respect to the field, it is easy to attach the inclined part. can be formed into Alternatively, the dimensions of the armature in the moving direction can be kept the same as before by forming an inclined part by making the protruding dimensions of the teeth arranged on the side facing the field of the armature core smaller toward the outside. can do. Furthermore, by forming both ends of the armature core in a shape that projects in the direction of movement, and forming an inclined part with the projecting parts, there is no need to attach iron pieces. Furthermore, by configuring the inclined part formed by cutting out the teeth of the armature core and the inclined part formed by the iron piece or the protruding part of the armature core to substantially form one inclined part, the necessary It is possible to secure the dimension of the inclined portion in the direction of movement, and to minimize the increase in the dimension of the armature in the direction of movement.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の実施例を示すリニア同期機の断面図
[Fig. 1] A cross-sectional view of a linear synchronous machine showing an embodiment of the present invention.

【図2】図1のリニア同期機の速度の時間変動を示すグ
ラフ
[Figure 2] Graph showing time fluctuations in speed of the linear synchronous machine in Figure 1

【図3】図1の電機子の左右端を拡大しその漏れ磁束分
布を追記した断面図
[Figure 3] Cross-sectional view of the left and right ends of the armature in Figure 1 enlarged and the leakage flux distribution added.

【図4】図1及び図6のリニア同期機の推進力の時間変
化の解析結果を示すグラフ
[Fig. 4] Graph showing the analysis results of temporal changes in the propulsive force of the linear synchronous machine shown in Figs. 1 and 6

【図5】この発明の別の実施例を示す電機子の断面図[Fig. 5] A sectional view of an armature showing another embodiment of the present invention.


図6】従来のリニア同期機の断面図
[
Figure 6: Cross-sectional view of a conventional linear synchronous machine

【図7】図6のA−A断面図[Figure 7] A-A sectional view in Figure 6

【図8】電機子の速度の時間変動の一例を示すグラフ[Figure 8] Graph showing an example of time variation in armature speed


図9】図6の電機子の左右端を拡大しその漏れ磁束分布
を追記した断面図
[
Figure 9: Cross-sectional view of the left and right ends of the armature in Figure 6, with the leakage flux distribution added.

【符号の説明】[Explanation of symbols]

1    電機子 11    電機子鉄心 11A  電機子鉄心 12    電機子巻線 13    スロット 13A  スロット 14    歯 14A  歯 15    空隙 15A  空隙 2    界磁 21    界磁鉄心 22    界磁巻線 23    界磁極 24    継鉄 41    鉄片 42    鉄片 1 Armature 11 Armature core 11A Armature core 12 Armature winding 13 Slot 13A slot 14 Teeth 14A Teeth 15   Void 15A void 2 Field magnet 21 Field core 22 Field winding 23 Field pole 24 Yoke 41 Iron piece 42 Iron piece

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】可動体に取付けられた電機子とこの電機子
と対向して固定して配置された界磁からなるリニア同期
機において、前記電機子の鉄心である電機子鉄心の移動
方向の前端と後端の両端部に、前記界磁との間の空隙寸
法が外側に向かって所定の角度で増大する傾斜部を設け
てなることを特徴とするリニア同期機。
Claims: 1. A linear synchronous machine comprising an armature attached to a movable body and a field fixedly disposed opposite to the armature, in which the direction of movement of the armature core, which is the core of the armature, is 1. A linear synchronous machine, characterized in that sloped portions are provided at both front and rear end portions, in which the gap size between the field and the magnetic field increases outwardly at a predetermined angle.
【請求項2】傾斜部が、界磁との間の空隙寸法が外側に
向かって増大する傾斜を持つ鉄片からなり、この鉄片を
電機子鉄心の両端面に取付けてなることを特徴とことを
特徴とする請求項1記載のリニア同期機。
[Claim 2] The inclined part is made of an iron piece having a slope in which the gap size between the field magnet and the magnetic field increases toward the outside, and the iron piece is attached to both end faces of the armature core. The linear synchronous machine according to claim 1, characterized in that:
【請求項3】鉄片がL字形の断面を持ち、L字の一方の
辺が電機子鉄心の移動方向の前端と後端の両端面に取付
けられ、他方の辺が界磁に対して傾斜が設けられてなる
ことを特徴とする請求項2記載のリニア同期機。
Claim 3: The iron piece has an L-shaped cross section, one side of the L shape is attached to both end faces of the front end and rear end in the moving direction of the armature core, and the other side is inclined with respect to the field. 3. The linear synchronous machine according to claim 2, further comprising a linear synchronous machine.
【請求項4】電機子鉄心の両端近傍が傾斜部を構成して
なり、前期電機子鉄心の界磁に対向する側に並べて設け
られている歯の突出寸法を外側に近いほど小さくしてな
る傾斜部を形成してなることを特徴とする請求項1記載
のリニア同期機。
[Claim 4] The armature core has inclined portions near both ends, and the protruding dimensions of the teeth arranged on the side facing the field of the armature core are made smaller toward the outside. 2. The linear synchronous machine according to claim 1, further comprising an inclined portion.
【請求項5】電機子鉄心の両端部が移動方向にそれぞれ
突出し、この突出部の界磁と対向する面が傾斜部を形成
してなることを特徴とする請求項1記載のリニア同期機
5. The linear synchronous machine according to claim 1, wherein both ends of the armature core protrude in the direction of movement, and a surface of the protrusion facing the field forms an inclined part.
【請求項6】歯を切り欠いて形成する傾斜部と、鉄片又
は電機子鉄心の突出部が形成する傾斜部とが実質的に1
つの傾斜部を形成してなることを特徴とする請求項2、
3又は5と、4とを併用してなることを特徴とする請求
項1記載のリニア同期機。
6. The inclined portion formed by cutting out the teeth and the inclined portion formed by the protruding portion of the iron piece or the armature core are substantially equal to each other.
Claim 2, characterized in that two inclined parts are formed.
2. The linear synchronous machine according to claim 1, wherein the linear synchronous machine comprises a combination of 3 or 5 and 4.
JP3764791A 1991-03-05 1991-03-05 Linear synchronous machine Pending JPH04281359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3764791A JPH04281359A (en) 1991-03-05 1991-03-05 Linear synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3764791A JPH04281359A (en) 1991-03-05 1991-03-05 Linear synchronous machine

Publications (1)

Publication Number Publication Date
JPH04281359A true JPH04281359A (en) 1992-10-06

Family

ID=12503446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3764791A Pending JPH04281359A (en) 1991-03-05 1991-03-05 Linear synchronous machine

Country Status (1)

Country Link
JP (1) JPH04281359A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001059A1 (en) * 1998-06-29 2000-01-06 Siemens Aktiengesellschaft Linear synchronous motor
WO2001080408A1 (en) * 2000-04-19 2001-10-25 Kabushiki Kaisha Yaskawa Denki Permanent magnet synchronous linear motor
JP2003518358A (en) * 1999-12-22 2003-06-03 エービービー アクチボラゲット Device with combustion engine, use of the device and vehicle
EP1507329A1 (en) * 2003-08-14 2005-02-16 Inventio Ag Electric motor, lift with a car moved with an electric motor and lift with a car and an electric motor for actuating a guide member relatively to the car
EP1511164A3 (en) * 2003-08-29 2005-12-07 Sanyo Denki Co., Ltd. Linear motor with reduced cogging force
FR2882868A1 (en) * 2005-03-02 2006-09-08 Ssd Parvex S A S Linear synchronous motor, has two end teeth with profiled surface having geometry defined by specific function, where each tooth has longitudinal section part forming constant air gap with inductor and another part having specific width
EP1921735A2 (en) * 2006-11-09 2008-05-14 Alois Jenny Iron-containing linear motor with reduced cogging and high power density
EP2149971A1 (en) 2008-07-29 2010-02-03 Siemens Aktiengesellschaft Rotating linear drive device with soft magnetic element for stabilising the rotor
US7768158B2 (en) * 2006-06-26 2010-08-03 Hitachi, Ltd. Cylindrical linear motor and a vehicle using the same
CN105071574A (en) * 2015-08-17 2015-11-18 成都茂源科技有限公司 High-speed polyphase electrically-excitated synchronous linear motor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001059A1 (en) * 1998-06-29 2000-01-06 Siemens Aktiengesellschaft Linear synchronous motor
US6713899B1 (en) 1998-06-29 2004-03-30 Siemens Aktiengesellschaft Linear synchronous motor
JP2003518358A (en) * 1999-12-22 2003-06-03 エービービー アクチボラゲット Device with combustion engine, use of the device and vehicle
WO2001080408A1 (en) * 2000-04-19 2001-10-25 Kabushiki Kaisha Yaskawa Denki Permanent magnet synchronous linear motor
US6831379B2 (en) 2000-04-19 2004-12-14 Kabushiki Kaisha Yaskawa Denki Permanent magnet synchronous linear motor
EP1507329A1 (en) * 2003-08-14 2005-02-16 Inventio Ag Electric motor, lift with a car moved with an electric motor and lift with a car and an electric motor for actuating a guide member relatively to the car
EP1511164A3 (en) * 2003-08-29 2005-12-07 Sanyo Denki Co., Ltd. Linear motor with reduced cogging force
FR2882868A1 (en) * 2005-03-02 2006-09-08 Ssd Parvex S A S Linear synchronous motor, has two end teeth with profiled surface having geometry defined by specific function, where each tooth has longitudinal section part forming constant air gap with inductor and another part having specific width
US7768158B2 (en) * 2006-06-26 2010-08-03 Hitachi, Ltd. Cylindrical linear motor and a vehicle using the same
EP1921735A2 (en) * 2006-11-09 2008-05-14 Alois Jenny Iron-containing linear motor with reduced cogging and high power density
EP1921735A3 (en) * 2006-11-09 2015-03-18 Alois Jenny Iron-containing linear motor with reduced cogging and high power density
EP2149971A1 (en) 2008-07-29 2010-02-03 Siemens Aktiengesellschaft Rotating linear drive device with soft magnetic element for stabilising the rotor
CN105071574A (en) * 2015-08-17 2015-11-18 成都茂源科技有限公司 High-speed polyphase electrically-excitated synchronous linear motor
CN105071574B (en) * 2015-08-17 2017-07-11 成都茂源科技有限公司 A kind of high speed multiphase electrical excitation linear synchronous motor

Similar Documents

Publication Publication Date Title
US8402899B2 (en) Magnetically levitated railway
KR101004511B1 (en) Magnetic suspension system
US6983701B2 (en) Suspending, guiding and propelling vehicles using magnetic forces
US7963228B2 (en) Magnetic suspension system with integrable propulsion
EP1198055B1 (en) Linear motor, driving and control system thereof and manufacturing method thereof
US5497038A (en) Linear motor propulsion drive coil
KR101137968B1 (en) Magnetically levitated system and magnetically levitated vehicle system using superconductor
JPH04281359A (en) Linear synchronous machine
US3850108A (en) Armature assembly and magnetically suspended vehicle
JP2005253259A (en) Linear electromagnetic actuator
JP3430770B2 (en) Door opening / closing linear motor
KR970707626A (en) A motor with motor parts which are relatively relative to one another,
JPH11313475A (en) Linear motor
JPH0614521A (en) Magnetic circuit
JPH10201216A (en) Linear motor
JP3147985B2 (en) Propulsion coil and method of mounting propulsion coil
JPH05236726A (en) Magnetic circuit
JPH0638501A (en) Magnetic circuit
JPH06217592A (en) Fixed point stop method for linear synchronous motor type vehicle
JPH0670533A (en) Linear motor
JPS6155338B2 (en)
JP2004289895A (en) Linear motor
JP3941460B2 (en) Pulse motor
JP2980344B2 (en) Track structure of magnetic levitation vehicle
JP2567013Y2 (en) Magnetic circuit for linear motor