JP2817341B2 - Battery - Google Patents

Battery

Info

Publication number
JP2817341B2
JP2817341B2 JP2101325A JP10132590A JP2817341B2 JP 2817341 B2 JP2817341 B2 JP 2817341B2 JP 2101325 A JP2101325 A JP 2101325A JP 10132590 A JP10132590 A JP 10132590A JP 2817341 B2 JP2817341 B2 JP 2817341B2
Authority
JP
Japan
Prior art keywords
battery
composite microporous
microporous material
water
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2101325A
Other languages
Japanese (ja)
Other versions
JPH03297055A (en
Inventor
彰 花房
重人 野矢
公明 芳野
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2101325A priority Critical patent/JP2817341B2/en
Publication of JPH03297055A publication Critical patent/JPH03297055A/en
Application granted granted Critical
Publication of JP2817341B2 publication Critical patent/JP2817341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸素を活物質に用いるガス拡散電極と、ア
ルカリ水溶液からなる電解液と、亜鉛,マグネシウム,
アルミニウム等の金属、もしくはアルコール,ヒドラジ
ン,水素等の負極活物質とを備えた電池に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolytic solution composed of an alkaline aqueous solution, zinc, magnesium,
The present invention relates to a battery including a metal such as aluminum or a negative electrode active material such as alcohol, hydrazine, and hydrogen.

従来の技術 ガス拡散電極を備え、酸素を活物質とする電池として
は、空気電池,燃料電池等がある。特にアルカリ水溶
液,中性塩水溶液を電解質として使用する電池において
は、ガス拡散電極(酸素極)より内部の蒸気圧に応じて
水蒸気の出入りがあり、電池内電解液の濃度変化,体積
変化が起こり、これが電池の諸特性に影響を与えてい
た。
2. Description of the Related Art Examples of a battery including a gas diffusion electrode and using oxygen as an active material include an air battery and a fuel cell. In particular, in a battery using an alkaline aqueous solution or a neutral salt aqueous solution as an electrolyte, water vapor flows in and out of the gas diffusion electrode (oxygen electrode) according to the internal vapor pressure, and the concentration and volume of the electrolyte in the battery change. This affected various characteristics of the battery.

ボタン形空気電池を例にとり、第2図を用いてその状
況を説明する。1は酸素極(空気極)、2はガス拡散性
はあるが液体は阻止するポリテトラフルオロエチレン
(PTFE)よりなり酸素極1を支持する多孔性溌水膜であ
る。3は外部からの空気取入れ孔、4は空気の拡散を行
う多孔体、5,6はセパレータ、7は負極亜鉛で、これら
に含浸保持されるアルカリ電解液には水酸化カリウム水
溶液を使用し、その濃度は30〜35重量%としている。こ
のため相対湿度がおよそ45〜60%よりも高いと外部と湿
気を取り込み、電解液濃度の低下と体積膨張とが起こ
り、放電性能の低下、電解液の漏液を生じていた。一
方、相対湿度が前記以下の場合には電解液の蒸発が起こ
り、内部抵抗の増大や放電性能の低下をもたらしてい
た。従って、環境雰囲気による影響を受け易いため、長
期間保存後の電池特性に問題が生じ、これが空気電池や
燃料電池を特定の分野での使用に制約し、その汎用化を
図る上で大きな課題であった。なお、図中8は負極亜鉛
7を収容した負極容器、9は絶縁ガスケット、10は正極
容器である。
Using a button type air battery as an example, the situation will be described with reference to FIG. 1 is an oxygen electrode (air electrode) and 2 is a porous water-repellent membrane made of polytetrafluoroethylene (PTFE) which has gas diffusibility but blocks liquid, and supports the oxygen electrode 1. 3 is a hole for taking in air from outside, 4 is a porous body for diffusing air, 5 and 6 are separators, 7 is a negative electrode zinc, and an aqueous potassium hydroxide solution is used as an alkaline electrolyte impregnated and held in these. The concentration is 30-35% by weight. For this reason, when the relative humidity is higher than about 45 to 60%, moisture is taken in from the outside, and the concentration of the electrolytic solution is reduced and the volume is expanded, so that the discharge performance is reduced and the electrolyte is leaked. On the other hand, when the relative humidity is equal to or less than the above, the electrolytic solution evaporates, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, the battery characteristics after storage for a long period of time are liable to be affected by the environmental atmosphere, which restricts the use of air cells and fuel cells in specific fields, and is a major problem in generalizing the use thereof. there were. In the figure, reference numeral 8 denotes a negative electrode container containing the negative electrode zinc 7, 9 denotes an insulating gasket, and 10 denotes a positive electrode container.

これらの課題を改善するため、従来より種々の提案が
なされてきた。例えば、空気孔周辺の一部に電解液と反
応する物質を挿入し、液を固定化して電池外部への電解
液漏出を防止する。あるいは紙または高分子材料よりな
る不織布等の電解液吸収材を設けて、電池外部への電解
液漏出を防止する。さらに、空気孔を極端に小さくして
酸素の供給量を制限してまでも、水蒸気や炭酸ガスの電
池内部への侵入を防止する等の提案がなされている。
Various proposals have conventionally been made to improve these problems. For example, a substance that reacts with the electrolyte is inserted into a part of the vicinity of the air hole, and the electrolyte is fixed to prevent leakage of the electrolyte to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymer material is provided to prevent the electrolyte from leaking out of the battery. Further, there are proposals for preventing water vapor or carbon dioxide gas from entering the inside of the battery even when the supply amount of oxygen is restricted by making the air holes extremely small.

しかし、いずれの方法も漏液防止や放電性能、特に長
時間放電での性能に大きな問題を残していた。これらの
主要原因は、空気中の水蒸気の電池内への侵入によるア
ルカリ電解液の希釈と体積膨張、及び炭酸ガスの侵入に
よる炭酸塩の生成に基づく放電反応の阻害と空気流中経
路の閉塞によるもので、外気が低湿度の場合には逆に電
解液中の水分の逸散が性能低下の原因となっていた。
However, any of these methods still has a major problem in the prevention of liquid leakage and discharge performance, particularly in long-time discharge. The main causes are the dilution and volume expansion of the alkaline electrolyte due to the penetration of water vapor in the air into the battery, and the inhibition of the discharge reaction based on the formation of carbonate due to the penetration of carbon dioxide gas, and the obstruction of the air flow path. In the case where the outside air is low in humidity, on the other hand, the dissipation of water in the electrolytic solution has caused a decrease in performance.

この原因を取り除くため、近年では、水蒸気や炭酸ガ
スの透過量を制御し、選択的に酸素を優先して透過させ
る膜を介して空気を酸素極に供給する方法、例えばオル
ガノポリシロキサン系の無孔性の均一な薄膜や金属酸化
物、あるいは金属元素をが有する有機化合物の薄膜と適
宜な多孔性膜とを一体化させた膜を用いる方法が提案さ
れている。
In recent years, in order to eliminate this cause, a method of controlling the permeation amount of water vapor or carbon dioxide gas and selectively supplying air to the oxygen electrode through a membrane that selectively allows oxygen to permeate, for example, an organopolysiloxane-based method There has been proposed a method of using a film in which a thin film having uniform porosity or a thin film of a metal oxide or an organic compound having a metal element is integrated with an appropriate porous film.

発明が解決しようとする課題 しかしながら、現在までのところ、充分に有効な酸素
選択透過性が得られないことから、満足な放電性能は得
られず、電池として長期の使用や貯蔵に耐えられないの
で、その実用化に至っていない。
Problems to be Solved by the Invention However, since up to now, sufficient effective oxygen selective permeability cannot be obtained, satisfactory discharge performance cannot be obtained, and the battery cannot withstand long-term use or storage. Has not yet been put to practical use.

そこで、本発明は上記の電池の貯蔵性、長期使用にお
ける性能を改善すると共に、軽負担から重負荷に至る広
い放電条件で満足な放電性能を得るために、大気中の酸
素を選択的に充分な速度で電池内に取り入れると共に、
水蒸気の電池への出入りと、大気中の酸素ガスの電池内
への侵入を長期にわたり防止する有効な手段を提供する
ことを目的とするものである。
Thus, the present invention improves the storability of the above-described battery and the performance in long-term use, and selectively obtains sufficient oxygen in the atmosphere to obtain satisfactory discharge performance under a wide range of discharge conditions from light load to heavy load. At the same speed as the battery,
It is an object of the present invention to provide an effective means for preventing water vapor from entering and exiting a battery and entry of oxygen gas in the atmosphere into the battery for a long time.

課題を解決するための手段 上記の目的を達成するため、本発明は酸素を活物質と
するガス拡散電極を、外気に通じる空気取入れ孔を有す
る電池容器を備えた電池のガス拡散電極の空気取入れ側
と電池容器内面との間に、複合微多孔材料を介在したも
のであり、この複合微多孔材料を100Å以下の細孔径を
有し、その細孔壁面に室温における密閉空間中での飽和
水溶液が40%RH以下の飽和蒸気圧をもつ塩を配した微多
孔材料と、その片面に配した溌水性材料とから構成した
ものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a gas diffusion electrode using oxygen as an active material, the air intake of a gas diffusion electrode of a battery provided with a battery container having an air intake hole communicating with the outside air. The composite microporous material has a pore diameter of 100 mm or less between the side and the inner surface of the battery container. Is composed of a microporous material provided with a salt having a saturated vapor pressure of 40% RH or less, and a water-repellent material provided on one surface thereof.

本発明は、この複合微多孔材料のもつ大きい酸素選択
性透過能に着目したものである。
The present invention focuses on the large oxygen-selective permeability of the composite microporous material.

この膜が、重負荷での満足な放電性能を得るために必
要な酸素透過速度と、長期保存や低湿度下あるいは、高
湿度雰囲気下での長期放電に耐えるだけの水蒸気及び炭
酸ガスに対する透過阻止能とをもち、この複合微多孔材
料を適用した電池の性能がきわめて優れていることを見
い出し、完成させたものである。
Oxygen permeation rate necessary for obtaining satisfactory discharge performance under heavy load, and prevention of permeation of water vapor and carbon dioxide gas that can withstand long-term storage and long-term discharge under low humidity or high humidity atmosphere It has been found that the battery using the composite microporous material has extremely high performance and has excellent performance.

作用 この構成による複合多孔材料は、後述の実施例におけ
る電池試験の結果からも明らかなように、電池用として
の良好な酸素透過速度と、空気中の水蒸気や炭酸ガスの
電池内への侵入を遮断する効果を共に満足すべき状態に
保て、実用的な電池に要求される重負荷放電性能と、高
湿度や低湿度の雰囲気下で長時間放電した場合の性能も
共に満足することとなる。
Action As is clear from the battery test results in the examples described later, the composite porous material having this configuration has a good oxygen permeation rate for batteries and prevents the penetration of water vapor and carbon dioxide gas in the air into the batteries. Maintaining both the blocking effect and satisfactory performance, the heavy-load discharge performance required for a practical battery and the performance when discharged for a long time in an atmosphere of high humidity or low humidity will be satisfied. .

実施例 (実施例1) 細孔径が40Åで表面を研磨した多孔質ガラス(0.2mm
厚)の片面に、高周波スパッタリング法にて、四フッ化
エチレンと六フッ化プロピレンとの共重合体(FEP)の
薄膜を2000Å堆積し、そののちLiClの飽和水溶液中に浸
漬し、表面に付着した塩を除去し、複合微多孔材料とし
た。
Example (Example 1) Porous glass having a pore diameter of 40 mm and a polished surface (0.2 mm
Thickness), a thin film of a copolymer of ethylene tetrafluoride and propylene hexafluoride (FEP) is deposited on one side by rf sputtering at a thickness of 2000mm, then immersed in a saturated aqueous solution of LiCl, and adhered to the surface The resulting salt was removed to obtain a composite microporous material.

(実施例2) 細孔径が40Åで表面を研磨した多孔質ガラス(0.2mm
厚)の片面に、高周波スパッタリング法にて、FEP薄膜
を2000Å堆積し、そののちLiClの飽和水溶液中に浸漬
し、表面に付着した塩を除去し、高周波スパッタリング
法にて、KBr薄膜をFEPの付いていない面に堆積させて複
合微多孔材料とした。
(Example 2) Porous glass having a pore diameter of 40 mm and a polished surface (0.2 mm
Thickness), a FEP thin film was deposited on one side by high frequency sputtering at 2000 mm, then immersed in a saturated aqueous solution of LiCl to remove the salts attached to the surface, and the KBr thin film was removed by high frequency sputtering. The composite microporous material was deposited on the non-attached surface.

(実施例3) 実施例2で用いた複合微多孔材料を2枚用い、それぞ
れのFEP薄膜側を重ねて、2層の複合微多孔材料とし
た。
(Example 3) Two composite microporous materials used in Example 2 were used, and each FEP thin film side was overlapped to obtain a two-layer composite microporous material.

(実施例4) 実施例2で用いた複合微多孔材料を2枚用い、それぞ
れのFEP薄膜側を重ね、その間に、不織布をはさんで3
層の複合微多孔材料とした。
(Example 4) Two composite microporous materials used in Example 2 were used, each FEP thin film side was overlapped, and a nonwoven fabric was sandwiched between them.
The layer was a composite microporous material.

(実施例5) 細孔径が40Åで表面を研磨した多孔質ガラス(0.2mm
厚)を2枚用い、その間に、PTFE多孔膜をはさんで圧着
したのち、LiCl飽和水溶液中に浸漬し、表面に付着した
塩を除去した後、その両面に高周波スパッタリング法で
KBr薄膜を堆積して複合微多孔材料とした。
(Example 5) Porous glass having a pore diameter of 40 mm and a polished surface (0.2 mm
Thickness), between which a PTFE porous membrane is sandwiched and pressed, then immersed in a saturated aqueous solution of LiCl to remove salts attached to the surface, and then applied to both surfaces by high-frequency sputtering.
A KBr thin film was deposited to obtain a composite microporous material.

(比較例1) 細孔径が140Åで表面を研磨した多孔質ガラス(0.2mm
厚)の片面に、高周波スパッタリング法でFEP薄膜を200
0Å堆積した後、LiClの飽和水溶液中に浸漬し、表面に
付着した塩を除去して複合微多孔材料とした。
(Comparative Example 1) Porous glass (0.2mm
200) FEP thin film on one side with high frequency sputtering method
After depositing at 0 °, the composite microporous material was immersed in a saturated aqueous solution of LiCl to remove salts attached to the surface, thereby obtaining a composite microporous material.

(比較例2) 細孔径が40Åで表面を研磨した多孔質ガラス(0.2mm
厚)の片面に、高周波スパッタリング法でFEP薄膜を200
0Å堆積した後、KBrの飽和水溶液中に浸漬し、表面に付
着した塩を除去して複合微多孔材料とした。
(Comparative Example 2) Porous glass having a pore diameter of 40 mm and a polished surface (0.2 mm
200) FEP thin film on one side with high frequency sputtering method
After depositing at 0 °, the composite microporous material was immersed in a saturated aqueous solution of KBr to remove salts attached to the surface, thereby obtaining a composite microporous material.

(比較例3) 細孔径が40Åで表面を研磨した多孔質ガラス(0.2mm
厚)の片面に、高周波スパッタリング法でFEP薄膜を200
0Å堆積した後、LiClの飽和水溶液中に浸漬し、表面に
付着した塩を除去した後、FEPの付いていない面に高周
波スパッタリング法でLiCl薄膜を堆積させ、複合微多孔
材料とした。
(Comparative Example 3) Porous glass having a pore diameter of 40 mm and a polished surface (0.2 mm
200) FEP thin film on one side with high frequency sputtering method
After depositing 0 °, the resultant was immersed in a saturated aqueous solution of LiCl to remove salts attached to the surface, and then a LiCl thin film was deposited on a surface without FEP by a high frequency sputtering method to obtain a composite microporous material.

(比較例4) 多孔性溌水膜は使用するが、複合膜を用いないもの。(Comparative Example 4) A porous water-repellent membrane is used, but no composite membrane is used.

本発明の効果を確認するために、実施例1〜5で作製
した複合微多孔材料、及び比較例1〜3の複合微多孔材
料を使用した電池と、複合微多孔材料を使用していない
比較例4の電池を試作評価して検討した。まず、複合微
多孔材料を用いない比較例4の場合は、第2図と全く同
一の構成とした。次に、複合微多孔材料を使用した電池
は、第1図に示すようにPTFEの多孔膜2と、酸素の流れ
を分散しかつ均一化させる多孔体との間にそれぞれの複
合微多孔材料が所定の向きで配置された構成とした。
In order to confirm the effects of the present invention, a battery using the composite microporous materials prepared in Examples 1 to 5 and the composite microporous materials of Comparative Examples 1 to 3 was compared with a battery using no composite microporous material. The battery of Example 4 was evaluated after trial production. First, in the case of Comparative Example 4 in which the composite microporous material was not used, the configuration was exactly the same as that in FIG. Next, in the battery using the composite microporous material, as shown in FIG. 1, each composite microporous material is interposed between a porous membrane 2 of PTFE and a porous body that disperses and homogenizes the flow of oxygen. It was configured to be arranged in a predetermined direction.

試作した電池の寸法はいずれも直径11.6mm、総高5.4m
mであり、比較的重負荷(75Ω)で20℃、常湿(60%R
H)での連続放電により電池内への空気中の酸素取り込
み速度の充足性を評価し、比較的軽負荷(3kΩ)で20
℃、高湿度(90%RH)、および低湿度(20%RH)での長
時間連続放電により、長期の放電期間中における雰囲気
からの水蒸気の電池内への取り込みや電池内の水分の蒸
発、及び炭酸ガスの取り込みなど電池性能への影響度を
評価した。
The dimensions of the prototype batteries are 11.6mm in diameter and 5.4m in total height
m, relatively heavy load (75Ω) at 20 ° C, normal humidity (60% R
H) to evaluate the sufficiency of the oxygen uptake rate in the air into the battery by continuous discharge at H).
Long-term continuous discharge at ℃, high humidity (90% RH), and low humidity (20% RH) allows the incorporation of water vapor from the atmosphere into the battery and evaporation of moisture in the battery during the long-term discharge period, And the degree of influence on battery performance, such as the intake of carbon dioxide, was evaluated.

試作した電池の内訳は第1表に示す通りである。 The breakdown of the prototype battery is shown in Table 1.

また第2表に試作電池の性能試験結果を示す。 Table 2 shows the performance test results of the prototype battery.

第2表において、放電終止電圧はいずれも0.9Vであ
る。重量変化は放電試験前後の増減を示しており、主と
して放電中の水分の取り込み、あるいは蒸発の多少を示
唆する数値である。
In Table 2, the discharge end voltage is 0.9 V in all cases. The change in weight indicates an increase or decrease before and after the discharge test, and is a numerical value mainly indicating uptake of moisture during discharge or some degree of evaporation.

これらの電池の特性を、複合微多孔材料を使用してい
ない比較例4と対比すると、最も端的に本発明の効果が
説明できる。
When comparing the characteristics of these batteries with Comparative Example 4 in which no composite microporous material is used, the effects of the present invention can be most clearly explained.

まず20℃、常湿での重負荷試験では放電時間が短く、
水分の取り込みや蒸発の影響や炭酸ガスの影響が少ない
ので、電池の性能は酸素の供給速度が充分であれば水分
や炭酸ガスの透過阻止はあまり考慮する必要がない。従
って、このような条件下では比較例4でも優れた特性が
得られる。これに対し、前述の実試例1〜5は比較例4
と同等の放電特性が得られており、複合微多孔材料を酸
素が透過する速度が放電反応で酸素が消費される速度に
充分追随していることを示している。
First, the discharge time is short in the heavy load test at 20 ° C and normal humidity,
Since the influence of moisture uptake and evaporation and the influence of carbon dioxide gas are small, it is not necessary to consider the performance of the battery so much as to prevent the permeation of moisture and carbon dioxide gas if the supply rate of oxygen is sufficient. Therefore, under such conditions, excellent characteristics are obtained even in Comparative Example 4. On the other hand, the above-mentioned actual test examples 1 to 5 are comparative examples 4
The discharge characteristics equivalent to those described above were obtained, indicating that the speed at which oxygen permeates the composite microporous material sufficiently followed the speed at which oxygen was consumed in the discharge reaction.

しかしながら、比較例3は酸素透過速度が全く不足し
ていることがわかる。
However, it can be seen that Comparative Example 3 has an insufficient oxygen transmission rate.

一方、軽負荷放電の場合は放電時間が長く、しかも外
気が高湿度あるいは低湿度の場合には酸素の供給速度よ
りも水分や炭酸瓦斯、特に水分の透過阻止が優れた電池
特性を得るために重要となる。水分や炭酸ガスの透過阻
止機構を持たない比較例4の電池は高湿度,低湿度のい
ずれの試験においても問題があり、水分の枯渇、あるい
は逆に水分の過剰取入れによる漏液に起因した空気孔の
閉塞などにより、放電の途中で電圧が低下し、重負荷試
験で得られた放電容量の一部分に相当する容量が得られ
るに過ぎない。また放電途中での漏液は実用面で致命的
な問題であることはいうまでもない。
On the other hand, in the case of light load discharge, the discharge time is long, and in the case where the outside air is in a high humidity or low humidity, in order to obtain a battery characteristic which is superior in preventing moisture and carbon dioxide, particularly in preventing the permeation of moisture, than the supply rate of oxygen. It becomes important. The battery of Comparative Example 4 which does not have a moisture or carbon dioxide gas permeation preventing mechanism has a problem in both high humidity and low humidity tests, and the air caused by water depletion or conversely leakage due to excessive intake of water. Due to the clogging of the holes and the like, the voltage drops during the discharge, and only a capacity corresponding to a part of the discharge capacity obtained in the heavy load test is obtained. Needless to say, leakage during discharge is a fatal problem in practical use.

比較例1の電池は微多孔基材の細孔径が大きすぎて、
水蒸気の透過阻止機能が非常に弱いので、比較例4と同
様に、高湿度,低湿度いずれの試験においても問題があ
る。さらに比較例2の電池は、高湿度の試験においては
優れた性能を示すが、低湿度の試験においては、水蒸気
透過阻止機能がほとんど認められない。これに対して実
施例は極めて優れた阻止機能性能を示し、これらは重負
荷試験の放電容量とほぼ等しい容量が得られている。こ
れらの傾向は試験雰囲気が高湿度,低湿度のいずれの場
合とも同様である。
In the battery of Comparative Example 1, the pore diameter of the microporous substrate was too large,
Since the function of preventing permeation of water vapor is very weak, there is a problem in both high humidity and low humidity tests as in Comparative Example 4. Further, the battery of Comparative Example 2 shows excellent performance in a high humidity test, but hardly recognizes a water vapor permeation preventing function in a low humidity test. On the other hand, the examples show extremely excellent blocking function performance, and these have obtained capacities almost equal to the discharge capacity in the heavy load test. These tendencies are the same whether the test atmosphere is high humidity or low humidity.

このことは実施例の場合、複合微多孔材料の水分透過
阻止機能が高湿度,低湿度いずれの環境下においても充
分に発揮されていることを示している。
This indicates that in the case of the example, the moisture permeation preventing function of the composite microporous material is sufficiently exerted under both high humidity and low humidity environments.

以上を総合して、100Å以下の細孔径をもち、その細
孔壁面に、室温における密閉空間中での、固相共存下飽
和水溶液の相対湿度が40%RH以下を示す塩を存在させ、
単層の場合はその空気取り入れ側に向いた面に溌水性材
料を配置した構成の電池は、重負荷特性,軽負荷特性と
も優れ、外部雰囲気の変化にも安定した優れた電池を提
供できる。
In summary, a salt having a pore diameter of 100 ° or less, and having a relative humidity of a saturated aqueous solution of 40% RH or less in the presence of a solid phase in a closed space at room temperature in a closed space at room temperature,
In the case of a single layer, a battery having a structure in which a water-repellent material is disposed on the surface facing the air intake side is excellent in both heavy load characteristics and light load characteristics, and can provide an excellent battery that is stable even when the external atmosphere changes.

さらには、溌水性材料の配置していない面に、相対湿
度70%RH以上を示す塩を配置したものは、同等以上の効
果が得られ、また、これらの単相複合微多孔材料の溌水
性材料側の面を合わせた2層のもの、あるいはその2層
間に多孔材料を挿入したもの、さらには溌水性材料を共
通としたものでも同等以上の効果が得られることが結論
できる。
In addition, when a salt having a relative humidity of 70% RH or more is disposed on the surface on which the water-repellent material is not disposed, the same or more effect can be obtained, and the water repellency of these single-phase composite microporous materials is obtained. It can be concluded that the same or better effect can be obtained with two layers having the same material side, a porous material inserted between the two layers, and a common water repellent material.

また、本発明の複合微多孔材料を上記実施例では電池
容器との間に空気拡散用の多孔体を介して設置したが、
本発明の複合微多孔材料の機械的強度が充分な場合は、
前記空気拡散用の多孔体を除いても電池特性に差異はな
い。
Further, in the above embodiment, the composite microporous material of the present invention was installed via a porous body for air diffusion between the battery container and the battery container.
When the mechanical strength of the composite microporous material of the present invention is sufficient,
There is no difference in battery characteristics even if the porous body for air diffusion is removed.

さらに、本発明の複合微多孔材料は酸素極との間に酸
素極を支持する多孔膜を介して設置したが、酸素極の強
度が充分であれば前記多孔膜は不要にできる。
Furthermore, although the composite microporous material of the present invention is provided with a porous membrane that supports the oxygen electrode between the composite microporous material and the oxygen electrode, the porous membrane can be unnecessary if the oxygen electrode has sufficient strength.

また、塩化アンモニウム,塩化亜鉛などの中性塩の水
溶液を電解液に用いた空気電池に対しても、実施例で示
したアルカリ性の電解液を用いた電池と同様の効果があ
ることも確認している。
It was also confirmed that an air battery using an aqueous solution of a neutral salt such as ammonium chloride or zinc chloride as an electrolyte had the same effect as the battery using an alkaline electrolyte shown in the examples. ing.

発明の効果 以上の説明で明らかなように、本発明による複合微多
孔材料によれば、中性もしくはアルカリ性の水溶液を電
解液とする電池の重負荷から軽負荷にわたる広い範囲で
優れた実用性能と、優れた耐漏液性,長期貯蔵性を得る
ことができるという効果がある。
Effects of the Invention As is apparent from the above description, the composite microporous material according to the present invention has excellent practical performance in a wide range from a heavy load to a light load of a battery using a neutral or alkaline aqueous solution as an electrolyte. In addition, there is an effect that excellent liquid leakage resistance and long-term storage property can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の断面図、第2図は複合微多孔材料を
使用していない従来のボタン形空気亜鉛電池の断面図で
ある。 1……酸素極(空気極)、2……溌水膜、3……空気取
入れ孔、4……多孔膜、5,6……セパレータ、7……負
極亜鉛、8……負極容器、9……絶縁ガスケット、10…
…正極容器、11……複合微多孔材料。
FIG. 1 is a cross-sectional view of a button-type air-zinc battery used for studying the examples and comparative examples of the present invention, and FIG. 2 is a cross-sectional view of a conventional button-type air-zinc battery not using a composite microporous material. is there. DESCRIPTION OF SYMBOLS 1 ... oxygen electrode (air electrode), 2 ... water-repellent film, 3 ... air intake hole, 4 ... porous film, 5, 6 ... separator, 7 ... negative electrode zinc, 8 ... negative electrode container, 9 …… insulating gasket, 10…
... Positive electrode container, 11 ... Composite microporous material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳原 伸行 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−60052(JP,A) 特開 平2−87458(JP,A) 特開 平2−87459(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 2/16 H01M 4/86 H01M 12/06────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Yanagihara 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-2-60052 (JP, A) JP-A-2- 87458 (JP, A) JP-A-2-87459 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 2/16 H01M 4/86 H01M 12/06

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸素を活物質とするガス拡散電極と、外気
に通じる空気取入れ孔を有する電池容器と、前記ガス拡
散電極の空気取り入れ側と前記電池容器内面との間に介
在させた複合微多孔材料とを備え、この複合微多孔材料
は100Å以下の細孔径をもち、その細孔壁面に室温にお
ける密閉空間中での固相共存下飽和水溶液の相対湿度が
40%RH以下を示す塩が存在した微多孔材料と、その電池
容器内面側に向いた面の表面を覆う溌水性材料とからな
る電池。
1. A composite micro-electrode comprising a gas diffusion electrode using oxygen as an active material, a battery container having an air intake hole communicating with the outside air, and an air intake side of the gas diffusion electrode and an inner surface of the battery container. The composite microporous material has a pore diameter of 100 mm or less, and the relative humidity of the saturated aqueous solution in the closed space at room temperature in the presence of the solid phase is
A battery comprising a microporous material containing a salt exhibiting 40% RH or less and a water-repellent material covering the surface of the surface facing the inner surface of the battery container.
【請求項2】前記複合微多孔材料において、前記ガス拡
散電極の空気取入れ側に向いた面に、固相共存下飽和水
溶液の相対湿度が70%RH以上を示す塩が存在する特許請
求の範囲第1項記載の電池。
2. The composite microporous material, wherein a salt having a relative humidity of 70% RH or more of a saturated aqueous solution in the presence of a solid phase is present on a surface of the gas diffusion electrode facing the air intake side. The battery according to claim 1.
【請求項3】前記複合微多孔材料と同一構成の材料を、
前記複合微多孔材料と前記電池容器内面との間に、溌水
性材料で覆われた面を前記複合微多孔材料側に向けて配
置させた特許請求の範囲第1項または第2項記載の電
池。
3. A material having the same constitution as the composite microporous material,
The battery according to claim 1 or 2, wherein a surface covered with a water-repellent material is disposed between the composite microporous material and the inner surface of the battery container toward the composite microporous material. .
【請求項4】前記複合微多孔材料の溌水性材料で覆われ
た面側に、溌水性材料を共有する前記複合微多孔材料を
配した特許請求の範囲第1項または第2項記載の電池。
4. The battery according to claim 1, wherein the composite microporous material sharing the water-repellent material is disposed on the side of the composite microporous material covered with the water-repellent material. .
【請求項5】前記二つの複合微多孔材料間に、不織布等
の空気拡散多孔体を介在させた特許請求の範囲第3項記
載の電池。
5. The battery according to claim 3, wherein an air diffusion porous material such as a nonwoven fabric is interposed between said two composite microporous materials.
【請求項6】前記複合微多孔材料のうち、最も電池容器
側に近いものと前記電池容器との間に不織布等の空気拡
散多孔体を介在させた特許請求の範囲第1項から第5項
のいずれかに記載の電池。
6. An air diffusion porous material such as a nonwoven fabric is interposed between the battery container and one of the composite microporous materials closest to the battery container side. The battery according to any one of the above.
【請求項7】前記複合微多孔材料のうち、最もガス拡散
電極側に近いものとガス拡散電極との間に、溌水性の多
孔性フィルムよりなる酸素極を支持する多孔膜を介在さ
せた特許請求の範囲第1項から第6項のいずれかに記載
の電池。
7. A patent wherein a porous membrane supporting an oxygen electrode made of a water-repellent porous film is interposed between the composite microporous material closest to the gas diffusion electrode and the gas diffusion electrode. A battery according to any one of claims 1 to 6.
JP2101325A 1990-04-17 1990-04-17 Battery Expired - Fee Related JP2817341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101325A JP2817341B2 (en) 1990-04-17 1990-04-17 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101325A JP2817341B2 (en) 1990-04-17 1990-04-17 Battery

Publications (2)

Publication Number Publication Date
JPH03297055A JPH03297055A (en) 1991-12-27
JP2817341B2 true JP2817341B2 (en) 1998-10-30

Family

ID=14297670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101325A Expired - Fee Related JP2817341B2 (en) 1990-04-17 1990-04-17 Battery

Country Status (1)

Country Link
JP (1) JP2817341B2 (en)

Also Published As

Publication number Publication date
JPH03297055A (en) 1991-12-27

Similar Documents

Publication Publication Date Title
US4189526A (en) Metal/oxygen cells and method for optimizing the active life properties thereof
EP1859505B1 (en) Air cell with improved leakage resistance
JPH0417259A (en) Battery
JP2817341B2 (en) Battery
JP2782837B2 (en) Battery
JPH0562687A (en) Oxygen transmitting composite film and cell provided with the composite film
JPH09274936A (en) Air cell
JP2817343B2 (en) Battery
JP2778078B2 (en) Battery
JP2757383B2 (en) Battery
JPS6261275A (en) Air cell
JP2822485B2 (en) Battery
JP2782911B2 (en) Battery
JP2743574B2 (en) Battery
JPH05205784A (en) Oxygen permeable composite film and battery employing said composite film
JPH04312771A (en) Air battery
JPS6051505A (en) Gas selective composite membrane
JPS63138668A (en) Thin type air cell
JPH0475253A (en) Manufacture of battery
JP2734057B2 (en) Battery manufacturing method
JPH05205786A (en) Oxygen permeable compound membrane and battery using said compound membrane
JPH05200928A (en) Oxygen-permeable composite membrane and battery using the same
JPH042067A (en) Battery
JPH04162374A (en) Battery
JPH01267974A (en) Battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070821

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees