JPS6152275A - Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena - Google Patents

Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena

Info

Publication number
JPS6152275A
JPS6152275A JP59173940A JP17394084A JPS6152275A JP S6152275 A JPS6152275 A JP S6152275A JP 59173940 A JP59173940 A JP 59173940A JP 17394084 A JP17394084 A JP 17394084A JP S6152275 A JPS6152275 A JP S6152275A
Authority
JP
Japan
Prior art keywords
euglena
salt
medium
cells
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59173940A
Other languages
Japanese (ja)
Other versions
JPH042228B2 (en
Inventor
Tomohiro Sato
知広 佐藤
Toshimitsu Fujimoto
藤本 歳満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP59173940A priority Critical patent/JPS6152275A/en
Publication of JPS6152275A publication Critical patent/JPS6152275A/en
Publication of JPH042228B2 publication Critical patent/JPH042228B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Feed For Specific Animals (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To obtain a salt-resistant Euglena which can be proliferated in a medium having high salt content corresponding to that of sea water, by the gradual accommodation of Euglena with aqueous solution containing the salt of sea water. CONSTITUTION:Euglena is inocultated in a medium consisting of an aqueous solution containing <=0.1% salt of sea water, and the accommodation and culture are carried out until the number of cells reaches 15-20X10<6>/ml. The salt concentration is increased to <=2 times that of the former process, and the Euglena prolferated in the former stage is inoculated and subjected to the accommodation and cultivation. The procedures are repeated until the salt concentration in the medium reaches 3.0-3.6%. A Euglena living in fresh water can be culture in a medium having the composition of sea water.

Description

【発明の詳細な説明】 Llよ見■皿次1 本発明は、元来淡水に成育する生物であるユーグレナを
高塩分濃度の培地中で培養する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for culturing Euglena, which is an organism that originally grows in fresh water, in a medium with high salt concentration.

従来技術及びその問題点 ユーグレナは、生物分類学上動物及び植物の両部門にま
たがる単細胞生物である。従って、ユーグレナは、細胞
構成成分及び細胞機能において、動物及び植物の両特性
を兼ね備えている。即ち、例えば、細胞タンパク質は、
動物性タンパク質のアミノ酸バランスに近似しており、
細胞脂質は、植物性脂肪酸バランスに近い組成を有して
いる。
Prior art and its problems Euglena is a unicellular organism that is taxonomically divided into both animal and plant categories. Therefore, Euglena has both animal and plant characteristics in terms of cell components and cell functions. That is, for example, a cellular protein is
The amino acid balance is similar to that of animal protein.
Cellular lipids have a composition close to that of vegetable fatty acids.

光の照射下では植物的な光合成機能を発揮するとともに
、動物的な従属栄養下でも成育し得る。ユーグレナは、
細胞全体が動物性細胞膜により包まれているので、その
消化吸収率(これは、食品、飼料、餌料等としての価値
判断の主要なM準の一つである)は、従来から利用され
ている酵母及び緑藻類に比して極めて高い。従って、ユ
ーグレナは、将来の食品、飼料、餌料等として有望視さ
れているものの、これまで純粋培養されているユーグレ
ナが淡水成育種であることから、限られたスペースで比
較的小規模の培養が行なわれているに過ぎない。
It exhibits plant-like photosynthetic functions under light irradiation, and can also grow under animal-like heterotrophic conditions. Euglena is
Since the entire cell is surrounded by an animal cell membrane, its digestibility and absorption rate (this is one of the main criteria for determining value as food, feed, fodder, etc.) has traditionally been used. Extremely high compared to yeast and green algae. Therefore, although Euglena is seen as promising as a future food, feed, feed, etc., since the Euglena that has been cultivated in pure water is a freshwater species, it is difficult to cultivate it on a relatively small scale in a limited space. It's just being done.

近年、各国が200カイリ漁業専管水域を宣言するにい
たったことから生ずる漁1fflの減少分の補填及び将
来の食料資源の確保の観点から、海水魚の養殖が奨励、
実施されており、稚魚及び幼魚の餌料として海産クロレ
ラが使用されている。しかしながら、海産クロレラの培
養には広大な海域が必要であり、又、海産クロレラには
ω−脂肪酸が少ない為、餌料としてはω−脂肪酸を含む
酵母及び/又は海産プランクトンを併用しければならな
い欠点がある。
In recent years, each country has declared a 200 nautical mile exclusive fishing zone, and from the perspective of compensating for the 1FFL decrease in fishing and securing future food resources, marine fish farming is being encouraged.
Marine chlorella is used as feed for fry and young fish. However, cultivation of marine chlorella requires a vast ocean area, and since marine chlorella contains little ω-fatty acids, it has the disadvantage that yeast and/or marine plankton containing ω-fatty acids must be used as feed. be.

問題点を解決する為の手段 本発明者は、淡水成育のユーグレナを海水ベースの培地
又は海水塩分を含む培地中で培養することが出来れば、
ユーグレナの大口培養が可能となり、且つ海水魚の稚魚
及び幼魚の餌料として極めて優れたものとなるのではな
いかと考え、種々研究を重ねて来た。その結果、海水塩
分を含む水溶液にユーグレナを徐々に馴致させる場合に
は、海水に相当する高塩分濃度の培地中で増殖し得る耐
塩性のユーグレナが選択的に得られることを見出し、本
発明を完成するにいたった。即ち、本発明は、以下に示
す、耐塩性ユーグレナ、耐塩性ユーグレナの選択的培養
方法及び耐塩性ユーグレナの培養方法に係るものである
Means for Solving the Problems The present inventor proposes that if freshwater-grown Euglena can be cultured in a seawater-based medium or a medium containing seawater salt,
We have carried out various studies with the idea that large-scale cultivation of Euglena will become possible and that it will be an extremely excellent feed for young and young saltwater fish. As a result, it was discovered that when Euglena is gradually adapted to an aqueous solution containing seawater salt, salt-tolerant Euglena that can grow in a medium with a high salt concentration equivalent to seawater can be selectively obtained, and the present invention has been developed based on this finding. It was completed. That is, the present invention relates to salt-tolerant Euglena, a method for selectively culturing salt-tolerant Euglena, and a method for culturing salt-tolerant Euglena, which are shown below.

■ 海水塩分濃度3.0〜3.6%の培地水溶液中で増
殖し得る耐塩性ユーグレナ。
■ A salt-tolerant Euglena that can grow in an aqueous culture medium with a seawater salinity of 3.0 to 3.6%.

■ 海水塩分濃度1.0%以下の水溶液からなる培地に
ユーグレナを植種して細胞数が15〜20×10e個/
Ttlとなるまで馴致及び培養を行なった後、海水塩分
濃度が前段階培地濃度を超え且つその2倍以下である培
地に前段階からのユーグレナを植種して細胞数が15〜
20×108個/−となるまで馴致及び培養を行ない、
以下最終段階の培地中海水塩分濃度が3.0〜3.6%
となるまで同様の馴致及び培養を繰り返し行なうことを
特徴とする耐塩性ユーグレナの選択的培養方法。
■ Inoculate Euglena in a medium consisting of an aqueous solution with a seawater salinity of 1.0% or less and grow the number of cells to 15-20 x 10e/
After acclimatization and culturing until Ttl, the Euglena from the previous stage is inoculated into a medium in which the seawater salinity exceeds the concentration of the previous stage medium and is less than twice that concentration, and the number of cells is 15 to 15.
Acclimate and culture until 20 x 108 cells/-,
The salinity of cultivated Mediterranean water at the final stage is 3.0 to 3.6%.
1. A method for selectively culturing salt-tolerant Euglena, which comprises repeating similar acclimatization and culturing until .

■ 海水塩分濃度3.0〜3.6%の水溶液からなる培
地中で耐塩性ユーグレナを培養することを特徴とする耐
塩性ユーグレナの培養方法。
(2) A method for culturing salt-tolerant Euglena, which comprises culturing salt-tolerant Euglena in a medium consisting of an aqueous solution with a seawater salinity of 3.0 to 3.6%.

海水塩分濃度は、海域及び季節によって変動するが、外
洋海水では主要化学成分の組成はほとんど変化しない。
Seawater salinity varies depending on the area and season, but the composition of major chemical components in open ocean seawater hardly changes.

海水1にQ中に塩類35.Ooを含むいわゆる標準海水
の塩分組成は、第1表に示す通りである。
Salts in seawater 1 and Q 35. The salinity composition of so-called standard seawater containing Oo is as shown in Table 1.

第   1   表 NaCQ 27.213o 77.758%MOCG!
1! 3.807CJ10.878%MQSOt 1.
6580 4.737%Ca5Oz 1.260g3.
600%に28040.8630 2.46596Ca
CO3o、 123g0.345%MGBr20.07
6G  0.217%合  計 ’   35.000
g  100. 000%5一 本願において、“海水塩分”とは、第1表に示す少なく
とも7種の塩類を含むものとするが、塩類相互の量的割
合は、±10%の範囲内で変動し得るものとする。
Table 1 NaCQ 27.213o 77.758% MOCG!
1! 3.807CJ10.878%MQSOt 1.
6580 4.737%Ca5Oz 1.260g3.
600% 28040.8630 2.46596Ca
CO3o, 123g0.345%MGBr20.07
6G 0.217% total ' 35.000
g 100. 000%51 In this application, "seawater salinity" shall include at least the seven types of salts shown in Table 1, but the quantitative proportions of the salts may vary within a range of ±10%. .

本発明は、淡水中に成育するユーグレナ・グラシリス、
ユーグレナ・ビリデ及びこれ等の変異種等の全ての淡水
ユーグレノイドを対象とする。
The present invention provides Euglena gracilis growing in fresh water,
Targets all freshwater euglenoids such as Euglena viride and its mutant species.

本発明においては、先ず従来から使用されている培地(
例えば、コーレン・ハラトナー培地、特願昭58−16
889号記載の培地等)の構成部分を含有し且つ海水塩
分濃度1.0%以下の水溶液を調製して、第一段階の培
地とする。海水塩分濃度を1.0%以下とするには、海
水を淡水で希釈しても良く、海水塩分に相当する塩類を
淡水に溶解させても良い、。次いで、培地のpHを塩酸
、硫酸、有機酸等により3.5〜6程度に調製した後、
所定のユーグレナを1X10’〜1X108個/+Q程
度の量で植種し、温度20〜34℃で好′ましくは撹拌
下に培養する。通常4〜5日後には対数増殖期末期の最
高細胞数に達するので、この海水塩分濃度1.0%まで
の耐塩性を1得したユーグレナ細胞群を上記と同様の培
地に加え、同様の条件下に培養を行なう。同様の植種及
び培養を繰り返し行なって、対数増殖期末期の最高細胞
数が培地1−当り15〜20X1061[1aとなった
時点で第一段階の培養を終了する。第一段階で使用する
培地中の海水塩分濃度が1.0%を上回る場合には、ユ
ーグレナが死滅することがある。これは、培地中の塩分
濃度が高ずぎるために、細胞膜が浸透圧差によって膨潤
し、ついには破壊される為と考えられる。又、対数増殖
期末期の最高細胞数が培地11111当り15〜20X
10’個に達する前に第一段階を終了する場合には、ユ
ーグレナ細胞群全体としての耐塩性が不十分なる為、次
段階で使用する海水塩分濃度のより高い培地中での対数
増殖期末期の最高細胞数が低下してくる。この原因は、
未だ完全には解明されていないが、一部のユーグレナ細
胞の細胞膜が、次段階での培地の塩分濃度に十分適応出
来ないので、細胞内部と外部との浸透圧差が細胞を破壊
したり、細胞***を阻害したりする為と考えられる。第
一段階において、単−回の培養により対数増殖期末期の
最高細胞数が培地1−当り15〜20x10e個となる
場合には、植種及び培養を複数回行なう必要はない。
In the present invention, first, a conventionally used culture medium (
For example, Koren-Hallertner medium, patent application 1986-16
An aqueous solution containing the constituent parts of the culture medium described in No. 889, etc.) and having a seawater salinity of 1.0% or less is prepared and used as a first-stage culture medium. In order to reduce the seawater salinity to 1.0% or less, seawater may be diluted with fresh water, or salts equivalent to seawater salinity may be dissolved in fresh water. Next, after adjusting the pH of the medium to about 3.5 to 6 with hydrochloric acid, sulfuric acid, organic acid, etc.
Specified Euglena species are inoculated in an amount of about 1×10' to 1×10 8 cells/+Q, and cultured at a temperature of 20 to 34° C., preferably with stirring. Normally, the maximum cell number at the end of the logarithmic growth phase is reached after 4 to 5 days, so a group of Euglena cells that have gained 1 level of salt tolerance up to a seawater salinity of 1.0% is added to the same medium as above, and the same conditions are applied. Cultivate below. The same seeding and culturing are repeated, and the first stage of culturing is terminated when the maximum number of cells at the end of the logarithmic growth phase reaches 15 to 20 x 1061 [1a] per 1 medium. If the seawater salinity concentration in the medium used in the first step exceeds 1.0%, Euglena may die. This is thought to be because the salt concentration in the medium is too high, causing the cell membrane to swell due to the osmotic pressure difference and eventually be destroyed. In addition, the maximum number of cells at the end of the logarithmic growth phase was 15 to 20X per 11111 of the medium.
If the first stage is terminated before reaching 10' cells, the salt tolerance of the Euglena cell group as a whole will be insufficient, so the end of the logarithmic growth phase will be used in the next stage in a medium with higher seawater salinity. The maximum cell number of the cells is decreasing. The cause of this is
Although it is not completely understood yet, the cell membrane of some Euglena cells cannot sufficiently adapt to the salt concentration of the medium in the next step, so the difference in osmotic pressure between the inside and outside of the cell may destroy the cell or This is thought to be because it inhibits division. In the first stage, if the maximum number of cells at the end of the logarithmic growth phase is 15 to 20 x 10 e cells per medium after a single culture, it is not necessary to carry out inoculation and culture multiple times.

次いで、海水塩分濃度が第一段階培地のそれよりも高く
且つその2倍以下である培地を調製して、第二段階の培
地とする。第一段階で得られたユーグレナの植梯及び培
養は、第一段階と同様の手順で同様の条件下に行ない、
最終的に対数増殖期末期の最高細胞数が培地1踵当り1
5〜20X108個となった時点で第二段階を終了する
。第二段階においても、海水塩分濃度が第一段階のそれ
の2倍を超える場合には、ユーグレナの細胞膜が浸透圧
差により膨潤し、細胞が破壊されるおそれがある。
Next, a medium in which the seawater salinity concentration is higher than that of the first stage medium and not more than twice that is prepared and used as a second stage medium. The planting and culturing of Euglena obtained in the first stage was carried out using the same procedure and under the same conditions as in the first stage.
Finally, the maximum number of cells at the end of the logarithmic growth phase was 1 per heel of the medium.
The second stage ends when the number of pieces reaches 5 to 20×108. Even in the second stage, if the seawater salinity is more than twice that in the first stage, the cell membrane of Euglena may swell due to the osmotic pressure difference, and the cells may be destroyed.

第三段階は、海水塩分濃度が第二段階のそれよりも高く
且つその2倍以下である培地を使用する以外は第二段階
と同様にして行なう。
The third stage is carried out in the same manner as the second stage, except that a medium in which the seawater salinity concentration is higher than that of the second stage and not more than twice that is used.

海水塩分の濃度が3.0〜3.6%となった段階(これ
は、第一段階の海水塩分濃度により異なり、第三段階又
はそれ以降の段階が相当する)において、対数増殖期末
期の最高細胞数が培地1戒当り15〜20X108個と
なった時点で、本発明の耐塩性ユーグレナの選択的培養
は、完了する。
At the stage when the concentration of seawater salinity reaches 3.0 to 3.6% (this varies depending on the seawater salinity concentration in the first stage, and corresponds to the third stage or later stages), the end of the logarithmic growth phase occurs. The selective culture of salt-tolerant Euglena of the present invention is completed when the maximum number of cells reaches 15 to 20×10 8 cells per medium.

本発明の選択培養方法により得られた耐塩性ユーグレナ
は、淡水由来のものであるにもかかわらず、海水に相当
する高塩分濃度の培地中でも活発に増殖する。従って、
海水塩分濃度3.0〜3.6%で且つ所要の栄養成分を
含有する培地中で上記耐塩性ユーグレナを培養すること
が可能となった。耐塩性ユーグレナの培養は、密閉系、
開放系のいずれの方式によっても行なうことが出来る。
Although the salt-tolerant Euglena obtained by the selective culture method of the present invention is derived from freshwater, it grows actively even in a medium with a high salt concentration equivalent to seawater. Therefore,
It has become possible to culture the salt-tolerant Euglena in a medium containing seawater salinity of 3.0 to 3.6% and necessary nutritional components. Salt-tolerant Euglena is cultured in a closed system,
This can be done by any open system.

開放系の培養槽により培養を行なう場合には、雑菌が混
入することもあり得るが、ユーグレナの増殖は阻害され
ないことが判明した。しかしながら、ユーグレナは、p
H1,5〜8.4という広い領域で成育し得るので、培
地のpHを1.5〜3.5に保持しておくことにより、
殺菌の混入を実質上防止することが出来る。
When culturing is carried out in an open culture tank, it is possible that bacteria may be mixed in, but it has been found that the growth of Euglena is not inhibited. However, Euglena p
Since it can grow in a wide range of H1.5 to 8.4, by keeping the pH of the medium at 1.5 to 3.5,
Sterilization contamination can be substantially prevented.

RJJど九里 本発明によれば、以下の如き顕著な効果が奏される。RJJ Doguri According to the present invention, the following remarkable effects are achieved.

(1)淡水由来のユーグレナを海水ベースの培地中で培
養することが出来る。
(1) Freshwater-derived Euglena can be cultured in a seawater-based medium.

(2)海産クロレラ培養の場合に比して、所要面積が少
なく、又、厳密な温度コントロール及び稲細胞の管理等
は不要となる。
(2) Compared to the case of marine chlorella culture, the required area is smaller, and strict temperature control and rice cell management are not required.

(3)培養により得られるユーグレナは、海産クロレラ
にはないω−脂肪酸を含むので、酵母や海産プランクト
ンを併用することなく、単独で海水魚養殖用の餌料とな
る。
(3) Euglena obtained by culture contains ω-fatty acids not found in marine chlorella, so it can be used alone as feed for marine fish cultivation without using yeast or marine plankton in combination.

実  施  例 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。
EXAMPLES Examples will be shown below to further clarify the characteristics of the present invention.

実施例1 前記第1表に示す標準海水に近い塩分組成を有する海水
に所定量の上水を混合し、これに下記第2表に示す栄養
成分を溶解させて、第一段階の培地とした。
Example 1 A predetermined amount of clean water was mixed with seawater having a salinity composition close to that of the standard seawater shown in Table 1 above, and the nutritional components shown in Table 2 below were dissolved therein to form a first-stage culture medium. .

−10= 第   2   表 次いで、上記の培地150鶴を500−培養フラスコに
入れ、120℃で15分間にわたり加圧蒸気により殺菌
を行なった後、30℃に空冷し、淡水成育ユーグレナ(
ユーグレナ・グラシリス)を初期細胞数1〜2X105
個/+10の割合で植種した。該培養フラスコを温度3
0℃の恒温室中で振盪機により振盪(振幅5cIl11
8o往復/分)し、第3表に示す海水/上水の混合比の
下に培養を行なった。上水に第2表に示す栄養成分のみ
を溶解させた培地による結果を第3表に併せて示す。
-10 = Table 2 Next, the above medium 150 Tsuru was put into a 500-culture flask, and after sterilizing it with pressurized steam at 120°C for 15 minutes, it was air cooled to 30°C and freshwater-grown Euglena (
Euglena gracilis) at an initial cell number of 1 to 2 x 105
Seeds were planted at a ratio of 1/+10. The culture flask was heated to temperature 3.
Shake with a shaker in a constant temperature room at 0°C (amplitude 5cIl11)
8° round trip/min), and culture was carried out under the seawater/clean water mixing ratio shown in Table 3. Table 3 also shows the results obtained using a culture medium in which only the nutritional components shown in Table 2 were dissolved in tap water.

尚、本実施例における細胞数の測定は、ヘマトメータに
より行ない、8サンプルの平均値を示している。
Note that the cell number in this example was measured using a hematometer, and the average value of 8 samples is shown.

第3表中のN014〜7の第1回目の培養で得られたユ
ーグレナを夫々同一海水塩分濃度の培地に初期細胞数2
×105個/−で植種した後、培養を行ない、更に同様
の植種及び培養を引続き4回行なった結果、N014〜
7で得られたユーグレナは、夫々の海水塩分81度に対
する耐性を完全に獲得したことが確認された。
Euglena obtained in the first culture of Nos. 014 to 7 in Table 3 was placed in a medium with the same seawater salinity and an initial cell number of 2.
After inoculating seeds at ×105/-, culturing was performed, and the same inoculation and culturing was repeated four times. As a result, N014~
It was confirmed that the Euglena obtained in Example 7 had completely acquired tolerance to seawater salinity of 81 degrees.

次いで、上記と同様の海水に所定口の上水を混合し、前
記第2表に示す栄養成分を溶解させて、第二段階の培地
とし、殺菌を行なった後、第3表中のN014及びN0
05のユーグレナを初期細胞数1〜2X105個/mi
2の割合で植種した。第一段階と同様の条件下に培養し
た結果を第4表に示す。
Next, the same seawater as above is mixed with clean water of a predetermined amount, and the nutritional components shown in Table 2 are dissolved therein to form a second stage culture medium. After sterilization, N014 and N014 in Table 3 are mixed. N0
05 Euglena at an initial cell number of 1 to 2 x 105 cells/mi
Seeds were planted at a ratio of 2. Table 4 shows the results of culturing under the same conditions as in the first stage.

第4表に示す結果から、第二段階の培地中の海水塩分濃
度が前段階のそれの2倍を上回る場合には、ユーグレナ
が死滅することが明らかである。
From the results shown in Table 4, it is clear that Euglena will die if the seawater salinity concentration in the medium in the second stage is more than twice that in the previous stage.

又、第4表中のNo、10〜11及びNo、13〜14
で得られたユーグレナを夫々と同一の海水塩分濃度の培
地に初期細胞数2X105個/mlで植種した後、培養
を行ない、更に同様の植種及び培養を引続き4回行なっ
た結果、これ等のユーグレナ群は、夫々の海水塩分濃度
に対する耐性を有していることが確認された。
Also, No. 10 to 11 and No. 13 to 14 in Table 4
The Euglena obtained in each case was inoculated into a medium with the same seawater salinity concentration at an initial cell number of 2 x 105 cells/ml, and then cultured, and the same inoculation and culture were repeated four times. It was confirmed that the Euglena groups have tolerance to each seawater salinity concentration.

次に、前記と同様の海水に前記第2表に示す栄養成分を
溶解させて第三段階の培地とし、殺菌を行なった後、第
4表中のNO,10,11,13,14のユーグレナを
初期細胞数2X105個/ll112の割合で植種した
。第一段階と同様の条件下に培養した結果を第5表に示
す。
Next, the nutrients shown in Table 2 above are dissolved in the same seawater as above to prepare a third stage culture medium, and after sterilization, Euglena were seeded at an initial cell count of 2×10 5 cells/112 cells. Table 5 shows the results of culturing under the same conditions as in the first stage.

第5表に示す結果から、第三段階の培地中の海水塩分濃
度が第二段階のそれの2倍を超える場合には、ユーグレ
ナが増殖し得ないことが明らかである。
From the results shown in Table 5, it is clear that Euglena cannot proliferate when the seawater salinity concentration in the medium in the third stage is more than twice that in the second stage.

実施例2 実施例1で得られた耐塩性ユーグレナ(第5表のNo、
16)を、海水に第2表に示す栄養成分を溶解させた培
地1501dに1X105個/wJの割合で植種し、温
度30℃で振It(500−培養フラスコ使用、振幅5
cm、80往復/分)しつつ、培養を行なった。
Example 2 Salt-tolerant Euglena obtained in Example 1 (No. in Table 5,
16) were inoculated at a rate of 1 x 105 cells/wJ in a medium 1501d containing the nutritional components shown in Table 2 dissolved in seawater, and shaken at a temperature of 30°C (using a 500-culture flask, with an amplitude of 5
cm, 80 reciprocations/min).

第1図に培養日数と細胞数との関係を成育曲線■として
示す。第1図中成育曲線■は、第2表に示す栄養成分を
上水に溶解した培地中で淡水ユーグレナをそのまま培養
した場合の結果を示す。
FIG. 1 shows the relationship between the number of culture days and the number of cells as a growth curve ■. The growth curve (■) in FIG. 1 shows the results when freshwater Euglena was directly cultured in a medium containing the nutritional components shown in Table 2 dissolved in clean water.

第1図に示す結果から、本発明の耐塩性ユーグレナは、
海水ベースの培地中で良好に増殖し得ることが明らかで
ある。
From the results shown in FIG. 1, the salt-tolerant Euglena of the present invention is
It is clear that it can grow well in seawater-based media.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明耐塩性ユーグレナの成育曲線を淡水成
育ユーグレナの成育曲線と比較して示すグラフである。 (以 上)
FIG. 1 is a graph showing the growth curve of the salt-tolerant Euglena of the present invention in comparison with the growth curve of the freshwater-grown Euglena. (that's all)

Claims (3)

【特許請求の範囲】[Claims] (1)海水塩分濃度3.0〜3.6%の培地中で増殖し
得る耐塩性ユーグレナ。
(1) A salt-tolerant Euglena that can grow in a medium with a seawater salinity of 3.0 to 3.6%.
(2)海水塩分濃度1.0%以下の培地にユーグレナを
植種して細胞数が15〜20×10^6個/mlとなる
まで馴致及び培養を行なつた後、海水塩分濃度が前段階
培地濃度を超え且つその2倍以下である培地に前段階か
らのユーグレナを植種して細胞数が15〜20×10^
6個/mlとなるまで馴致及び培養を行ない、以下最終
段階の培地中海水塩分濃度が3.0〜3.6%となるま
で同様の馴致及び培養を繰り返し行なうことを特徴とす
る耐塩性ユーグレナの選択的培養方法。
(2) Inoculate Euglena in a medium with a seawater salinity of 1.0% or less, acclimate and culture until the number of cells reaches 15 to 20 x 10^6 cells/ml, and then Inoculate Euglena from the previous stage into a medium that exceeds the concentration of the stage medium and is less than twice that, until the number of cells is 15 to 20 x 10^
A salt-tolerant Euglena characterized by acclimating and culturing until the concentration reaches 6 cells/ml, and then repeating the same acclimatization and culturing until the final stage of culture medium water salinity reaches 3.0 to 3.6%. selective culture method.
(3)海水塩分濃度3.0〜3.6%の培地中で耐塩性
ユーグレナを培養することを特徴とする耐塩性ユーグレ
ナの培養方法。
(3) A method for culturing salt-tolerant Euglena, which comprises culturing salt-tolerant Euglena in a medium with a seawater salinity of 3.0 to 3.6%.
JP59173940A 1984-08-21 1984-08-21 Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena Granted JPS6152275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59173940A JPS6152275A (en) 1984-08-21 1984-08-21 Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59173940A JPS6152275A (en) 1984-08-21 1984-08-21 Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena

Publications (2)

Publication Number Publication Date
JPS6152275A true JPS6152275A (en) 1986-03-14
JPH042228B2 JPH042228B2 (en) 1992-01-16

Family

ID=15969881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59173940A Granted JPS6152275A (en) 1984-08-21 1984-08-21 Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena

Country Status (1)

Country Link
JP (1) JPS6152275A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474952A (en) * 1987-09-14 1989-03-20 Harima Chemicals Inc Feed for fry
JPS6474953A (en) * 1987-09-14 1989-03-20 Harima Chemicals Inc Feed for artemia
JPH02219566A (en) * 1989-02-21 1990-09-03 Harima Chem Inc Treated euglena and use thereof
WO2017135446A1 (en) * 2016-02-03 2017-08-10 和歌山県 Novel euglena microalgae

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474952A (en) * 1987-09-14 1989-03-20 Harima Chemicals Inc Feed for fry
JPS6474953A (en) * 1987-09-14 1989-03-20 Harima Chemicals Inc Feed for artemia
JPH02219566A (en) * 1989-02-21 1990-09-03 Harima Chem Inc Treated euglena and use thereof
WO2017135446A1 (en) * 2016-02-03 2017-08-10 和歌山県 Novel euglena microalgae

Also Published As

Publication number Publication date
JPH042228B2 (en) 1992-01-16

Similar Documents

Publication Publication Date Title
Fukami et al. Stimulative and inhibitory effects of bacteria on the growth of microalgae
US6673592B1 (en) Continuous cultivation of microorganisms in large open tanks in sunlight
Gao et al. Assessment of optimal growth conditions for cultivation of the edible Caulerpa okamurae (Caulerpales, Chlorophyta) from Korea
WO2022075029A1 (en) Feed composition for zooplankton, method for producing zooplankton, zooplankton, method for producing aquatic organism, and additive for water for raising aquatic organism
CN114891689A (en) Microbial agent for promoting plant growth and preparation method and application thereof
CN109197380A (en) A kind of planting technology of novel edible bacterium
US3820281A (en) Pre germination seed treatment
JPS6152275A (en) Salt-resistant euglena, selective cultivation of salt-resistant euglena, and cultivation of salt-resistant euglena
CN106719140A (en) A kind of grouper method for culturing seedlings
CN1168381C (en) Ecological breeding and ecological culturing method for Chinese fine hair chela crab
KR102395377B1 (en) Ginseng cultivation method using aquaponics
KR100898416B1 (en) Method of cultivation for Ecklonia stolonifera
CN109644910B (en) Pond cultivation method for scylla paramamosain flea larvae and megalops larvae
JPS63297304A (en) Method for culturing and cultivating araceous plant
KR20180134627A (en) New marine forest forming method using attachment and growth of zygotes of sargassum species on the natural basalt gravels
KR101323887B1 (en) Novel Nannochloris sp. Capable High Temperature Growth and Use Thereof
KR20200066577A (en) A Method for mars production of gametophyte of brown seaweed
CN110833052A (en) Navy breeding technology for thamnaconus modestus
RU2764265C1 (en) Method for joint breeding of kelp and sea urchin
JP2020065508A (en) Method for producing dormant Paramecium-containing dried plant
KR860000743B1 (en) The method of artificial culture for meristotheca papulosa
SU847961A1 (en) Method of artificial culturing black sea flatfish kalkan
KR100511182B1 (en) The cultivating method of white Maitake (Grifola Frondosa) as short term and high yield
US20230134126A1 (en) Seaweed cultivation method and system
Casaclang et al. Fish hydrolysate derived from fish waste increased the growth of Kappaphycus alvarezii