JPH042228B2 - - Google Patents

Info

Publication number
JPH042228B2
JPH042228B2 JP59173940A JP17394084A JPH042228B2 JP H042228 B2 JPH042228 B2 JP H042228B2 JP 59173940 A JP59173940 A JP 59173940A JP 17394084 A JP17394084 A JP 17394084A JP H042228 B2 JPH042228 B2 JP H042228B2
Authority
JP
Japan
Prior art keywords
euglena
medium
cells
seawater
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59173940A
Other languages
Japanese (ja)
Other versions
JPS6152275A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59173940A priority Critical patent/JPS6152275A/en
Publication of JPS6152275A publication Critical patent/JPS6152275A/en
Publication of JPH042228B2 publication Critical patent/JPH042228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、元来淡水に成育する生物であるユー
グレナを高塩分濃度の培地中で培養する方法に関
する。 従来技術及びその問題点 ユーグレナは、生物分類学上動物及び植物の両
部門にまたがる単細胞生物である。従つて、ユー
グレナは、細胞構成成分及び細胞機能において、
動物及び植物の両特性を兼ね備えている。即ち、
例えば、細胞タンパンク質は、動物性タンパク質
のアミノ酸バランスに近似しており、細胞脂質
は、植物性脂肪酸バランスに近い組成を有してい
る。光の照射下では植物的な光合成機能を発揮す
るとともに、動物的な従属栄養下でも成育し得
る。ユーグレナは、細胞全体が動物性細胞膜によ
り包まれているので、その消化吸収率(これは、
食品、飼料、餌料等としての価値判断の主要な基
準の一つである)は、従来から利用されている酵
母及び緑藻類に比して極めて高い。従つて、ユー
グレナは、将来の食品、飼料、餌料等として有望
視されているものの、これまで純粋培養されてい
るユーグレナが淡水成育種であることから、限ら
れたスペースで比較的小規模の培養が行なわれて
いるに過ぎない。 近年、各国が200カイリ漁場専管水域を宣言す
るにいたつたことから生ずる漁獲量の減少分の補
填及び将来の食料資源の確保の観点から、海水魚
の養殖が奨励、実施されており、稚魚及び幼魚の
餌料として海産クロレラが使用されている。しか
しながら、海産クロレラの培養には広大な海域が
必要であり、又、海産クロレラにはω−脂肪酸が
少ない為、餌料としてはω−脂肪酸を含む酵母及
び/又は海産プランクトンを併用しければならな
い欠点がある。 問題点を解決する為の手段 本発明者は、淡水成育のユーグレナを海水ベー
スの培地又は海水塩分を含む培地中で培養するこ
とが出来れば、ユーグレナの大量培養が可能とな
り、且つ海水魚の稚魚及び幼魚の餌料として極め
て優れたものとなるのではないかと考え、種々研
究を重ねて来た。その結果、海水塩分を含む水溶
液にユーグレナを徐々に馴致させる場合には、海
水に相当する高塩分濃度の培地中で増殖し得る耐
塩性のユーグレナが選択的に得られることを見出
し、本発明を完成するにいたつた。即ち、本発明
は、以下に示す、耐塩性ユーグレナ、耐塩性ユー
グレナの選択的培養方法及び耐塩性ユーグレナの
培養方法に係るものである。 海水塩分濃度3.0〜3.6%の培地水溶液中で増
殖し得る耐塩性ユーグレナ。 海水塩分濃度1.0%以下の水溶液からなる培
地にユーグレナを植種して細胞数が15〜20×
106個/mlとなるまで馴致及び培養を行なつた
後、海水塩分濃度が前段階培地濃度を超え且つ
その2倍以下である培地に前段階からのユーグ
レナを植種して細胞数が15〜20×106個/mlと
なるまで馴致及び培養を行ない、以下最終段階
の培地中海水塩分濃度が3.0〜3.6%となるまで
同様の馴致及び培養を繰り返し行なうことを特
徴とする耐塩性ユーグレナの選択的培養方法。 海水塩分濃度3.0〜3.6%の水溶液からなる培
地中で耐塩性ユーグレナを培養することを特徴
とする耐塩性ユーグレナの培養方法。 海水塩分濃度は、海域及び季節によつて変動す
るが、外洋海水では主要化学成分の組成はほとん
ど変化しない。海水1Kg中に塩類35.0gを含むい
わゆる標準海水の塩分組成は、第1表に示す通り
である。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for culturing Euglena, which is an organism that originally grows in fresh water, in a medium with high salt concentration. BACKGROUND OF THE INVENTION Euglena is a unicellular organism that belongs to both animal and plant categories in biological taxonomy. Therefore, Euglena is important in cell components and cell functions.
It has characteristics of both animals and plants. That is,
For example, cellular proteins have a composition similar to that of animal protein in terms of amino acid balance, and cellular lipids have a composition similar to that of vegetable fatty acids. It exhibits plant-like photosynthetic functions under light irradiation, and can also grow under animal-like heterotrophic conditions. Euglena's entire cell is surrounded by animal cell membrane, so its digestion and absorption rate (this is
(one of the main criteria for determining value as food, feed, fodder, etc.) is extremely high compared to conventionally used yeasts and green algae. Therefore, although Euglena is seen as promising as a future food, feed, feed, etc., since the Euglena that has been cultivated in pure form is a freshwater-grown species, it is difficult to cultivate it on a relatively small scale in limited space. It's just that it's being done. In recent years, marine fish farming has been encouraged and carried out from the perspective of compensating for the decrease in fish catches resulting from each country declaring a 200 nautical mile exclusive fishing area and securing future food resources. Marine chlorella is used as feed. However, cultivation of marine chlorella requires a vast ocean area, and since marine chlorella contains little ω-fatty acids, it has the disadvantage that yeast and/or marine plankton containing ω-fatty acids must be used as feed. be. Means for Solving the Problems The present inventor believes that if freshwater-grown Euglena can be cultured in a seawater-based medium or a medium containing seawater salt, mass culture of Euglena will be possible, and it will also be possible to cultivate young and We have conducted a variety of research on the idea that it might be an excellent food for young fish. As a result, it was discovered that when Euglena is gradually adapted to an aqueous solution containing seawater salt, salt-tolerant Euglena that can grow in a medium with a high salt concentration equivalent to seawater can be selectively obtained, and the present invention has been developed based on this finding. It was about to be completed. That is, the present invention relates to salt-tolerant Euglena, a method for selectively culturing salt-tolerant Euglena, and a method for culturing salt-tolerant Euglena, which are shown below. A salt-tolerant Euglena that can grow in an aqueous culture medium with a seawater salinity of 3.0 to 3.6%. Euglena is inoculated into a medium consisting of an aqueous solution with a seawater salinity concentration of 1.0% or less, and the number of cells is 15-20x.
After acclimatization and culturing until the number of cells reaches 10 6 cells/ml, the Euglena from the previous stage is inoculated into a medium in which the seawater salinity concentration exceeds the concentration of the previous stage medium and is less than twice that concentration, until the number of cells reaches 15 cells/ml. A salt-tolerant Euglena characterized by acclimatizing and culturing until the concentration reaches ~20×10 6 cells/ml, and repeating the same acclimatization and culturing until the final stage of cultured Mediterranean water salinity reaches 3.0 to 3.6%. selective culture method. A method for culturing salt-tolerant Euglena, which comprises culturing salt-tolerant Euglena in a medium consisting of an aqueous solution with a seawater salinity concentration of 3.0 to 3.6%. Seawater salinity varies depending on the area and season, but the composition of major chemical components in open ocean seawater hardly changes. The salinity composition of so-called standard seawater, which contains 35.0g of salts in 1kg of seawater, is shown in Table 1.

【表】【table】

【表】 本願において、“海水塩分”とは、第1表に示
す少なくとも7種の塩類を含むものとするが、塩
類相互の量的割合は、±10%の範囲内で変動し得
るものとする。 本発明は、淡水中に成育するユーグレナ・グラ
シリス、ユーグレナ・ビリデ及びこれ等の変異種
等の全ての淡水ユーグノイドを対象とする。 本発明においては、先ず従来から使用されてい
る培地(例えば、コーレン・ハツトナー培地、特
願昭58−16889号記載の培地等)の構成部分を含
有し且つ海水塩分濃度1.0%以下の水溶液を調製
して、第一段階の培地とする。海水塩分濃度を
1.0%以下とするには、海水を淡水で希釈しても
良く、海水塩分に相当する塩類を淡水に溶解させ
ても良い。次いで、培地のPHを塩酸、硫酸、有機
酸等により3.5〜6程度に調製した後、所定のユ
ーグレナを1×104〜1×106個/ml程度の量で植
種し、温度20〜34℃で好ましくは撹拌下に培養す
る。通常4〜5日後には対数増殖期末期の最高細
胞数に達するので、この海水塩分濃度1.0%まで
の耐塩性を獲得したユーグレナ細胞群を上記と同
様の培地に加え、同様の条件下に培養を行なう。
同様の植種及び培養を繰り返し行なつて、対数増
殖期末期の最高細胞数が培地1ml当り15〜20×
106個となつた時点で第一段階の培養を終了する。
第一段階で使用する培地中の海水塩分濃度が1.0
%を上回る場合には、ユーグレナが死滅すること
がある。これは、培地中の塩分濃度が高すぎるた
めに、細胞膜が浸透圧差によつて膨潤し、ついに
は破壊される為と考えられる。又、対数増殖期末
期の最高細胞数が培地1ml当り15〜20×106個に
達する前に第一段階を終了する場合には、ユーグ
レナ細胞群全体としての耐塩性が不十分なる為、
次段階で使用する海水塩分濃度のより高い培地中
での対数増殖期末期の最高細胞数が低下してく
る。この原因は、未だ完全には解明されていない
が、一部のユーグレナ細胞の細胞膜が、次段階で
の培地の塩分濃度に十分適応出来ないので、細胞
内部と外部との浸透圧差が細胞を破壊したり、細
胞***を阻害したりする為と考えられる。第一段
階において、単一回の培養により対数増殖期末期
の最高細胞数が培地1ml当り15〜20×106個とな
る場合には、植種及び培養を複数回行なう必要は
ない。 次いで、海水塩分濃度が第一段階培地のそれよ
りも高く且くその2倍以下である培地を調製し
て、第二段階の培地とする。第一段階で得られた
ユーグレナの植種及び培養は、第一段階と同様の
手順で同様の条件下に行ない、最終的に対数増殖
期末期の最高細胞数が培地1ml当り15〜20×106
個となつた時点で第二段階を終了する。第二段階
においても、海水塩分濃度が第一段階のそれの2
倍を超える場合には、ユーグレナの細胞膜が浸透
圧差により膨潤し、細胞が破壊されるおそれがあ
る。 第三段階は、海水塩分濃度が第二段階のそれよ
りも高く且つその2倍以下である培地を使用する
以外は第二段階と同様にして行なう。 海水塩分の濃度が3.0〜3.6%となつた段階(こ
れは、第一段階の海水塩分濃度により異なり、第
三段階又はそれ以降の段階が相当する)におい
て、対数増殖期末期の最高細胞数が培地1ml当り
15〜20×106個となつた時点で、本発明の耐塩性
ユーグレナの選択的培養は、完了する。 本発明の選択培養方法により得られた耐塩性ユ
ーグレナは、淡水由来のものであるにもかかわら
ず、海水に相当する高塩分濃度の培地中でも活発
に増殖する。従つて、海水塩分濃度3.0〜3.6%で
且つ所要の栄養成分を含有する培地中で上記耐塩
性ユーグレナを培養することが可能となつた。耐
塩性ユーグレナの培養は、密閉系、開放系のいず
れの方式によつても行なうことが出来る。開放系
の培養槽により培養を行なう場合には、雑菌が混
入することもあり得るが、ユーグレナの増殖は阻
害されないことが判明した。しかしながら、ユー
グレナは、PH1.5〜8.4という広い領域で成育し得
るので、培地のPHを1.5〜3.5に保持しておくこと
により、殺菌の混入を実質上防止することが出来
る。 発明の効果 本発明によれば、以下の如き顕著な効果が奏さ
れる。 (1) 淡水由来のユーグレナを海水ベースの培地中
で培養することが出来る。 (2) 海産クロレラ培養の場合に比して、所要面積
が少なく、又、厳密な温度コントロール及び種
細胞の管理等は不要となる。 (3) 培養により得られるユーグレナは、海産クロ
レラにはないω−脂肪酸を含むので、酵母や海
産プランクトンを併用することなく、単独で海
水魚養殖用の餌料となる。 実施例 以下実施例を示し、本発明の特徴とするところ
をより一層明らかにする。 実施例 1 前記第1表に示す標準海水に近い塩分組成を有
する海水に所定量の上水を混合し、これに下記第
2表に示す栄養成分を溶解させて、第一段階の培
地とした。
[Table] In this application, "seawater salinity" shall include at least the seven types of salts listed in Table 1, but the quantitative proportions of the salts may vary within a range of ±10%. The present invention is directed to all freshwater eugnoids, such as Euglena gracilis, Euglena viride, and their variants, which grow in fresh water. In the present invention, first, an aqueous solution containing the constituent parts of a conventionally used culture medium (for example, Koren-Huttner medium, the medium described in Japanese Patent Application No. 16889/1989) and having a seawater salinity of 1.0% or less is prepared. This is used as the first stage medium. seawater salinity
To make it 1.0% or less, seawater may be diluted with fresh water, or salts equivalent to seawater salinity may be dissolved in fresh water. Next, after adjusting the pH of the medium to about 3.5 to 6 with hydrochloric acid, sulfuric acid, organic acids, etc., the specified Euglena was inoculated in an amount of about 1 × 10 4 to 1 × 10 6 cells/ml, and the temperature was 20 to 20. Cultivate at 34°C, preferably under agitation. Normally, the maximum cell number at the end of the logarithmic growth phase is reached after 4 to 5 days, so the Euglena cells that have acquired salt tolerance up to 1.0% seawater salinity are added to the same medium as above and cultured under the same conditions. Do this.
By repeating the same seeding and culturing, the maximum number of cells at the end of the logarithmic growth phase was 15 to 20x per ml of medium.
10 When the number of cells reaches 6 , the first stage culture is completed.
The seawater salinity concentration in the medium used in the first stage is 1.0.
%, Euglena may die. This is thought to be because the salt concentration in the medium is too high, causing the cell membrane to swell due to the osmotic pressure difference and eventually be destroyed. In addition, if the first stage is terminated before the maximum number of cells at the end of the logarithmic growth phase reaches 15 to 20 x 10 cells per ml of medium, the salt tolerance of the Euglena cell group as a whole will be insufficient.
In the medium with higher seawater salinity used in the next step, the maximum cell number at the end of the logarithmic growth phase decreases. The reason for this is still not completely understood, but the cell membrane of some Euglena cells cannot sufficiently adapt to the salt concentration of the medium in the next step, and the difference in osmotic pressure between the inside and outside of the cell destroys the cell. This is thought to be because it inhibits cell division. In the first stage, if the maximum number of cells at the end of the logarithmic growth phase is 15 to 20 x 10 6 cells per ml of medium after a single culture, there is no need to perform inoculation and culture multiple times. Next, a medium in which the seawater salinity concentration is higher than that of the first stage medium and not more than twice that is prepared and used as a second stage medium. The Euglena obtained in the first stage was inoculated and cultured using the same procedure and under the same conditions as in the first stage, and the final maximum number of cells at the end of the logarithmic growth phase was 15 to 20 × 10 cells per ml of medium. 6
The second stage ends when it becomes an individual. Even in the second stage, the seawater salinity is 2 times that of the first stage.
If the amount exceeds twice that, the Euglena cell membrane may swell due to the osmotic pressure difference, and the cells may be destroyed. The third stage is carried out in the same manner as the second stage, except that a medium in which the seawater salinity concentration is higher than that of the second stage and not more than twice that is used. At the stage when the seawater salinity concentration is 3.0 to 3.6% (this varies depending on the seawater salinity concentration in the first stage, and corresponds to the third stage or later stages), the maximum number of cells at the end of the logarithmic growth phase is reached. per ml of medium
When the number of cells reaches 15 to 20 x 10 6 , the selective culture of salt-tolerant Euglena of the present invention is completed. Although the salt-tolerant Euglena obtained by the selective culture method of the present invention is derived from freshwater, it grows actively even in a medium with a high salt concentration equivalent to seawater. Therefore, it has become possible to culture the above-mentioned salt-tolerant Euglena in a medium having a seawater salinity of 3.0 to 3.6% and containing necessary nutritional components. Salt-tolerant Euglena can be cultured in either a closed system or an open system. When culturing is carried out in an open culture tank, it is possible that bacteria may be mixed in, but it has been found that the growth of Euglena is not inhibited. However, since Euglena can grow in a wide pH range of 1.5 to 8.4, by keeping the pH of the medium between 1.5 and 3.5, contamination by sterilization can be substantially prevented. Effects of the Invention According to the present invention, the following remarkable effects are achieved. (1) Freshwater-derived Euglena can be cultured in a seawater-based medium. (2) Compared to the case of marine chlorella culture, the required area is smaller, and strict temperature control and seed cell management are not required. (3) Euglena obtained through culture contains ω-fatty acids that are not found in marine chlorella, so it can be used alone as feed for marine fish cultivation without using yeast or marine plankton in combination. Examples Examples will be shown below to further clarify the features of the present invention. Example 1 A predetermined amount of clean water was mixed with seawater having a salinity composition close to that of standard seawater shown in Table 1 above, and the nutritional components shown in Table 2 below were dissolved therein to form a first-stage culture medium. .

【表】 次いで、上記の培地150mlを500ml培養フラスコ
に入れ、120℃で15分間にわたり加圧蒸気により
殺菌を行なつた後、30℃に空冷し、淡水成育ユー
グレナ(ユーグレナ・グラシリス)を初期細胞数
1〜2×105個/mlの割合で植種した。該培養フ
ラスコを温度30℃の恒温室中で振盪機により振盪
(振幅5cm、80往復/分)し、第3表に示す海
水/上水の混合比の下に培養を行なつた。上水に
第2表に示す栄養成分のみを溶解させた培地によ
る結果を第3表に併せて示す。 尚、本実施例における細胞数の測定は、ヘマト
メータにより行ない、8サンプルの平均値を示し
ている。
[Table] Next, 150 ml of the above medium was placed in a 500 ml culture flask, sterilized with pressurized steam at 120°C for 15 minutes, and then air-cooled to 30°C to transform freshwater-grown Euglena (Euglena gracilis) into initial cells. Seeds were planted at a rate of 1 to 2 x 10 5 cells/ml. The culture flask was shaken with a shaker (amplitude 5 cm, 80 reciprocations/min) in a thermostatic chamber at a temperature of 30° C., and culture was carried out under the seawater/clean water mixing ratio shown in Table 3. Table 3 also shows the results obtained using a culture medium in which only the nutritional components shown in Table 2 were dissolved in tap water. Note that the cell number in this example was measured using a hematometer, and the average value of 8 samples is shown.

【表】 第3表中のNo.4〜7の第1回目の培養で得られ
たユーグレナを夫々同一海水塩分濃度の培地に初
期細胞数2×105個/mlで植種した後、培養を行
ない、更に同様の植種及び培養を引続き4回行な
つた結果、No.4〜7で得られたユーグレナは、
夫々の海水塩分濃度に対する耐性を完全に獲得し
たことが確認された。 次いで、上記と同様の海水に所定量の上水を混
合し、前記第2表に示す栄養成分を溶解させて、
第二段階の培地とし、殺菌を行なつた後、第3表
中のNo.4及びNo.5のユーグレナを初期細胞数1〜
2×105個/mlの割合で植種した。第一段階と同
様の条件下に培養した結果を第4表に示す。
[Table] Euglena obtained in the first culture of Nos. 4 to 7 in Table 3 were inoculated into a medium with the same seawater salinity concentration at an initial cell number of 2 × 10 5 cells/ml, and then cultured. As a result of carrying out the same inoculation and cultivation four times, the Euglena obtained in Nos. 4 to 7 were as follows.
It was confirmed that they had completely acquired tolerance to each seawater salinity concentration. Next, a predetermined amount of clean water is mixed with the same seawater as above, and the nutritional components shown in Table 2 are dissolved,
After sterilization, Euglena No. 4 and No. 5 in Table 3 were used as a second stage medium, and the initial cell number was 1 to 1.
Seeds were inoculated at a rate of 2×10 5 cells/ml. Table 4 shows the results of culturing under the same conditions as in the first stage.

【表】 第4表に示す結果から、第二段階の培地中の海
水塩分濃度が前段階のそれの2倍を上回る場合に
は、ユーグレナが死滅することが明らかである。 又、第4表中のNo.10〜11及びNo.13〜14で得られ
たユーグレナを夫々と同一の海水塩分濃度の培地
に初期細胞数2×105個/mlで植種した後、培養
を行ない、更に同様の植種及び培養を引続き4回
行なつた結果、これ等のユーグレナ群は、夫々の
海水塩分濃度に対する耐性を有していることが確
認された。 次に、前記と同様の海水に前記第2表に示す栄
養成分を溶解させて第三段階の培地とし、殺菌を
行なつた後、第4表中のNo.10、11、13、14のユー
グレナを初期細胞数2×105個/mlの割合で植種
した。第一段階と同様の条件下に培養した結果を
第5表に示す。
[Table] From the results shown in Table 4, it is clear that Euglena will die if the seawater salinity concentration in the medium in the second stage is more than twice that in the previous stage. In addition, after inoculating the Euglena obtained in Nos. 10 to 11 and Nos. 13 to 14 in Table 4 into a medium with the same seawater salinity concentration at an initial cell number of 2 × 10 5 cells/ml, As a result of culturing and repeating the same inoculation and culturing four times, it was confirmed that these Euglena groups had tolerance to each seawater salinity concentration. Next, the nutrients shown in Table 2 above were dissolved in the same seawater as above to prepare the third stage culture medium, and after sterilization, Nos. 10, 11, 13, and 14 in Table 4 were prepared. Euglena was seeded at an initial cell count of 2×10 5 cells/ml. Table 5 shows the results of culturing under the same conditions as in the first stage.

【表】 第5表に示す結果から、第三段階の培地中の海
水塩分濃度が第二段階のそれの2倍を超える場合
には、ユーグレナが増殖し得ないことが明らかで
ある。 実施例 2 実施例1で得られた耐塩性ユーグレナ(第5表
のNo.16)を、海水に第2表に示す栄養成分を溶解
させた培地150mlに1×105個/mlの割合で植種
し、温度30℃で振盪(500ml培養フラスコ使用、
振幅5cm、80往復/分)しつつ、培養を行なつ
た。 第1図に培養日数と細胞数との関係を成育曲線
として示す。第1図中成育曲線は、第2表に
示す栄養成分を上水に溶解した培地中で淡水ユー
グレナをそのまま培養した場合の結果を示す。 第1図に示す結果から、本発明の耐塩性ユーグ
レナは、海水ベースの培地中で良好に増殖し得る
ことが明らかである。
[Table] From the results shown in Table 5, it is clear that Euglena cannot proliferate when the seawater salinity concentration in the medium in the third stage is more than twice that in the second stage. Example 2 The salt-tolerant Euglena obtained in Example 1 (No. 16 in Table 5) was added to 150 ml of a medium prepared by dissolving the nutritional components shown in Table 2 in seawater at a rate of 1×10 5 cells/ml. Inoculate the seeds and shake at a temperature of 30℃ (using a 500ml culture flask,
Culture was carried out with an amplitude of 5 cm and 80 reciprocations/min). FIG. 1 shows the relationship between the number of culture days and the number of cells as a growth curve. The growth curve in FIG. 1 shows the results when freshwater Euglena was directly cultured in a medium containing the nutritional components shown in Table 2 dissolved in clean water. From the results shown in FIG. 1, it is clear that the salt-tolerant Euglena of the present invention can grow well in a seawater-based medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明耐塩性ユーグレナの成育曲線
を淡水成育ユーグレナの成育曲線と比較して示す
グラフである。
FIG. 1 is a graph showing the growth curve of the salt-tolerant Euglena of the present invention in comparison with the growth curve of the freshwater-grown Euglena.

Claims (1)

【特許請求の範囲】 1 海水塩分濃度3.0〜3.6%の培地中で増殖し得
る耐塩性ユーグレナ。 2 海水塩分濃度1.0%以下の培地にユーグレナ
を植種して細胞数が15〜20×106個/mlとなるま
で馴致及び培養を行なつた後、海水塩分濃度が前
段階培地濃度を超え且つその2倍以下である培地
に前段階からのユーグレナを植種して細胞数が15
〜20×106個/mlとなるまで馴致及び培養を行な
い、以下最終段階の培地中海水塩分濃度が3.0〜
3.6%となるまで同様の馴致及び培養を繰り返し
行なうことを特徴とする耐塩性ユーグレナの選択
的培養方法。 3 海水塩分濃度3.0〜3.6%の培地中で耐塩性ユ
ーグレナを培養することを特徴とする耐塩性ユー
グレナの培養方法。
[Scope of Claims] 1. A salt-tolerant Euglena that can grow in a medium with a seawater salinity of 3.0 to 3.6%. 2. Inoculate Euglena in a medium with a seawater salinity of 1.0% or less, acclimate and culture until the number of cells reaches 15 to 20 x 106 cells/ml, and then the seawater salinity exceeds the pre-stage medium concentration. Inoculate the Euglena from the previous stage into a medium that is less than twice that size to reach a cell count of 15.
Acclimate and culture until the concentration reaches ~20× 106 cells/ml, and the final stage of cultured Mediterranean water salinity is 3.0 ~
A method for selectively culturing salt-tolerant Euglena, characterized by repeating similar acclimatization and culturing until the concentration reaches 3.6%. 3. A method for culturing salt-tolerant Euglena, which comprises culturing salt-tolerant Euglena in a medium with a seawater salinity of 3.0 to 3.6%.
JP59173940A 1984-08-21 1984-08-21 Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena Granted JPS6152275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59173940A JPS6152275A (en) 1984-08-21 1984-08-21 Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59173940A JPS6152275A (en) 1984-08-21 1984-08-21 Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena

Publications (2)

Publication Number Publication Date
JPS6152275A JPS6152275A (en) 1986-03-14
JPH042228B2 true JPH042228B2 (en) 1992-01-16

Family

ID=15969881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59173940A Granted JPS6152275A (en) 1984-08-21 1984-08-21 Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena

Country Status (1)

Country Link
JP (1) JPS6152275A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516031B2 (en) * 1987-09-14 1996-07-10 ハリマ化成株式会社 Feed for fry
JPH07106124B2 (en) * 1987-09-14 1995-11-15 ハリマ化成株式会社 Feed for Artemia and production method thereof
JP2790642B2 (en) * 1989-02-21 1998-08-27 ハリマ化成株式会社 Euglena treated products and their uses
JP6019305B1 (en) * 2016-02-03 2016-11-02 和歌山県 New Euglena microalgae

Also Published As

Publication number Publication date
JPS6152275A (en) 1986-03-14

Similar Documents

Publication Publication Date Title
Kirby Materials and Methods in the Study of Protozoa
Fukami et al. Stimulative and inhibitory effects of bacteria on the growth of microalgae
Patrick Effects of Trace Metals in the Aquatic Ecosystem: The diatom community, base of the aquatic food chain, undergoes significant changes in the presence of trace metals and other alterations in water chemistry
Tada et al. Seasonal variation in the abundance of Noctiluca scintillans in the Seto Inland Sea, Japan
Gao et al. Assessment of optimal growth conditions for cultivation of the edible Caulerpa okamurae (Caulerpales, Chlorophyta) from Korea
Steven et al. Oscillatory variation of a phytoplankton population in a tropical ocean
CN105918185B (en) A kind of artificial raise seedling method of giant clam
Druehl et al. Longline cultivation of some laminariaceae in British Columbia, Canada
Mallin et al. Response of two zooptankton grazers to an ichthyotoxic estuarine dinoflagellate
US4080930A (en) Bivalve molluscs rearing process
JPH042228B2 (en)
CN109006605B (en) Freshwater ecological breeding method for penaeus vannamei boone
Anderson Apparent problems and potential solutions for production of fingerling striped bass, Morone saxatilis
KR102395377B1 (en) Ginseng cultivation method using aquaponics
CN1168381C (en) Ecological breeding and ecological culturing method for Chinese fine hair chela crab
Pathak et al. Seaweed species diversity with relation to hydrological parameters from veraval and sikka coast, Gujarat, India
CN109644910B (en) Pond cultivation method for scylla paramamosain flea larvae and megalops larvae
CN111374078A (en) Macrobrachium rosenbergii breeding method
Ruby et al. Periphyton based aquaculture: A review
CN110833052A (en) Navy breeding technology for thamnaconus modestus
RU2764265C1 (en) Method for joint breeding of kelp and sea urchin
KR101599746B1 (en) Composition for controlling harmful algae comprising Lemnaceae or its extract as active components and uses thereof
CN110241158B (en) Method for promoting synthesis of euglena protein
SU847961A1 (en) Method of artificial culturing black sea flatfish kalkan
Gopal et al. INFLUENCE OF PHYSICAL AND NUTRITIVE PARAMETERS ON POPULATION AND SIZE VARIATION IN TWO SPECIES OF ROTIFER