JPH0423989A - Carbon material for supporting microorganism - Google Patents

Carbon material for supporting microorganism

Info

Publication number
JPH0423989A
JPH0423989A JP12828190A JP12828190A JPH0423989A JP H0423989 A JPH0423989 A JP H0423989A JP 12828190 A JP12828190 A JP 12828190A JP 12828190 A JP12828190 A JP 12828190A JP H0423989 A JPH0423989 A JP H0423989A
Authority
JP
Japan
Prior art keywords
microorganisms
carbon material
carbon
soil
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12828190A
Other languages
Japanese (ja)
Inventor
Chizuhiro Shiraishi
白石 千鶴浩
Masaru Kanehara
金原 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP12828190A priority Critical patent/JPH0423989A/en
Publication of JPH0423989A publication Critical patent/JPH0423989A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carbon material having high granular strength to prevent easy collapse and useful as a carrier for microorganisms by carbonizing vegetable powder in such a manner as to form a specific porous texture having a specific pore characteristics. CONSTITUTION:Vegetable powder such as sawdust or powder of thinnings is granulated by rotating in the presence of an aqueous solution of a binder produced by dissolving a polysaccharide such as lignin in water and the granules are subjected to drying treatment and baking and carbonizing treatment to obtain the objective carbon material for supporting microorganisms. The carbon material has unique porous texture characterized by a hard carbon film covering a soft porous carbon grain skeleton produced by the carbonization of the vegetable powder. The volume of pores having pore diameter of 1-l00mum is >=1.5 cc/g, the bulk density is <=0.25 g/cc and the specific surface area (measured by nitrogen adsorption) is >=200 m<2>/g. The high-performance carbon material produced by this process has high porosity, specific surface area and granular strength to prevent easy collapse and is useful as a carrier for microorganisms.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、土壌改良あるいは水処理用として効用性に優
れる微生物担持用炭材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a carbon material for supporting microorganisms that is highly effective for soil improvement or water treatment.

〔従来の技術〕[Conventional technology]

土壌環境は植物の成育に大きな影響を及ぼすが、特に根
圏における成育は植物根、土壌微生物および土壌の相互
作用により支配されるため、土壌環境の役割は重要とな
る。
The soil environment has a major influence on plant growth, and the role of the soil environment is especially important because growth in the rhizosphere is controlled by interactions between plant roots, soil microorganisms, and soil.

種物の成育にとって良い土壌環境の要件としては、適度
の保水性と通気性があること、保肥力があること、有用
な土壌微生物が存在すること、等が挙げられる。このう
ち土壌微生物については有害なものも存在するため、そ
のバランスが崩しテ有害微生物の繁殖が増大すると植物
に病害が発生する。したがって、薬剖散布による有害微
生物の除去がおこなわれるが、この方法によって有害微
生物のみを選択的に除去することは難しいうえ、薬害に
よる環境破壊などの問題を派生させる原因となる。
Requirements for a soil environment that is good for the growth of seeds include adequate water retention and air permeability, the ability to retain fertilizer, and the presence of useful soil microorganisms. Among these soil microorganisms, there are some that are harmful, so if the balance is disrupted and the proliferation of harmful microorganisms increases, diseases will occur in plants. Therefore, harmful microorganisms are removed by pharmacological spraying, but it is difficult to selectively remove only harmful microorganisms by this method, and it also causes problems such as environmental destruction due to chemical damage.

このような背景から、近時、古来から土壌改良手段とし
て活用されてきた焼き畑農業、とくに焼き畑作業後に残
留する炭の効用化が再注目されている。この理由は、前
記の炭が本来的に有している優れた通水性や保水性が微
生物の生育に適しており、また有機物が含まれていない
関係で腐生性の微生物や病原微生物が侵入せず、アルカ
リ性であるためカビの発生も抑制されるといった多様の
効能があるからである。
Against this background, recently, slash-and-burn agriculture, which has been used as a soil improvement method since ancient times, has been attracting renewed attention, especially the use of charcoal that remains after slash-and-burn farming. The reason for this is that the above-mentioned charcoal's inherently excellent water permeability and water retention properties are suitable for the growth of microorganisms, and because it does not contain organic matter, saprophytic microorganisms and pathogenic microorganisms cannot invade. First, because it is alkaline, it has a variety of effects, such as suppressing the growth of mold.

従来、土壌改良を目的とする炭素材料としては木炭、ノ
コ屑炭、樹皮炭、椰子殻皮、藁炭、籾殻燻炭などが一般
的なものとして知られており、土壌中において根粒菌、
VA菌根菌などの共生微生物を増殖させる働きをすると
みられている。炭化物が存在すると、これら菌類の感染
率と胞子形成量が多−くなり、リン成分などの吸収力が
増して作物の生育を促進するという見方もある。
Conventionally, charcoal, sawdust charcoal, bark charcoal, coconut husk charcoal, straw charcoal, and rice husk smoked charcoal have been known as carbon materials for the purpose of soil improvement.
It is thought to work to promote the growth of symbiotic microorganisms such as VA mycorrhizal fungi. Some believe that the presence of char increases the infection rate and spore formation of these fungi, increases their ability to absorb phosphorus, and promotes crop growth.

最近の研究では、土中に混入した炭材には最初に空中窒
素固定菌や光合成をするらん藻などの独立栄養微生物が
入り込み、ついで競争に強い共生微生物が入り、酸素を
要求する根が炭中で増えるとそれに共生して根粒菌やV
A菌の増殖する関係にあるとされている〔「農業技術」
第41巻(9)、p400〜405(1986) ) 
Recent research has shown that autotrophic microorganisms such as aerial nitrogen-fixing bacteria and photosynthetic cyanobacteria first enter carbonaceous materials mixed into the soil, and then commensal microorganisms that are strong in competition enter, and roots that require oxygen become charcoal. When it increases inside, rhizobia and V. coexist with it.
It is said to be related to the proliferation of Bacterium A ["Agricultural technology"]
Volume 41 (9), p400-405 (1986))
.

他方、水の浄化法には膜処理法と生物学的処理法とがあ
り、これら両者の組合わせによる効率的な処理の条件が
検討されている。このうちの生物学的処理法とは、微生
物による有機物質の分解を介して汚水の浄化を進める機
構のものであって、ここでも微生物の活性を高める支持
体材料が当然必要となる。最近の研究報告によると、嫌
気性微生物の支持体を対象に各種の材料について検討し
たところ、直径lO〜30μ−の気孔をもつ多孔質炭素
材料が最も固定微生物量が多かったとの結果が得られて
いる。
On the other hand, water purification methods include membrane treatment methods and biological treatment methods, and conditions for efficient treatment by combining these two methods are being studied. Among these, the biological treatment method is a mechanism that promotes purification of wastewater through the decomposition of organic substances by microorganisms, and a support material that enhances the activity of the microorganisms is naturally required here as well. According to a recent research report, when various materials were examined as supports for anaerobic microorganisms, it was found that porous carbon materials with pores of 10 to 30 μ- in diameter had the highest amount of immobilized microorganisms. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に土壌あるいは水中に存在する微生物(細菌)の大
きさは約0.5〜10μ−であって、生息にはその大き
さの10倍程度の孔を好むとも言われている。したがっ
て、微生物担持体としては、1〜100μm範囲の気孔
を多くもつ高比表面積で低密度多孔質組織の炭素材料が
最も適していることになる。また、土壌改良および水処
理の目的には粒状であることが好適であり、性状として
内部骨格が軟質な多孔組織であって且つ外殻は破壊抵抗
性のある組織形態が理想的なものとなる。
Generally, the size of microorganisms (bacteria) existing in soil or water is about 0.5 to 10 μm, and it is said that they prefer to live in pores about 10 times that size. Therefore, as a microbial carrier, a carbon material having a high specific surface area and a low density porous structure having many pores in the range of 1 to 100 μm is most suitable. In addition, for the purpose of soil improvement and water treatment, it is preferable to have a granular form, and the ideal structure is one in which the internal skeleton is a soft porous structure and the outer shell is resistant to fracture. .

しかしながら、従来の多孔質炭素材を製造する技術で上
記の特性・性状を満足するものは見当らない。すなわち
、ノコ屑、藁などを低温度で炭化すると軟質の多孔質組
織を形成することができるが、骨格が崩れ易いため複雑
なボアが容易に消失していまう欠点がある。この点、籾
殻や揶子殻を炭化したものは比較的硬い炭素体に転化す
るが、ボアが微細過ぎて有効な機能特性が付与されない
難点がある。また、前記のような植物系物質の粉末ある
いはこれを炭化した粉末を原料とし、タール、ピッチ等
のバインダーを用いて成形したのち炭化する方法も知ら
れているが、この方法の場合にはバインダー成分が骨格
内部に残留した状態で炭化するためボアを閉塞化する問
題点がある。
However, none of the conventional porous carbon material manufacturing techniques has been found that satisfies the above characteristics and properties. That is, when sawdust, straw, etc. are carbonized at low temperatures, a soft porous structure can be formed, but this has the disadvantage that the skeleton easily collapses and complex bores easily disappear. In this regard, carbonized rice husks and corn husks are converted into relatively hard carbon bodies, but the problem is that the bores are too small to impart effective functional properties. There is also a known method in which the above-mentioned plant-based material powder or carbonized powder is used as a raw material, molded using a binder such as tar or pitch, and then carbonized. There is a problem in that the components remain inside the skeleton and carbonize, which causes the bore to become clogged.

土壌改良効果をもたせる微生物担持体としては、木チッ
プまたはバルブスラッジを炭化したものが知られている
が、組織の細孔径がやや小さいほか細孔容積も十分では
ない、このほかに、石炭、ピッチコークスのような鉱物
系の土壌改良炭素材が商品化された例もあるが、見掛は
比重が0.7g/ccと高密度で硬質なタイプであり、
性状的に好ましくない。
Carbonized wood chips or bulb sludge are known as microbial carriers that have a soil improvement effect, but the pore size of the structure is rather small and the pore volume is not sufficient. There are examples of mineral-based soil improvement carbon materials such as coke being commercialized, but they appear to be high-density and hard types with a specific gravity of 0.7 g/cc.
Unfavorable in terms of properties.

水処理分野では担持体として主に活性炭が使用されてい
るが、ミクロ的な孔が多くて微生物担持用には効率面で
十分な結果は得られない。
Activated carbon is mainly used as a carrier in the water treatment field, but it has many microscopic pores and cannot achieve sufficient efficiency for supporting microorganisms.

本発明は、微生物が付着生息するに最適な細孔径と十分
な細孔容積をもち、容易に崩壊することのない粒強度を
備える微生物担持用炭材の提供を目的としている。
An object of the present invention is to provide a carbon material for supporting microorganisms that has an optimal pore diameter and sufficient pore volume for microorganisms to adhere to and live in, and has particle strength that does not easily disintegrate.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するための本発明による微生物担持用
炭材は、植物系粉末を炭化した軟質多孔組織の炭素粒骨
格が硬質炭素膜で被覆された多孔質組織形態を備え、気
孔径1〜100μm範囲における細孔容積が1.5cc
/g以上の多孔特性を有することを構成上の特徴とする
ものである。
In order to achieve the above object, the carbon material for supporting microorganisms according to the present invention has a porous structure in which a carbon particle skeleton of a soft porous structure obtained by carbonizing plant-based powder is covered with a hard carbon film, and has a pore size of 1 to 1. Pore volume in 100μm range is 1.5cc
The structural feature is that it has a porosity of /g or more.

本発明の目的には、上記の要件に加え嵩密度が0.25
g/cc以下、窒素吸着比表面積が200g+”/g以
上の特性範囲を付与することが好ましい。
For purposes of the present invention, in addition to the above requirements, a bulk density of 0.25
It is preferable to provide a characteristic range in which the nitrogen adsorption specific surface area is 200 g+''/g or more.

炭材組織の特性が、気孔径1−100 μm範囲におけ
る細孔容積が1.5cc/g未満であり、更に前記の嵩
密度および窒素吸着比表面積の要件を外れる場合には、
微生物の担持機能が減退して十分な効果が期待できなく
なる。
When the characteristics of the carbonaceous structure are such that the pore volume in the pore diameter range of 1 to 100 μm is less than 1.5 cc/g, and the bulk density and nitrogen adsorption specific surface area do not meet the above requirements,
The ability to carry microorganisms is reduced and sufficient effects cannot be expected.

このような組織性状を備える本発明の微生物担持用炭材
は、植物系粉末を特定のバインダー水溶液で造粒・乾燥
したのち焼成炭化するプロセスによって製造することが
できる。
The carbon material for supporting microorganisms of the present invention having such a structure can be produced by a process of granulating and drying a plant-based powder with a specific binder aqueous solution, and then firing and carbonizing the granulated powder.

植物系粉末には、例えばノコ屑、間伐材、籾殻、樹皮、
バルブチップ、竹等を粉砕したもので、粉末粒度が50
0μ−以下で全体の60%以上が300μmの篩目をバ
スする程度に微粉化して用いられる。
Examples of plant-based powders include sawdust, thinned wood, rice husks, bark,
Pulverized valve chips, bamboo, etc. with a powder particle size of 50
It is used after being pulverized to the extent that it has a particle size of 0 μm or less and 60% or more of the total can pass through a 300 μm sieve.

該植物系粉末は、焼成炭化処理によって軟質多孔組織を
構成する炭素粒骨格原料となる。
The plant-based powder becomes a carbon grain skeleton raw material constituting a soft porous structure by firing and carbonizing.

バインダー成分としては、リグニン、水溶性澱粉などの
多II類が用いられ、単独もしくは混合物を水に溶解し
た水溶液状態で使用に供される。これらのバインダー成
分は植物系粉末に対して馴染みが良くない関係で、造粒
後の乾燥過程で粒の骨格内部から表面層に移行する作用
を営み、引き続く焼成段階でそのままの形態で炭化固定
されるから植物系粉末の炭化による軟質多孔組織の炭素
粒骨格を被覆する形態の炭素膜として形成される。
As the binder component, polyol group II such as lignin and water-soluble starch are used, and they are used alone or in the form of an aqueous solution in which a mixture is dissolved in water. These binder components are not compatible with vegetable powders, and during the drying process after granulation, they migrate from the inside of the grain skeleton to the surface layer, and are carbonized and fixed in that form during the subsequent firing step. Therefore, it is formed as a carbon film that covers the carbon grain skeleton of a soft porous structure by carbonizing plant-based powder.

バインダー水溶液の添加量は、植物系粉末100重量部
に対しバインダー成分として60重量部以下に設定する
ことが好適で、60重量部を上履る添加量とすると乾燥
時におけるバインダー成分の表面層への移行が不充分と
なり、結果的に硬粒、高密度の炭素粒となり、十分な細
孔容積の組織を形成することができなくなる。
The amount of the binder aqueous solution added is preferably set to 60 parts by weight or less as a binder component per 100 parts by weight of the plant-based powder, and if the amount added is 60 parts by weight, the binder component will be added to the surface layer during drying. migration becomes insufficient, resulting in hard grains and high-density carbon grains, making it impossible to form a structure with sufficient pore volume.

造粒化は、植物系粉末とバインダー水溶液を攪拌造粒機
に投入し、回転運動を与えることによっておこなわれる
。造粒機としては、カーボンブラックの湿式造粒に常用
されているようなビン型タイプのものが量産に適してい
る。
Granulation is performed by putting the vegetable powder and binder aqueous solution into a stirring granulator and applying rotational motion. As a granulator, a bottle-type one commonly used for wet granulation of carbon black is suitable for mass production.

造粒物の乾燥処理は、50〜300℃の温度に保持され
た回転ドラムに造粒物を入れて転勤させながらおこなう
ことがバインダー成分の粒表面移行を効率的に進めるた
めに有効である。
It is effective to carry out the drying treatment of the granulated material while placing the granulated material in a rotating drum maintained at a temperature of 50 to 300 DEG C. and transferring the granulated material to the surface of the granulated material in order to efficiently transfer the binder component to the surface of the granulated material.

焼成炭化処理には、静置炭化法、流動炭化法のいずれの
方法を適用することができ、焼成には厳密な昇温速度の
制御は必要ない。炭化温度は、付与するアルカリ度、比
表面積などを考慮して設定されるが、通常は1000°
C以下、700〜800°C近傍の温度域が主に用いら
れる。
Either a static carbonization method or a fluidized carbonization method can be applied to the firing carbonization treatment, and strict control of the temperature increase rate is not required for firing. The carbonization temperature is set taking into consideration the alkalinity to be imparted, specific surface area, etc., but is usually 1000°.
A temperature range of 700 to 800° C. or below is mainly used.

〔作 用〕 本発明による微生物担持用炭材は、植物系粉末が炭化し
た軟質多孔組織の炭素粒骨格が硬質の炭素膜により被覆
された独特の多孔質組織形態を備え、気孔径1〜100
μm範囲における細孔容積が1.5cc/g以上の多孔
特性を有している。
[Function] The carbon material for supporting microorganisms according to the present invention has a unique porous structure in which a soft porous carbon particle skeleton made of carbonized plant-based powder is covered with a hard carbon film, and has a pore size of 1 to 100.
It has porous characteristics with a pore volume in the μm range of 1.5 cc/g or more.

したがって、土壌改良を目的とした微生物担持材として
供する場合には、微生物の付着担持が効果的に進行する
とともに、その高い比表面積ならびに高空陳率の多孔質
骨格組織が酸素(空気)の保持および保水機能を支える
ために有効機能する。
Therefore, when used as a microorganism support material for the purpose of soil improvement, the adhesion and support of microorganisms progresses effectively, and its porous skeletal structure with a high specific surface area and high void ratio retains oxygen (air) and It functions effectively to support water retention function.

そのうえ、弱アルカリ性で有機物が介在しない組織は、
カビの発生、馬体性微生物や病原微生物等の侵入を阻止
する作用をなし、有用微生物のみの吸着、担持に有効に
寄与する。
Moreover, tissues that are weakly alkaline and do not contain organic matter,
It acts to prevent the growth of mold and the invasion of body microorganisms and pathogenic microorganisms, and effectively contributes to the adsorption and retention of only useful microorganisms.

更に、粒表面が硬質な炭素膜によるシェル構造を形成し
ているため、流動性、土中混入時の空隙性(通気性)f
!保、土の団粒化促進などに作用する。
Furthermore, since the grain surface forms a shell structure with a hard carbon film, it improves fluidity and porosity (air permeability) when mixed into soil.
! It acts to protect the soil and promote soil agglomeration.

一方、水処理目的の微生物担持体として使用する場合に
も、上記と同様の作用を介して微生物の効果的な吸着、
担持が進行する。
On the other hand, when used as a microbial carrier for water treatment, it can effectively adsorb microorganisms through the same action as above.
Carrying progresses.

〔実施例] 以下、本発明を実施例に基づいて説明する。〔Example] Hereinafter, the present invention will be explained based on examples.

実施例1 (1)微生物担持用炭材の製造 杉材のノコ屑を自由粉砕機〔■奈良機械製作所製、M−
3型]を用いて微粉砕し、0.3w園ラフイルター過分
を採取した。この粉末にリグニンまたは/および澱粉の
水溶液をバインダー成分として条件を変えて添加しビン
型造粒機により造粒処理をおこなった。この場合、バイ
ンダー成分に用いたリグニンにはリグニンスルホン酸カ
ルシウム〔山陽国策パルプ■製、“サンエキスC”〕を
用い、澱粉には水溶性澱粉[関東化学■製、鹿1級〕を
用いた。造粒物を130’Cの温度で転勤乾燥をおこな
ったのち、焼成温度を変えて炭化処理し、表1に示す特
性の微生物担持用炭材を得た。
Example 1 (1) Production of carbonaceous material for supporting microorganisms Free grinding machine for cedar wood sawdust [M-, manufactured by Nara Kikai Seisakusho Co., Ltd.
3 type] and a 0.3w Sono Rough Filter fraction was collected. An aqueous solution of lignin and/or starch was added as a binder component to this powder under different conditions, and granulation was performed using a bottle-type granulator. In this case, calcium lignin sulfonate (manufactured by Sanyo Kokusaku Pulp ■, "Sun Extract C") was used as the lignin used as the binder component, and water-soluble starch (Kanto Kagaku ■, Shika 1 grade) was used as the starch. . The granules were transferred and dried at a temperature of 130'C, and then carbonized at different firing temperatures to obtain carbon materials for supporting microorganisms having the characteristics shown in Table 1.

なお、RUN No、3は乾燥処理を静置乾燥した以外
はRUN No、1と同一の条件で製造したものである
Note that RUN No. 3 was manufactured under the same conditions as RUN No. 1, except that the drying treatment was performed by standing and drying.

表1 (表注)(1)粒径3−蒙の粒破砕強度。Table 1 (Table note) (1) Particle crushing strength of particle size 3-mm.

(2)気孔径1〜100μ蒙範囲の細孔容積。(2) Pore volume with pore diameter in the range of 1 to 100 μm.

(2)微生物担持評価 RUN No、1〜4の微生物担持用炭材(各8kg)
をお茶の木の根元に土壌に対する体積比が約5%になる
ように散布混入した。半年後に散布した微生物担持用炭
材を拾い集め、次の方法により含有する土壌菌密度を測
定した。なお、比較のために周囲の土壌を採取して同様
に菌密度を測定した。
(2) Microbial support evaluation RUN No. 1 to 4 carbon materials for supporting microorganisms (8 kg each)
The mixture was sprayed and mixed into the roots of tea plants at a volume ratio of about 5% to the soil. After half a year, the sprayed carbonaceous material for supporting microorganisms was collected and the density of soil bacteria contained therein was measured using the following method. For comparison, surrounding soil was collected and the bacterial density was measured in the same manner.

微生物担持用炭材および土壌各0.5gを滅菌水lOi
中に分散懸濁し、30分間放置したのちその上澄液を適
度に希釈した。これを寒天平板培地〔田水製薬■製、普
通寒天培地〕上に塗抹し、数日間培養して出現したコロ
ニー数から微生物担持炭材および土壌中に含まれる土壌
菌密度を測定した。
0.5g each of carbon material and soil for supporting microorganisms in 1Oi of sterilized water
After dispersing and suspending the mixture in the solution, the mixture was left to stand for 30 minutes, and the supernatant liquid was diluted appropriately. This was spread on an agar plate medium (manufactured by Tasumi Seiyaku ■, ordinary agar medium) and cultured for several days. From the number of colonies that appeared, the density of soil bacteria contained in the microorganism-supported carbonaceous material and the soil was measured.

得られた結果を表2に示した。The results obtained are shown in Table 2.

表2の結果から、REIN No、1〜3の微生物担持
用炭材は土壌に比べて1g中に含有される生菌数が遥か
に多いことが確認されたが、気孔径1〜100μ■範囲
の細孔容積が1.5cc/g未満のRUN No、4は
菌含有数が減少し、微生物担持性能が不十分であった。
From the results in Table 2, it was confirmed that the number of viable bacteria contained in 1 g of REIN No. 1 to 3 microorganism-carrying carbon materials was much higher than that of soil, but the pore size ranged from 1 to 100μ■. In RUN No. 4, in which the pore volume was less than 1.5 cc/g, the number of bacteria contained decreased and the microorganism supporting performance was insufficient.

表 実施例2 実施例1により製造したRun no、1の微生物担持
用炭材および土壌0.5gを空中窒素固定菌分離用液体
培地(グルコースLog、にzHPOa Ig、  M
g5Oa・7t(zo 0.2g、 CaCO5Ig、
NaCl 0.2g、 NagMoOa  H28zO
0゜005g、蒸留水1000 d、  pH7,3)
 60 af中に接種し、6時間室温で振聾培養したの
ち各培養液を適度に希釈した。該培養液を空中窒素固定
菌分離用固体培地(前記の空中窒素固定菌分離用液体培
地に細菌用寒天を1.5wt/volχ加えて作製)上
に塗抹して室温にて数日間培養し、出現したコロニー数
から微生物担持用炭材および土壌に含まれる空中窒素固
定菌密度を測定した。
Table Example 2 0.5 g of microorganism-carrying carbonaceous material and soil of Run no. 1 produced in Example 1 were added to a liquid medium for isolating nitrogen-fixing bacteria in the air (glucose Log, zHPOa Ig, M
g5Oa・7t (zo 0.2g, CaCO5Ig,
NaCl 0.2g, NagMoOa H28zO
0°005g, distilled water 1000d, pH 7.3)
After inoculating the cells into 60 af and culturing them under shaking at room temperature for 6 hours, each culture solution was diluted appropriately. The culture solution was spread on a solid medium for isolating nitrogen-fixing bacteria in the air (prepared by adding 1.5 wt/vol x bacterial agar to the liquid medium for isolating nitrogen-fixing bacteria in the air) and cultured at room temperature for several days. The density of airborne nitrogen-fixing bacteria contained in the carbon material for supporting microorganisms and the soil was determined from the number of colonies that appeared.

その結果、1g中に含有する空中窒素固定菌数は、土壌
が0.83xlO’ cellsであったのに対し、微
生物担持用炭材は17 X 10’cellsと大幅に
増大していることが確認された。
As a result, it was confirmed that the number of airborne nitrogen-fixing bacteria contained in 1 g of soil was 0.83 x 1O' cells, whereas that of carbon material for supporting microorganisms was significantly increased to 17 x 10' cells. It was done.

実施例3 回転円板型水処理装置の回転円板に付着している微生物
を培養し、その中に実施例1のRUN No、1〜4の
微生物担持用炭材を1週間浸漬して微生物を付着担持さ
せた。ついで、浸漬後の微生物担持炭材を取り出して水
洗したのち、lN−NaOH水溶液で溶菌・抽出した蛋
白質の量を定量し、夾雑物の影響を補正して付着した微
生物量を算定した。
Example 3 Microorganisms attached to the rotating disk of a rotating disk type water treatment device were cultured, and microorganism-supporting carbon materials with RUN Nos. 1 to 4 of Example 1 were immersed in the culture for one week to culture the microorganisms. was adhered and supported. Next, the microorganism-supporting carbon material after soaking was taken out and washed with water, and the amount of protein lysed and extracted with a 1N-NaOH aqueous solution was quantified, and the amount of attached microorganisms was calculated by correcting for the influence of contaminants.

得られた結果を、炭材1gに付着した微生物由来の蛋白
質量(μg)として表3に示した。
The obtained results are shown in Table 3 as the amount of protein derived from microorganisms (μg) attached to 1 g of carbon material.

なお、比較のために市販の粒状活性炭および木炭を炭材
として同様に試験した結果についても表3に併載した。
For comparison, Table 3 also lists the results of similar tests using commercially available granular activated carbon and charcoal as carbon materials.

表3 表3から、]?tlN No、1〜4の微生物担持用炭
材はいずれも従来の粒状活性炭および木炭と比べて著増
した微生物担持性能を示したが、RUN No、4は十
分な性能を示さなかった。
Table 3 From Table 3, ]? The carbon materials for supporting microorganisms of tlN No. 1 to 4 all showed significantly increased microbial supporting performance compared to conventional granular activated carbon and charcoal, but RUN No. 4 did not show sufficient performance.

実施例4 実施例3の試験測定を終了した微生物担持腹材を乾燥し
て重量を測定し、摩滅、破砕などの状況を調査した。
Example 4 The microorganism-carrying abdominal material that had been tested and measured in Example 3 was dried and weighed, and conditions such as abrasion and crushing were investigated.

結果を炭材の重量減少率として表4に示した。The results are shown in Table 4 as the weight reduction rate of the carbon material.

表4 表4から、RUN No、3は製造時の乾燥処理が静置
乾燥法でおこなった関係で摩滅、破砕の度合が大きかっ
たが、その他の炭材はいずれも容易には破壊しない優れ
た粒性能を示した。
Table 4 From Table 4, RUN No. 3 had a high degree of abrasion and crushing due to the fact that the drying process at the time of manufacturing was performed using the static drying method, but all the other carbon materials were excellent and did not break easily. The grain performance was shown.

〔発明の効果] 以上のとおり、本発明によれば高い空隙率と比表面積を
もち、容易に破壊することのない粒強度を備える高性能
の微生物担持用炭材を提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a high-performance carbonaceous material for supporting microorganisms that has high porosity and specific surface area and has grain strength that does not easily break.

したがって、土壌改良および水処理を目的とする用途の
通用して多大の効果が発揮される。
Therefore, it is widely used for soil improvement and water treatment, and exhibits great effects.

Claims (1)

【特許請求の範囲】 1、植物系粉末を炭化した軟質多孔組織の炭素粒骨格が
硬質炭素膜で被覆された多孔質組織形態を備え、気孔径
1〜100μm範囲における細孔容積が1.5cc/g
以上の多孔特性を有することを特徴とする微生物担持用
炭材。 2、嵩密度が0.25g/cc以下、窒素吸着比表面積
が200m^2/g以上である請求項1記載の微生物担
持用炭材。
[Claims] 1. A porous structure in which a carbon particle skeleton of a soft porous structure obtained by carbonizing plant-based powder is covered with a hard carbon film, and the pore volume in the pore diameter range of 1 to 100 μm is 1.5 cc. /g
A carbon material for supporting microorganisms characterized by having the above porous characteristics. 2. The carbon material for supporting microorganisms according to claim 1, which has a bulk density of 0.25 g/cc or less and a nitrogen adsorption specific surface area of 200 m^2/g or more.
JP12828190A 1990-05-17 1990-05-17 Carbon material for supporting microorganism Pending JPH0423989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12828190A JPH0423989A (en) 1990-05-17 1990-05-17 Carbon material for supporting microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12828190A JPH0423989A (en) 1990-05-17 1990-05-17 Carbon material for supporting microorganism

Publications (1)

Publication Number Publication Date
JPH0423989A true JPH0423989A (en) 1992-01-28

Family

ID=14980947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12828190A Pending JPH0423989A (en) 1990-05-17 1990-05-17 Carbon material for supporting microorganism

Country Status (1)

Country Link
JP (1) JPH0423989A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013916A (en) * 2001-08-10 2003-02-15 권성현 Biofilter Media for Removing Odor and VOCs Using Carbonized Cork
JP2006114375A (en) * 2004-10-15 2006-04-27 Mie Tlo Co Ltd Microorganism battery for sludge treatment, and sludge purifying device using it
JP2012188492A (en) * 2011-03-09 2012-10-04 Sumitomo Bakelite Co Ltd Lignin-containing member for improving soil, and method for improving soil
CN111170298A (en) * 2020-01-19 2020-05-19 宁波瞬能科技有限公司 Preparation method and application of lignin-based hard carbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013916A (en) * 2001-08-10 2003-02-15 권성현 Biofilter Media for Removing Odor and VOCs Using Carbonized Cork
JP2006114375A (en) * 2004-10-15 2006-04-27 Mie Tlo Co Ltd Microorganism battery for sludge treatment, and sludge purifying device using it
JP2012188492A (en) * 2011-03-09 2012-10-04 Sumitomo Bakelite Co Ltd Lignin-containing member for improving soil, and method for improving soil
CN111170298A (en) * 2020-01-19 2020-05-19 宁波瞬能科技有限公司 Preparation method and application of lignin-based hard carbon

Similar Documents

Publication Publication Date Title
Sun et al. Nutrient supplementation of pinewood biochar for use as a bacterial inoculum carrier
CN101264985B (en) Microorganism water purification slow release body and preparation method thereof
CN110330979B (en) Preparation method of modified biochar, composite material and soil remediation agent
CN109439570B (en) Pseudomonas phosphate solubilizing strain and application thereof
CN107512977B (en) Preparation method and application of EM nano biochar-based soil conditioner
CN110668876B (en) Composite mycorrhiza biological fertilizer and preparation method and application thereof
JP2001314882A (en) Biological cleaning material
CN107434305A (en) A kind of water purification agent of rich defect carbon carrier fixation of microbe and preparation method thereof
CN110950707A (en) Sandy soil conditioner and preparation method thereof
CN107473404A (en) A kind of water purification agent of self-forming bulk carbon carrier fixation of microbe and preparation method thereof
CN110106162A (en) A kind of living microorganism immobilized microspheres and its preparation method and application
CN116064044B (en) Soil conditioner and soil conditioning method for repairing acidification hardening and heavy metal pollution
CN116286018B (en) Soil conditioner based on biomass charcoal and preparation method and application thereof
CN112744916A (en) Method for treating polluted water body by synchronous nitrification and denitrification biological carrier coupling system
JPH0423989A (en) Carbon material for supporting microorganism
CN109797120B (en) Preparation method and application of microecological preparation for removing nitrate in soil
CN114560734B (en) Biochar carrier and microbial fertilizer
CN107177537A (en) Bacterium bacterial strain, microbial bacterial agent and its application
CN113800498A (en) Biochar and preparation method and application thereof
JPH03223105A (en) Preparation of low density porous carbon granule
CN112694997A (en) Compound microorganism bacterium stock solution suitable for sewage treatment and active solution culture method
CN108752092B (en) Preparation method of pesticide degrading bacteria organic fertilizer prepared from biogas residues in pig farm
JP3340839B2 (en) Microbial material for turfgrass with pathogen control effect
CN114736830B (en) Kitchen waste treatment composite microbial inoculant, preparation method thereof and method for producing organic fertilizer by using kitchen waste treatment composite microbial inoculant
CN114133029B (en) Fungus-rich porous denitrification filler and preparation method thereof