JPH0638501A - Magnetic circuit - Google Patents

Magnetic circuit

Info

Publication number
JPH0638501A
JPH0638501A JP21221892A JP21221892A JPH0638501A JP H0638501 A JPH0638501 A JP H0638501A JP 21221892 A JP21221892 A JP 21221892A JP 21221892 A JP21221892 A JP 21221892A JP H0638501 A JPH0638501 A JP H0638501A
Authority
JP
Japan
Prior art keywords
vehicle
magnetic
yoke
magnet
magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21221892A
Other languages
Japanese (ja)
Inventor
Koichi Oda
光一 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP21221892A priority Critical patent/JPH0638501A/en
Publication of JPH0638501A publication Critical patent/JPH0638501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To improve the efficiency of a magnetic field by constituting this circuit so that the magnetic fluxes at the end of the magnet arranged inside a yoke may not disperse, in the magnetic circuit used for the on-vehicle field of a linear motor car, etc. CONSTITUTION:A longitudinal yoke 2 is attached to a vehicle, and permanent magnets 3 are arranged in two rows on the yoke 2 so that the adjacent magnetic poles may be different with each other and that the polarities of the different magnetic poles may be opposed to each other. And, a magnet 6 for magnetic reinforcement being magnetized in the same direction as the passage of the magnetic flux generated from adjacent magnets besides being the direction parallel with the shifting direction of a vehicle is arranged between each permanent magnet 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、台車方式のリニアモー
ターカーの車上界磁などに使用される磁気回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic circuit used for an on-vehicle field of a bogie type linear motor car.

【0002】[0002]

【従来の技術】従来、リニアモーターにより推進力を得
て走行するリニアモーターカーとしては、種々の方式の
ものが検討されているが、その一つとして、界磁用の永
久磁石を車両に配置し、地上に電機子コイルを配置した
リニア同期モーターを用いたものが知られている。この
方式は、主電力を供給する側を地上に置くので、車上の
機器が軽量化されるため、高速化に適している。この種
の技術として、例えば、「JREA 1991年 VO
L.34 No.1」、特開平2−307355号など
がある。
2. Description of the Related Art Conventionally, various types of linear motor cars have been studied as a linear motor car that travels by obtaining a propulsive force by a linear motor. One of them is to install a permanent magnet for a field on the vehicle. However, a linear synchronous motor using an armature coil arranged on the ground is known. In this system, the main power supply side is placed on the ground, which reduces the weight of equipment on the vehicle and is suitable for speeding up. Examples of this type of technology include, for example, "JREA 1991 VO
L. 34 No. 1 ", JP-A-2-307355, and the like.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、図
4に示すように、複数の永久磁石42が、ヨーク41の
内側に隣接する磁極が相互に異なるように、かつ異なる
磁極の極性が対向するように固着される。さらに、この
永久磁石42は、車両の移動方向(A)に直交する方向
に磁化されている。しかし、従来の磁極構成では、ヨー
ク41の内側に配置された各永久磁石42の端部の磁束
がばらついてしまうという問題があった。
In the above-mentioned prior art, as shown in FIG. 4, a plurality of permanent magnets 42 are arranged such that the magnetic poles adjacent to each other inside the yoke 41 are different from each other, and the polarities of the different magnetic poles are opposite to each other. To be fixed. Further, the permanent magnet 42 is magnetized in a direction orthogonal to the moving direction (A) of the vehicle. However, the conventional magnetic pole configuration has a problem that the magnetic flux at the end of each permanent magnet 42 arranged inside the yoke 41 varies.

【0004】そこで、本発明は、前記従来技術の問題点
に鑑みてなされたもので、その目的とするところは、ヨ
ークの内側に配置された磁石の端部の磁束がばらつかな
いようにして、磁界効率を向上させることにある。
Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and its object is to prevent the magnetic flux at the ends of the magnets arranged inside the yoke from varying. , To improve the magnetic field efficiency.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、車両に配置され、空間を介して対向す
る一対の平板部を有し、かつ車両の移動方向に長いヨー
クと、このヨークの、車両の移動方向に沿った長手方向
の内側に、隣接する磁極が相互に異なるように、かつ異
なる磁極の極性が対向するように固着されると共に、車
両の移動方向に直交する方向に磁化された複数の磁石と
を有する磁気回路において、上記ヨークの内側に固着さ
れた磁石相互間に、上記車両の移動方向に平行な方向で
あって、かつ隣接する磁石から発生された磁束の通過方
向と同じ方向に磁化された補極用磁石を配置した。
In order to achieve the above object, according to the present invention, a yoke disposed in a vehicle, having a pair of flat plate portions facing each other with a space therebetween, and having a long length in the moving direction of the vehicle, A direction perpendicular to the moving direction of the vehicle is fixed to the inside of the yoke in the longitudinal direction along the moving direction of the vehicle such that adjacent magnetic poles are different from each other and polarities of the different magnetic poles face each other. In a magnetic circuit having a plurality of magnets magnetized to each other, between the magnets fixed inside the yoke, a magnetic flux generated from an adjacent magnet in a direction parallel to the moving direction of the vehicle is generated. A magnet for commutating pole was magnetized in the same direction as the passing direction.

【0006】[0006]

【作用】本発明によれば、ヨークの内側に固着された磁
石相互間に、車両の移動方向に平行な方向であって、か
つ隣接する磁石から発生された磁束の通過方向と同じ方
向に磁化された補極用磁石を配置したので、界磁用磁石
の端部の磁束はばらつかない。さらに、ヨークが飽和す
ることなく、効率のよい磁束分布が得られる。
According to the present invention, the magnets fixed to the inside of the yoke are magnetized in the direction parallel to the moving direction of the vehicle and in the same direction as the passing direction of the magnetic flux generated from the adjacent magnets. The magnetic poles at the ends of the field magnets do not fluctuate because the supplementary pole magnets are arranged. Furthermore, an efficient magnetic flux distribution can be obtained without saturating the yoke.

【0007】[0007]

【実施例】本発明の実施例を図により説明する。図2
は、本発明が適用されるリニアモーターの断面を示す図
である。リニアモーターカー、電気自動車等の車両の床
面1の下には、ヨーク2が配置されている。このヨーク
2は、断面が下側開口の略コ字形で、かつ車両の移動方
向に長い高透磁率の鉄板等で形成されている。このヨー
ク2の車両の移動方向に沿った長手方向の内側に永久磁
石3が固着されている。永久磁石3は、車両の移動方向
に沿って複数個固着され、駆動源の界磁として用いられ
る。この永久磁石は、例えばR−Fe−B系磁石(R:
Nd,Pr等の希土類元素の1種以上)で形成される。
ヨーク2の形状は、コ字形に限られず、馬蹄形などの他
の形状であってもよい。
Embodiments of the present invention will be described with reference to the drawings. Figure 2
FIG. 3 is a diagram showing a cross section of a linear motor to which the present invention is applied. A yoke 2 is arranged below a floor surface 1 of a vehicle such as a linear motor car or an electric vehicle. The yoke 2 has a substantially U-shaped cross-section with a lower opening, and is formed of a high-permeability iron plate or the like that is long in the moving direction of the vehicle. A permanent magnet 3 is fixed to the inside of the yoke 2 in the longitudinal direction along the moving direction of the vehicle. A plurality of permanent magnets 3 are fixed along the moving direction of the vehicle and are used as a field of a drive source. This permanent magnet is, for example, an R-Fe-B system magnet (R:
One or more rare earth elements such as Nd and Pr).
The shape of the yoke 2 is not limited to the U-shape, but may be another shape such as a horseshoe shape.

【0008】両磁極間には、所定の間隙を有する磁気間
隙4が形成されている。この磁気間隙4に、地上の電機
子コイル5が配置されている。この永久磁石3と電機子
コイル5とでリニアモーターが構成され、車両は、この
リニアモーターによって得られた推進力により電機子コ
イル5に沿って走行する。
A magnetic gap 4 having a predetermined gap is formed between both magnetic poles. The ground armature coil 5 is arranged in the magnetic gap 4. The permanent magnet 3 and the armature coil 5 form a linear motor, and the vehicle travels along the armature coil 5 by the propulsive force obtained by the linear motor.

【0009】次に、本発明に係る磁気回路の構成を図1
により説明する。ヨーク2の車両の移動方向に沿った長
手方向の内側には、複数の永久磁石3が隣接する磁極が
相互に異なるように配置されている。さらに、対向する
永久磁石同士もその磁極は相互に異なっている。このよ
うな磁極構造の下で、相互に隣接する永久磁石同士で磁
束が分配される。そして、隣接する永久磁石3の間に
は、補磁用磁石6が配置されている。この補磁用磁石6
は、車両の移動方向(A)に平行な方向であって、かつ
隣接する永久磁石3から発生された磁束の通過方向と同
じ方向に磁化されている。
Next, the configuration of the magnetic circuit according to the present invention is shown in FIG.
Will be described. Inside the yoke 2 in the longitudinal direction along the moving direction of the vehicle, a plurality of permanent magnets 3 are arranged so that adjacent magnetic poles are different from each other. Further, the magnetic poles of the facing permanent magnets are different from each other. Under such a magnetic pole structure, magnetic flux is distributed between the permanent magnets adjacent to each other. A supplementary magnet 6 is arranged between the adjacent permanent magnets 3. This supplementary magnet 6
Is magnetized in a direction parallel to the moving direction (A) of the vehicle and in the same direction as the passing direction of the magnetic flux generated from the adjacent permanent magnet 3.

【0010】例えば、図1に示すように、永久磁石3a
と永久磁石3bとの間には補磁用磁石6aが配置され、
永久磁石3cと永久磁石3dとの間には補磁用磁石6b
が配置されている。そして、磁束は、図1の矢印Bで示
す方向に、永久磁石3a、永久磁石3c、補磁用磁石6
b、永久磁石3d、永久磁石3b、補磁用磁石6aの順
に通過する。この結果、永久磁石3の端部の磁束はばら
つかない。これにより、ヨーク2が飽和することなく効
率のよい磁束分布が得られる。
For example, as shown in FIG. 1, the permanent magnet 3a
And a permanent magnet 3b between which a magnet 6a for compensating magnetism is arranged,
A magnet 6b for compensating magnetism is provided between the permanent magnets 3c and 3d.
Are arranged. Then, the magnetic flux is generated in the direction indicated by the arrow B in FIG. 1 in the permanent magnet 3a, the permanent magnet 3c, and the supplementary magnet 6
b, the permanent magnet 3d, the permanent magnet 3b, and the supplementary magnet 6a. As a result, the magnetic flux at the end of the permanent magnet 3 does not vary. As a result, an efficient magnetic flux distribution can be obtained without the yoke 2 being saturated.

【0011】最後に、本発明によって得られた空隙磁束
密度分布と従来技術で得られた空隙磁束密度分布とを対
比したものを図3に示す。図3の測定結果では、永久磁
石としてR−Fe−B系永久磁石(日立金属製HS37
BH)を使用し、磁石とヨークの寸法としてマグネット
200×140×80(mm)、ギャップ85mm、ヨ
ーク厚40mmとした。波形aが本発明によって得られ
た空隙磁束密度分布であり、波形bが従来技術(図4)
によって得られた空隙磁束密度分布である。図3から明
らかなように、本発明によって得られた空隙磁束密度
(a)は従来技術の空隙磁束密度(b)より大きい。し
たがって、本発明によれば、磁界効率を大幅に向上させ
ることができる。
Finally, FIG. 3 shows a comparison between the air gap magnetic flux density distribution obtained by the present invention and the air gap magnetic flux density distribution obtained by the prior art. In the measurement result of FIG. 3, the R-Fe-B system permanent magnet (Hitachi Metals HS37
BH) was used, and the dimensions of the magnet and the yoke were magnet 200 × 140 × 80 (mm), gap 85 mm, and yoke thickness 40 mm. Waveform a is the air gap magnetic flux density distribution obtained by the present invention, and waveform b is the prior art (FIG. 4).
It is the air gap magnetic flux density distribution obtained by. As is apparent from FIG. 3, the air gap magnetic flux density (a) obtained by the present invention is higher than the air gap magnetic flux density (b) of the prior art. Therefore, according to the present invention, the magnetic field efficiency can be significantly improved.

【0012】[0012]

【発明の効果】本発明によれば、ヨークの内側に固着さ
れた磁石相互間に、車両の移動方向に平行な方向であっ
て、かつ隣接する磁石から発生された磁束の通過方向と
同じ方向に磁化された補極用磁石を配置したので、界磁
用磁石の端部の磁束はばらつかない。さらに、ヨークが
飽和することなく、効率のよい磁束分布が得られる。
According to the present invention, between the magnets fixed to the inside of the yoke, the direction parallel to the moving direction of the vehicle and the same as the passing direction of the magnetic flux generated from the adjacent magnets. Since the magnet for the commutating pole is arranged at the end, the magnetic flux at the end of the field magnet does not vary. Furthermore, an efficient magnetic flux distribution can be obtained without saturating the yoke.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る磁気回路の構成を示す図である。FIG. 1 is a diagram showing a configuration of a magnetic circuit according to the present invention.

【図2】本発明が適用されるリニアモーターの断面を示
す図である。
FIG. 2 is a diagram showing a cross section of a linear motor to which the present invention is applied.

【図3】本発明により得られた空隙磁束密度分布と従来
技術の空隙磁束密度分布とを対比した図である。
FIG. 3 is a diagram comparing the air gap magnetic flux density distribution obtained by the present invention with the air gap magnetic flux density distribution of the prior art.

【図4】従来の磁気回路の構成を示す図である。FIG. 4 is a diagram showing a configuration of a conventional magnetic circuit.

【符号の説明】[Explanation of symbols]

2 ヨーク 3 永久磁石 5 電機子コイル 6 補磁用磁石 2 Yoke 3 Permanent magnet 5 Armature coil 6 Magnet for magnetizing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車両に配置され、空間を介して対向する
一対の平板部を有し、かつ車両の移動方向に長いヨーク
と、このヨークの、車両の移動方向に沿った長手方向の
内側に、隣接する磁極が相互に異なるように、かつ異な
る磁極の極性が対向するように固着されると共に、車両
の移動方向に直交する方向に磁化された複数の磁石とを
有する磁気回路において、上記ヨークの内側に固着され
た磁石相互間に、上記車両の移動方向に平行な方向であ
って、かつ隣接する磁石から発生された磁束の通過方向
と同じ方向に磁化された補極用磁石を配置したことを特
徴とする磁気回路。
1. A yoke arranged in a vehicle, having a pair of flat plate portions facing each other across a space and long in a moving direction of the vehicle, and an inner side of the yoke in a longitudinal direction along the moving direction of the vehicle. A magnetic circuit having a plurality of magnets which are fixed so that adjacent magnetic poles are different from each other, and polarities of different magnetic poles face each other, and are magnetized in a direction orthogonal to a moving direction of the vehicle. Between the magnets fixed inside the magnets, a magnet for commutating poles, which is magnetized in the direction parallel to the moving direction of the vehicle and in the same direction as the passing direction of the magnetic flux generated from the adjacent magnets, is arranged. A magnetic circuit characterized by that.
JP21221892A 1992-07-16 1992-07-16 Magnetic circuit Pending JPH0638501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21221892A JPH0638501A (en) 1992-07-16 1992-07-16 Magnetic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21221892A JPH0638501A (en) 1992-07-16 1992-07-16 Magnetic circuit

Publications (1)

Publication Number Publication Date
JPH0638501A true JPH0638501A (en) 1994-02-10

Family

ID=16618900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21221892A Pending JPH0638501A (en) 1992-07-16 1992-07-16 Magnetic circuit

Country Status (1)

Country Link
JP (1) JPH0638501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313551B1 (en) 2000-02-04 2001-11-06 Nikon Corporation Magnet array for a shaft-type linear motor
JP2003032996A (en) * 2001-07-18 2003-01-31 Hitachi Metals Ltd Linear motor and assembling method therefor
WO2006035835A1 (en) * 2004-09-29 2006-04-06 Nikon Corporation Magnetic field generation device, electromagnetic actuator, stage device, exposure device, and device manufacturing method
JP2007537690A (en) * 2004-05-12 2007-12-20 デクスター・マグネティック・テクノロジーズ・インコーポレーテッド High electric field voice coil motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313551B1 (en) 2000-02-04 2001-11-06 Nikon Corporation Magnet array for a shaft-type linear motor
JP2003032996A (en) * 2001-07-18 2003-01-31 Hitachi Metals Ltd Linear motor and assembling method therefor
JP2007537690A (en) * 2004-05-12 2007-12-20 デクスター・マグネティック・テクノロジーズ・インコーポレーテッド High electric field voice coil motor
JP4909891B2 (en) * 2004-05-12 2012-04-04 デクスター・マグネティック・テクノロジーズ・インコーポレーテッド High electric field voice coil motor
WO2006035835A1 (en) * 2004-09-29 2006-04-06 Nikon Corporation Magnetic field generation device, electromagnetic actuator, stage device, exposure device, and device manufacturing method
JPWO2006035835A1 (en) * 2004-09-29 2008-05-15 株式会社ニコン Magnetic field generating apparatus, electromagnetic actuator, stage apparatus, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
US6236125B1 (en) Linear actuator
EP0744757A1 (en) D.c. reactor
US7686597B2 (en) Linear drive device provided with an armature body having a magnet carrier
JP2000037070A (en) Linear motor
US3741613A (en) Electromagnetic levitation guide
IE43265B1 (en) Rare earth permanent magnet rotor for dynamo electric machines and method of manufacturing same
US3967561A (en) Linear-induction motor especially for high-speed suspension vehicles
US4243903A (en) Permanent magnet stator for a DC dynamo electric machine using blocking magnets
JPH0638501A (en) Magnetic circuit
CN109698600B (en) Linear motor with auxiliary weak magnetic structure
JPH0638502A (en) Magnetic circuit
JP2567013Y2 (en) Magnetic circuit for linear motor
JP2001008432A (en) Linear motor
JPH0614521A (en) Magnetic circuit
JP2002034230A (en) Armature of linear motor
JP3664271B2 (en) Multipolar magnetizing yoke
JP3056883B2 (en) Magnetic field generator for MRI
JPH0670533A (en) Linear motor
JP3750127B2 (en) Voice coil linear motor
JPH051990Y2 (en)
JP2000341930A (en) Linear motor utilizing permanent magnet
JPH0436209Y2 (en)
JP3150196B2 (en) Magnetic field generator for MRI
JPH0833304A (en) Voice coil type linear motor
JPS6241583Y2 (en)