JPH0416078B2 - - Google Patents

Info

Publication number
JPH0416078B2
JPH0416078B2 JP62329253A JP32925387A JPH0416078B2 JP H0416078 B2 JPH0416078 B2 JP H0416078B2 JP 62329253 A JP62329253 A JP 62329253A JP 32925387 A JP32925387 A JP 32925387A JP H0416078 B2 JPH0416078 B2 JP H0416078B2
Authority
JP
Japan
Prior art keywords
film
image
polyester
paper
thermal transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62329253A
Other languages
Japanese (ja)
Other versions
JPH01168493A (en
Inventor
Yoshiki Sato
Satoshi Otonari
Shigehiro Masuda
Kazuyuki Akatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP62329253A priority Critical patent/JPH01168493A/en
Priority to EP19880121526 priority patent/EP0322771A3/en
Priority to KR1019880017470A priority patent/KR960016057B1/en
Publication of JPH01168493A publication Critical patent/JPH01168493A/en
Publication of JPH0416078B2 publication Critical patent/JPH0416078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • B41M5/41Base layers supports or substrates

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は感熱転写記録に供される受像シートに
関する。詳しくは、表面及び内部に微細な独立気
泡を含有したポリエステルフイルムを用いること
により、印字斑の無い鮮明な画像が得られ、寸法
安定性に優れ、熱による収縮が少なくカール等の
変形がない優れた感熱転写用受像シートを提供す
るものである。 〔従来の技術および発明が解決しようとする問題
点〕 最近の情報処理技術の発達は著しく、それに伴
ないハードコピー技術の多機能化、高機能化が進
められている。ハードコピー技術において、記録
方法の一つとして感熱転写記録方式が用いられて
いる。感熱転写記録の概要は、昇華性または気化
性染料、あるいは適度な熱で溶融する染料を含有
する転写層を有する転写シートと、受像シートと
を重ね合わせ、転写シートを加熱して転写層に含
まれた染料を昇華または気化、あるいは溶融させ
て受像シートに染着、あるいは転着させ受像シー
トに染料画像を形成させるものである。現在、該
記録方法においても多機能化、高機能化が、進み
つつあり、プリントの高速化、高解像度化、高印
字品質化等がその例として挙げられる。 さて、このような熱転写記録に用いられる受像
シートとしては、従来セルロース紙等の一般的な
印刷用紙、カレンダー仕上げを加えたグラビア
紙、あるいは紙の表面の凹凸及び孔を微細な粒子
よりなる顔料で被覆して平滑性、光沢性の優れた
紙面とした塗工紙のアート紙やコート紙等が用い
られている。また強度、寸法安定性、無塵性等が
優れる合成紙も用いられている。近年の高機能化
の進捗に伴ないこれらの受像シートにおいても高
品質化の要求が強い。具体的には機械的強度が強
く、寸法安定性が良好で、しかも耐熱性に優れ、
白色隠蔽性を有し、熱転写による印字斑の無いと
いう総合的な特性を向上した受像シートが望まれ
ている。すなわち従来用いられていたセルロース
紙、あるいは合成紙、プラスチツクフイルムはこ
れらの要求をすべて満足できるものではなかつ
た。 即ち、従来のセルロース紙の如き印刷用紙は強
度が小さいために破断し易く、薄紙化できないこ
とや、無塵性が劣ること、更には耐水性が低いこ
と等の欠点を有していた。また、紙表面の凹凸が
大きいため、印字斑が生じ易く、鮮明な画像が得
難たかつた。 一方、合成紙はセルロース紙に比べ強度、寸法
安定性、無塵性の点で好ましいとは言うものの、
高品質化の要求を必ずしも満足できるとは言えな
い。即ち、印字印刷性に関しては、更に平坦化改
良が要求されているし、また耐熱性が劣るため高
温度にさらされる用途には使用できなかつた。 さて、ポリエステルフイルムはその優れた耐熱
性、機械的特性、耐薬品性、耐候性等を有するこ
とから、各種産業において広く利用されている。
とりわけ二軸配向ポリ(エチレンテレフタレー
ト)フイルムは、特に寸法安定性、強度、平面性
等に優れるため、感熱転写記録法を用いて印字
し、オーバーヘツドプロジエクター用原稿等の用
途に使用されている。しかしながら、二軸配向ポ
リ(エチレンテレフタレート)フイルムを従来の
紙に代わる素材として感熱転写用受像シートに用
いようとするといくつかの問題点があつた。即
ち、二軸配向ポリ(エチレンテレフタレート)フ
イルムは強靭で剛直な特性を示す素材であり、柔
軟性に欠けるため、感熱ヘツド部における転写シ
ートと該受像シートとの密着性が充分でなく、こ
れが印字斑の原因となつて鮮明な画像が得られな
いという基本的な欠陥を有していた。また、従来
の紙に代替で使用する場合裏移りを防止するため
白色度および隠蔽性が必要であり、かかる特性を
付与するため白色顔料を添加する方法がとられ
る。かかる方法では充分な隠蔽性を与えるため、
極めて多量の顔料を添加する必要があり、このた
めフイルムは更に剛直となり、柔軟性を阻害し、
鮮明な画像が得られないばかりか取扱い中に手指
を切傷する等の取扱性の面でも好ましくない。さ
らにポリ(エチレンテレフタレート)フイルムは
比重が約1.4g/cm3と大きく、これを従来の紙に
代わる素材として用いた場合、書類の重量が極め
て重くなつてしまい持ち運びや保管場所の面でも
問題がある。 〔問題を解決するための手段〕 本発明者らは、かかる問題点を解決すべく鋭意
検討を行なつた結果、特定の条件を満足した微細
気泡を含有するポリエステルフイルムを用いるな
らば問題点を一挙に解決し、従来の紙や合成紙に
代る優れた感熱転写用受像シートが得られること
見出し、本発明に到達した。 即ち本発明の要旨は、見掛け比重が0.4〜1.3の
範囲であり、隠蔽度が0.2以上であり、且つ空気
漏れ指数が50〜10000秒の範囲である、少なくと
も1軸方向に延伸された微細気泡含有ポリエステ
ルフイルムから成ることを特徴とする感熱転写用
受像シートに存する。 以下、本発明を更に詳細に説明する。 本発明でいうポリエステルとはテレフタル酸、
イソフタル酸、ナフタレンジカルボン酸のごとき
芳香族ジカルボン酸又はそのエステルとエチレン
グリコール、ジエチレングリコール、1,4−ブ
タンジオール、ネオペンチルグリコール、1,4
−シクロヘキサンジメタノールのごときグリコー
ルとを重縮合させて製造されるポリエステルであ
る。 これらの酸成分とグリコール成分とからポリエ
ステルを製造するには通常行なわれている方法が
任意に採用される。例えば、芳香族ジカルボン酸
の低級アルキルエステルとグリコールとの間でエ
ステル交換反応を行なわせるか、あるいは芳香族
ジカルボン酸とグリコールとを直接エステル化さ
せて、実質的に芳香族ジカルボン酸のビスグリコ
ールエステル、またはその低重合体を形成せし
め、次いでこれを減圧下240℃以下の温度で重縮
合せしめる方法が採用される。この際、通常の触
媒、安定剤、各種添加剤等は任意に使用すること
ができる。 かかるポリエステルと代表例としてはポリ(エ
チレンテレフタレート)やポリ(エチレンナフタ
レート)あるいはポリ(ブチレンテレフタレー
ト)等が挙げられる。このポリエステルはホモポ
リマーであつてもよく、第三成分を共重合したポ
リマーであつても、また、これらのポリエステル
を混合したものであつてもよい。いずれにしても
本発明においてはエチレンテレフタレート単位及
び/又はエチレンナフタレート単位及び/又はブ
チレンテレフタレート単位を70mol%以上、好ま
しくは80mol%以上、更に好ましくは90mol%以
上有するポリエステルが好ましい。 また本発明において、かかるポリエステルの重
合度が低すぎると機械的強度が低下するため、該
ポリエステルの固有粘度は0.4以上であることが
好ましい。より好ましくは0.5〜1.2、更に好まし
くは0.55〜0.85である。 本発明においてはかかるポリエステルを用いて
フイルムを製造するが、該フイルムはその表面及
び内部に微細な独立気泡を含有した構造を有した
フイルムであつて該フイルムの見掛け比重は0.4
〜1.3であることが必要であり、好ましくは0.6〜
1.3である。見掛け比重が1.3を超えると、フイル
ムが含有する気泡の量が少ないため、柔軟性に劣
り、印字斑が生ずるため好ましくない。一方、見
掛け比重が0.4未満であると、フイルムの機械的
強度が不足するため、感熱転写時破れの原因とな
り好ましくない。 また本発明のフイルムの隠蔽度は、0.2以上で
あり好ましくは0.3以上である。隠蔽度が0.2未満
であると、転写した画像の裏移りが大きくコント
ラストが不鮮明となり画像が見づらく、また、解
読しにくい受像シートとなるため好ましくない。 また本発明のフイルムは空気漏れ指数が50〜
10000秒であることが必要であり、好ましくは100
秒以上5000秒以下であることが望ましい。50秒未
満であると、感熱転写ヘツド部での転写シートと
の密着性が悪くなり、転写効率が低下することか
ら印字斑が増大するため好ましくない。一方、
10000秒を超えるとフイルムの滑り性が極めて悪
くなり、感熱転写記録時の走行性が悪くなり、例
えば紙づまりといつた走行トラブルの原因となる
ため好ましくない。 本発明においてフイルムは少なくとも一軸方向
に延伸されていることもまた重要な要件であり、
かかる延伸の倍率は面積倍率で4倍以上であるこ
とが好ましく、更に好ましくは9倍以上であるこ
とが望ましい。即ち、未延伸のポリエステルフイ
ルムは機械的強度が著しく劣り、本発明の感熱転
写用受像シートとした場合に必要充分な強度、寸
法安定性を確保できないからである。 このように本発明の感熱転写用受像シートの基
材となるポリエステルフイルムは、かかる特性を
有することが必要であるが微細気泡を含有する構
造体であり、且つかかる特性及び要件を満たす限
りその製造方法について特に限定されるものでは
ない。即ち、かかる微細気泡を含有した構造体を
製造する方法として、例えば特開昭50−38765号
公報や特公昭57−46456号公報等に記載されてい
るような、ガスあるいは気化可能な物質を添加す
る方法、特開昭52−43871号公報や特公昭58−
50625号公報等に記載されているような化学的な
分解によりガスを発生する物質を添加する方法、
あるいは特開昭51−34963号公報や特公昭52−
27666号公報等に記載されているような溶剤に可
溶な物質を添加し、成型後液体を含浸させて抽出
する方法等が挙げられ、いずれの方法を採用して
も構わない。但しこれらの製造方法は特殊な成型
装置を必要としたり、製造工程の繁雑化を伴なう
ことから、簡便に採用できる方法とは必ずしも言
い難い。 そこで、本発明の微細気泡含有ポリエステルフ
イルムを容易に製造する方法としては、例えば本
発明者らが先に提案した特願昭61−313896号の方
法を採用するのが好ましい。即ちポリエステルに
特定のポリプロピレンを配合して、シート状に押
出成形し、次いで該シートを少なくとも一軸方向
に延伸してフイルムとする方法である。詳しく
は、ポリエステルにメルトフローインデツクス
(以下M.F.Iと略記する)0.2〜120の結晶性ポリプ
ロピレンホモポリマーを3〜50wt%配合し、溶
融押出成形して実質的に無定形のシートとなし、
次いで該シートを少なくとも一軸方向に面積倍率
で4倍以上延伸することによりフイルムとなし、
該フイルムの表面及び内部に微細な気泡を多数含
有せしめたポリエステルフイルムとする方法であ
る。 かかる方法を採用すれば、本発明の見掛け比重
が0.4〜1.3であり、隠蔽度が0.2以上であり、空気
漏れ指数が50〜10000秒の、少なくとも一軸方向
に延伸されたフイルムを容易に得ることができ
る。しかも、従来の製膜装置の改造を特に必要と
せず、通常の延伸ポリエステルの製造条件範囲内
で製造できることから、その製造コストを加味し
たメリツトは大きい。 かかる方法を更に詳しく説明する。かかる方法
において配合される結晶性ポリプロピレンホモポ
リマーとは、少なくとも95mol%以上、好ましく
は98mol%以上のプロピレン単位を有するポリマ
ーである。使用するポリプロピレンが非晶性であ
ると、無定形シートにした時該シート表面にポリ
プロピレンがブリードアウトし、冷却ロールや延
伸ロール等の表面を汚染するため好ましくない。 また、かかるポリプロピレンが例えばエチレン
単位を10mol%以上共重合されている場合、これ
を配合した延伸ポリエステルフイルムの内部に微
細気泡を充分含有させることができないため好ま
しくない。 かかるポリプロピレンのM.F.Iは0.2〜120、好
ましくは0.5〜50である。即ち、M.F.Iが0.2未満
であると生成気泡が極めて大きくなり、延伸時の
破断が頻発し、一方、M.F.Iが120以上であると、
テンターにおける延伸時、フイルムがクリツプか
ら外れることが多くなりいずれにおいても生産性
が極めて悪くなるため好ましくない。 かかるポリプロピレンの配合量は3〜50wt%
が好ましく、より好ましくは3〜30wt%、更に
好ましくは3〜20wt%である。即ち、該配合量
が3wt%未満であると、微細気泡の生成量が少な
くなり、フイルムの見掛け比重を1.3以下にする
ことは困難になる。一方、50wt%を超えると、
フイルムの機械的強度が極めて低下し、また、延
伸時の破断も起こるようになるため好ましくな
い。 かかる方法においては少なくとも一軸方向に延
伸することも必須要件である。これは先に述べた
機械的強度を付与する目的だけでなく、ポリエス
テルとポリプロピレンを単に配合しただけでは微
細な独立気泡を生成させることはできず、延伸工
程を併用して初めて生成含有ならしめることがで
きるからである。 かかる延伸方法自体は特殊な条件を採用する必
要はなく、通常のポリエステルフイルムを製造す
る範囲の条件を採用できる。 即ち、ポリエステルとポリプロピレンとの配合
物を原料として、溶融押出法を用いて実質的に無
定形のシートを得る。次いで該シートを縦方向及
び/または横方向に面積倍率で4倍以上、好まし
くは9倍以上延伸し、更に120〜250℃で熱処理を
行なうことにより、本発明の見掛け比重0.4〜
1.3、且つ隠蔽度0.2以上であり空気漏れ指数が50
〜10000秒である微細気泡を含有するフイルムを
容易に製造することができる。 かくして本発明のフイルムは、低比重で高い隠
蔽度を有した白色ポリエステルとして製造できる
が、その基本的特性を損なわない限り各種添加物
を配合しても何ら差しつかえはない。かかる添加
剤としては例えば抗酸化剤、紫外線吸収剤、滑
剤、帯電防止剤、染料、顔料、螢光増白剤、マツ
ト化剤、界面活性剤等が挙げられ、必要に応じ任
意の時期に適切な方法で適当量配合すればよい。 また、本発明のフイルムは染料との染着性、接
着性を改良するため、あるいは感熱転写装置内で
のブロツキングや帯電を防止するために、各種表
面処理を行なうことができる。表面処理法として
は例えば塗布処理、火炎処理、溶剤処理、プラズ
マ処理、コロナ放電処理、紫外線処理、イオンプ
レーテイング処理、サンドブラスト処理等が挙げ
られ、適当な時期に施すことができる。 かかる表面処理のうち、本発明においては塗布
処理が特に好ましく採用される。塗布層を構成す
る物質は、本発明の基体となるフイルム特性を満
足する範囲であれば、その他の必要特性、目的に
応じて塗布材料、塗布厚みを自由に選択できる。
例えば、熱可塑性樹脂や架橋性樹脂あるいはそれ
らに各種添加剤等を配合した組成物を必要に応じ
用いることができる。添加剤としては染料、顔
料、滑剤、抗酸化剤、紫外線吸収剤、帯電防止
剤、無機系微粒子、界面活性剤等が挙げられ、必
要に応じ適当量配合される。 塗布層を形成する方法は特に限定されるもので
はなく、既にフイルム化されたものに塗布しても
よくまた、フイルム製造工程内で行なつてもよ
い。例えば二軸延伸微細気泡含有ポリエステルフ
イルムに塗布層を設ける場合は、縦方向に一軸延
伸したフイルムに塗布剤を塗工し、塗布剤が乾燥
または未乾燥の状態で横方向に延伸して直ちに熱
処理を施す方法が製膜及び塗布、乾燥を同時に行
なえることから製造コスト面を加味したメリツト
が大きく、特に好ましく採用される。塗布層の形
成は片面あるいは両面に設けることができ、ま
た、両面に設ける場合、塗布剤は同一であつても
よく、異なつていてもよい。 <実施例> 以下本発明を実施例により具体的に説明する
が、本発明は、その要旨を越えない限り以下の実
施例に限定されるものではない。なお、本発明に
おける諸特性の測定及び評価は、次に示す方法に
て行なつた。 (1) 見掛け比重:ポリエステルフイルムの任意の
部分から10cm×10cmの正方形に5枚切り出し、
それぞれのサンプルについて、マイクロメータ
にて任意の9ケ所の厚さを測定し、それぞれの
平均厚さから体積を求めた後、各切り出しサン
プルの重量を計量して1cm3当りのグラム数を計
算し、5枚のサンプルの平均値をフイルムの見
掛け比重とした。 (2) 隠蔽度:マクベス濃度計TD−904型を使用
しGフイルター下での透過光濃度を測定した。
この値が大きい程隠蔽度が高いことを示す。測
定は3点行ないその平均値を測定値とした。 (3) 空気漏れ指数:JIS P8119−1976に規定され
たベツク(Bekk)平滑度測定機を用いて測定
した。この数値が大きいほど表面が平滑である
事を示す。測定は5点行ない、その平均値を測
定値とした。 (4) 熱収縮率:無張力状態で180℃雰囲気中5分
間熱処理し、その前後のサンプルの長さを測定
することにより、次式にて算出した。 熱収縮率(%)=(熱処理前のサンプル長)mm
−(熱処理後のサンプル長)mm/(熱処理前のサンプル
長)mm×100 (5) 柔軟性θ(deg):シートから、幅12.7mm、長
さ150mmに切出した試験片を長手方向に127mmは
み出すようにして水平に固定した後、はみ出し
た試験片の先端に0.9gの重りをつけて垂れ下
げる。水平に固定した固定点より垂直に30mm下
がつた点から水平方向に垂れ下がつたフイルム
までの距離ammを試験片の側面から測定し、
式;tanθ=a/30から垂れ下がり角度θ(deg.)
を計算し、柔軟性の指標とした。測定は3点行
ない、その平均値を測定値とした。この値が小
さい程、柔軟性が良好であることを示す。 (6) 印字品質:フイルムをA4版に裁断しこれに
シヤープ社製CX−5000カラープリンタを用い
て熱転写記録を行ない、得られたハードコピー
について目視で印字濃度、印字ムラ及びコント
ラストの程度をそれぞれ下記の5段階で評価し
た。 評価基準 5:(大変良い) 4:(良い) 3:(実用上支障は無い) 2:(実用上問題有り) 1:(悪い) (7) 実用適性:フイルムをA4版の大きさに20枚
裁断し、それらを重ねて、印字品質テストで使
用した感熱転写記録装置の受像紙フイード用カ
セツトにセツトした。この状態から20枚連続で
熱転写記録を実際に行ない、受像紙フイード部
での紙づまり、および装置内での走行不良等の
運転トラブルの発生状況を観察した。20枚のテ
ストで1回もトラブルの発生が無かつた場合は
○、1回以上トラブルが発生したものは×とし
て評価した。 実施例 1 白色顔料0.3μm酸化チタンを5wt%含有する極
限粘度0.648のポリ(エチレンテレフタレート)
チツプにM.F.I5の結晶性ポリプロピレンホモポ
リマーチツプを10wt%ブレンド配合した原料を
押出機にて290℃で溶融し、40℃冷却ドラム上に
シート状に押出して、厚さ0.7mmの無定形シート
を得た。次いで該シートを縦方向に85℃で3倍、
横方向に95℃で3.2倍延伸し、240℃で5秒間熱処
理して最終的にフイルム厚み100μmの白色二軸
延伸ポリエステルフイルムを得た。該フイルムの
見掛け比重は0.98、隠蔽度は0.5、空気漏れ指数
は4000秒であつた。 また、該フイルムの熱収縮率は縦方向1.1%横
方向1.6%であり、柔軟性θは40deg.であつた。 かかるフイルムを受像シートとしてA−4版に
裁断し、印字品質を評価したところ、印字濃度
4、印字ムラ5、コントラスト5と良好な画像が
得られ、受像操作時の紙づまり及び走行不良とも
無く良好な実用適性を示した。 実施例 2 実施例1で用いた、白色顔料を含有するポリ
(エチレンテレフタレート)の代わりに、顔料を
含有しない、極限粘度0.650のポリ(エチレンテ
レフタレート)を用い、ポリプロピレンの配合量
を20wt%とした以外は実施例1と同様にしてフ
イルム厚み100μmの白色2軸延伸ポリエステル
フイルムを得た。但し最終的な二軸延伸フイルム
の厚みを100μmにするため、押出機からのポリ
マー押出し量を調節し、無定形シートの厚さを
0.5mmとした。以下の比較例においても延伸フイ
ルムの厚さを調節するためにポリマー押出し量を
変化させて、無定形シートの厚さを調節した。か
くして得られた二軸延伸フイルムの見掛け比重
は、0.71、隠蔽度は0.6、空気漏れ指数は1100秒
であつた。 また、該フイルムの熱収縮率は縦方向1.2%横
方向1.9%であり柔軟性θは35deg.であつた。か
かるフイルムを実施例1と同様に印字品質を評価
したところ印字濃度5、印字ムラ4、コントラス
ト5と良好な画像が得られ、実用適性は紙づまり
及び、走行不良とも無く良好であつた。 実施例 3 実施例2と同様の原料を用い同様の条件で縦延
伸迄実施後、ロールコータにて片面に水分散性ポ
リエステル樹脂/水分散性ポリエステルポリウレ
タン樹脂/界面活性剤=20/79/1(重量比)を
配合した水分散液をシート上に塗布し、直ちに横
延伸機に導びく以外は実施例2と同様にして、最
終的に塗布層1μm厚を有する100μmの白色二軸
延伸ポリエステルフイルムを得た。かかるフイル
ムの見掛け比重は0.72、隠蔽度は0.6であり、塗
布層面の空気漏れ指数は5000秒、反対面は1100秒
であつた。また、熱収縮率及び柔軟性θは実施例
2と同じ値であつた。該フイルムの塗布層側に受
像するように感熱転写装置に供し、印字品質を評
価したところ、印字濃度5、印字ムラ5、コント
ラスト5であり極めて良好な復写画像が得られ
た。また、かかる装置内での紙づまり及び、走行
不良とも無く、実用適性に優れるものであつた。 比較例 1 極限粘度0.650のポリエチレンテレフタレート
を原料として使用する以外の製膜条件は実施例と
同様にしてフイルム化し、最終的に100μm厚と
なるようにして二軸延伸ポリエステルフイルムを
得た。 該フイルムの見掛け比重は1.4、隠蔽度0.1、空
気漏れ指数12000秒であり表面が平坦で透明なフ
イルムであつた。 該フイルムの熱収縮率は縦方向1.2%横方向1.4
%であり、柔軟性θは44degであつた。 かかるフイルムを、受像シートとして印字品質
を評価したところ印字濃度3、印字ムラ3、コン
トラスト1と劣るものであつた。また、熱転写装
置内での紙づまりや走行不良が度々起こり、実用
適性でも劣るものであつた。 比較例 2 比較例1で使用した原料に平均粒径2.5μmの炭
酸カルシウム粒子を10wt%ドライブレンドし押
出機ホツパーに供給する以外は比較例1と同様に
してフイルム化し、最終的に100μm厚の二軸延
伸ポリエステルフイルムを得た。該フイルムの見
掛け比重は、1.2、隠蔽度0.8であり、空気漏れ指
数30秒の極めて表面が粗面化されたフイルムであ
つた。又熱収縮率は縦方向1.2%横方向1.4%であ
り、柔軟性θは43degであつた。かかるフイルム
を受像シートとして使用した場合、紙づまりや走
行不良は全く発生せず良好な実用適性を有するも
のであつたが、印字品質は印字濃度2、印字ムラ
1、コントラスト2と極めて劣るものであつた。 比較例 3 比較例1で用いた原料の代りに0.3μm酸化チタ
ンを15wt%含有する極限粘度0.653のポリエチレ
ンテレフタレートを使用する以外は比較例1と同
様にして、最終的に100μmの二軸延伸ポリエス
テルフイルムを得た。得られたフイルムの隠蔽度
は1.2、空気漏れ指数は7000秒であり、隠蔽性に
優れ、表面が平坦なフイルムであつたが、見掛け
比重は1.5という高い値を示した。また熱収縮率
は縦方向1.0%、横方向1.1%であり、柔軟性θは
46deg.であつた。かかるフイルムを受像シートと
して印字品質を評価したところ、コントラストは
5であり良好であつたが、印字濃度は3、印字ム
ラは2と劣つており、満足できる品質ではなかつ
た。また熱転写装置内での走行不良のトラブル発
生もあり、実用適性に関しても劣るものであつ
た。 比較例 4 実施例1において配合したポリプロピレンの配
合量を50wt%とした以外は実施例1と同様にし
て、フイルムの製造を試みたが、延伸時に破断が
頻発し、生産性が極めて劣るものであることが判
明した。ちなみに小さな、枚葉サンプルを採取
し、厚み100μmの部分で見掛け比重を測定した
ところ0.4であつた。但し、機械的強度は著しく
劣るためフイルム物性、印字品質を評価すること
はできなかつた。 実施例1〜3、及び比較例1〜3で得られたフ
イルムの原料配合組成、フイルム物性及び受像シ
ートとして使用した場合の印字品質、実用特性そ
れぞれの概要を表1に示した。本発明で得られた
実施例1〜3のフイルムにおける印字品質、実用
適性の評価結果はいずれも良好であつた。隠蔽度
も十分であり、裏面から画像が透けて見えるよう
なことも無かつた。熱収縮率についてもいずれも
2%以下であり、寸法安定性に優れるため、印字
後のフイルムの波打ちやカールは認められなかつ
た。また柔軟性も良好であるため印字品質、実用
特性が良好であることに加え、取扱い性も向上し
た。このように本発明のフイルムは感熱転写用受
像シートとして優れたものであつた。 一方、比較例1〜4では本発明の要件が満たさ
れていないため、その効果が十分には得られず、
感熱転写用受像シートとして満足できる評価結果
は得られなかつた。
[Industrial Application Field] The present invention relates to an image receiving sheet used for thermal transfer recording. Specifically, by using a polyester film containing fine closed cells on the surface and inside, clear images without printing spots can be obtained, and it has excellent dimensional stability, and has little shrinkage due to heat and no deformation such as curling. The present invention provides an image-receiving sheet for thermal transfer. [Prior Art and Problems to be Solved by the Invention] Recent advances in information processing technology have been remarkable, and as a result, hard copy technology has become more multifunctional and sophisticated. In hard copy technology, a thermal transfer recording method is used as one of the recording methods. The outline of thermal transfer recording is that a transfer sheet having a transfer layer containing a sublimable or vaporizable dye, or a dye that melts with moderate heat, is placed on top of an image-receiving sheet, and the transfer sheet is heated to absorb the dye into the transfer layer. The dye is sublimated, vaporized, or melted to be dyed or transferred onto the image-receiving sheet, thereby forming a dye image on the image-receiving sheet. Currently, recording methods are becoming more multi-functional and sophisticated, and examples thereof include faster printing, higher resolution, and higher print quality. Now, the image receiving sheet used for such thermal transfer recording is conventionally used for general printing paper such as cellulose paper, gravure paper with calender finish, or paper surface with unevenness and holes made of pigment made of fine particles. Art paper, coated paper, etc., which are coated papers that have been coated to provide a paper surface with excellent smoothness and gloss, are used. Synthetic paper, which has excellent strength, dimensional stability, and dust-free properties, is also used. With the recent progress toward higher functionality, there is a strong demand for higher quality in these image receiving sheets. Specifically, it has strong mechanical strength, good dimensional stability, and excellent heat resistance.
There is a need for an image-receiving sheet that has improved overall characteristics such as white hiding properties and no printing spots caused by thermal transfer. That is, the conventionally used cellulose paper, synthetic paper, and plastic film could not satisfy all of these requirements. That is, conventional printing paper such as cellulose paper has drawbacks such as being easily broken due to its low strength, not being able to be made into thin paper, having poor dust-free properties, and low water resistance. Furthermore, since the paper surface has large irregularities, printing spots tend to occur, making it difficult to obtain clear images. On the other hand, although synthetic paper is preferable to cellulose paper in terms of strength, dimensional stability, and dust-free property,
It cannot be said that the demand for higher quality can always be satisfied. That is, in terms of printability, further improvement in flattening is required, and because the heat resistance is poor, it cannot be used in applications that are exposed to high temperatures. Polyester films are widely used in various industries because of their excellent heat resistance, mechanical properties, chemical resistance, weather resistance, etc.
In particular, biaxially oriented poly(ethylene terephthalate) film has excellent dimensional stability, strength, and flatness, so it is printed using a thermal transfer recording method and used for applications such as manuscripts for overhead projectors. . However, when attempting to use biaxially oriented poly(ethylene terephthalate) film as a material to replace conventional paper in image-receiving sheets for thermal transfer, several problems arose. In other words, biaxially oriented poly(ethylene terephthalate) film is a material that exhibits strong and rigid characteristics and lacks flexibility, so the adhesion between the transfer sheet and the image-receiving sheet in the heat-sensitive head section is insufficient, which causes printing problems. It had a fundamental defect in that it caused spots and made it impossible to obtain clear images. Furthermore, when used as an alternative to conventional paper, whiteness and hiding properties are required to prevent set-off, and a method of adding white pigments is used to impart such properties. In order to provide sufficient concealment with this method,
Extremely large amounts of pigment have to be added, which makes the film even more rigid and inhibits its flexibility.
Not only is it difficult to obtain a clear image, but it is also unfavorable in terms of handling, such as the possibility of cuts on hands and fingers during handling. Furthermore, poly(ethylene terephthalate) film has a high specific gravity of approximately 1.4 g/cm 3 , so if it were used as a material to replace conventional paper, the weight of the document would be extremely heavy, causing problems in terms of transportation and storage space. be. [Means for Solving the Problem] As a result of intensive studies to solve the problem, the present inventors found that if a polyester film containing microbubbles that satisfies specific conditions is used, the problem can be solved. The inventors have discovered that they can solve the problems at once and obtain an excellent image-receiving sheet for thermal transfer that can replace conventional paper or synthetic paper, and have arrived at the present invention. That is, the gist of the present invention is to provide microbubbles stretched in at least one axis, which have an apparent specific gravity in the range of 0.4 to 1.3, a degree of hiding of 0.2 or more, and an air leakage index in the range of 50 to 10,000 seconds. An image-receiving sheet for heat-sensitive transfer characterized by comprising a polyester film containing polyester. The present invention will be explained in more detail below. In the present invention, polyester refers to terephthalic acid,
Aromatic dicarboxylic acids such as isophthalic acid and naphthalene dicarboxylic acid or their esters and ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, 1,4
- A polyester produced by polycondensation with a glycol such as cyclohexanedimethanol. Any commonly used method can be used to produce polyester from these acid components and glycol components. For example, by carrying out a transesterification reaction between a lower alkyl ester of an aromatic dicarboxylic acid and a glycol, or by directly esterifying an aromatic dicarboxylic acid and a glycol, the bisglycol ester of an aromatic dicarboxylic acid is substantially , or a low polymer thereof, is then polycondensed under reduced pressure at a temperature of 240° C. or lower. At this time, conventional catalysts, stabilizers, various additives, etc. can be used as desired. Typical examples of such polyesters include poly(ethylene terephthalate), poly(ethylene naphthalate), and poly(butylene terephthalate). This polyester may be a homopolymer, a polymer copolymerized with a third component, or a mixture of these polyesters. In any case, in the present invention, polyesters having 70 mol% or more, preferably 80 mol% or more, and more preferably 90 mol% or more of ethylene terephthalate units and/or ethylene naphthalate units and/or butylene terephthalate units are preferred. Furthermore, in the present invention, if the degree of polymerization of the polyester is too low, the mechanical strength will decrease, so the intrinsic viscosity of the polyester is preferably 0.4 or more. More preferably 0.5 to 1.2, still more preferably 0.55 to 0.85. In the present invention, a film is produced using such polyester, and the film has a structure containing fine closed cells on its surface and inside, and the apparent specific gravity of the film is 0.4.
Must be ~1.3, preferably 0.6~
It is 1.3. If the apparent specific gravity exceeds 1.3, the film contains a small amount of air bubbles, resulting in poor flexibility and uneven printing, which is undesirable. On the other hand, if the apparent specific gravity is less than 0.4, the mechanical strength of the film will be insufficient, which may cause tearing during thermal transfer, which is undesirable. Further, the degree of hiding of the film of the present invention is 0.2 or more, preferably 0.3 or more. If the degree of hiding is less than 0.2, the transferred image will have a large set-off, the contrast will be unclear, the image will be difficult to see, and the image-receiving sheet will be difficult to decipher, which is not preferable. In addition, the film of the present invention has an air leakage index of 50~
Must be 10000 seconds, preferably 100
It is desirable that the time is between seconds and 5000 seconds. If the time is less than 50 seconds, the adhesion with the transfer sheet at the thermal transfer head portion becomes poor, the transfer efficiency decreases, and printing irregularities increase, which is not preferable. on the other hand,
If the time exceeds 10,000 seconds, the slipperiness of the film becomes extremely poor and the running performance during thermal transfer recording deteriorates, which is undesirable as it may cause running troubles such as paper jams. In the present invention, it is also an important requirement that the film be stretched in at least one axis,
The stretching magnification is preferably 4 times or more in terms of area magnification, more preferably 9 times or more. That is, an unstretched polyester film has extremely poor mechanical strength, and cannot ensure sufficient strength and dimensional stability when used as the image-receiving sheet for thermal transfer of the present invention. As described above, the polyester film that serves as the base material of the image-receiving sheet for thermal transfer of the present invention is required to have such properties, but it is a structure containing fine bubbles, and as long as it satisfies such properties and requirements, manufacturing The method is not particularly limited. That is, as a method for manufacturing a structure containing such microbubbles, a gas or a vaporizable substance is added, as described in, for example, Japanese Patent Application Laid-Open No. 50-38765 and Japanese Patent Publication No. 57-46456. Methods of
A method of adding a substance that generates gas through chemical decomposition as described in Publication No. 50625, etc.;
Or JP-A No. 51-34963 or JP-A No. 52-
Examples include a method of adding a substance soluble in a solvent as described in Japanese Patent No. 27666, and impregnating and extracting a liquid after molding, and any method may be used. However, since these manufacturing methods require special molding equipment and involve complicated manufacturing processes, they cannot necessarily be said to be methods that can be easily adopted. Therefore, as a method for easily producing the polyester film containing microcells of the present invention, it is preferable to employ, for example, the method disclosed in Japanese Patent Application No. 61-313896, which was previously proposed by the present inventors. That is, this is a method in which a specific polypropylene is blended with polyester, extrusion molded into a sheet, and then the sheet is stretched in at least one direction to form a film. Specifically, 3 to 50 wt% of crystalline polypropylene homopolymer with a melt flow index (hereinafter abbreviated as MFI) of 0.2 to 120 is blended with polyester, and melt extrusion molded to form a substantially amorphous sheet.
Then, the sheet is stretched in at least one direction at an area magnification of 4 times or more to form a film,
This method produces a polyester film containing a large number of fine air bubbles on the surface and inside of the film. By employing such a method, it is possible to easily obtain the film of the present invention, which has an apparent specific gravity of 0.4 to 1.3, a degree of hiding of 0.2 or more, and an air leakage index of 50 to 10,000 seconds, and is stretched in at least one axis. I can do it. Moreover, since it does not require any modification of conventional film forming equipment and can be manufactured within the range of normal stretched polyester manufacturing conditions, it has great merits when taking into account the manufacturing cost. This method will be explained in more detail. The crystalline polypropylene homopolymer blended in such a method is a polymer having at least 95 mol% or more, preferably 98 mol% or more of propylene units. If the polypropylene used is amorphous, the polypropylene bleeds out on the surface of the sheet when it is made into an amorphous sheet, which is not preferable because it contaminates the surfaces of cooling rolls, stretching rolls, etc. Furthermore, if such polypropylene is copolymerized with, for example, 10 mol % or more of ethylene units, it is not preferable because a stretched polyester film blended with the polypropylene cannot contain sufficient microbubbles. The MFI of such polypropylene is from 0.2 to 120, preferably from 0.5 to 50. That is, if the MFI is less than 0.2, the bubbles generated will be extremely large and breakage will occur frequently during stretching, while if the MFI is 120 or more,
During stretching in a tenter, the film often comes off from the clips, which is undesirable because productivity becomes extremely poor in either case. The blending amount of such polypropylene is 3 to 50 wt%.
is preferable, more preferably 3 to 30 wt%, still more preferably 3 to 20 wt%. That is, if the blending amount is less than 3 wt%, the amount of microbubbles produced will be small, making it difficult to reduce the apparent specific gravity of the film to 1.3 or less. On the other hand, if it exceeds 50wt%,
This is not preferable because the mechanical strength of the film is extremely reduced and breakage occurs during stretching. In such a method, stretching in at least one axis is also an essential requirement. This is not only for the purpose of imparting mechanical strength as mentioned above, but also because it is not possible to generate fine closed cells simply by blending polyester and polypropylene, and it is only possible to generate them by using a stretching process. This is because it can be done. The stretching method itself does not require special conditions, and conditions within the range for producing ordinary polyester films can be used. That is, a substantially amorphous sheet is obtained using a melt extrusion method using a blend of polyester and polypropylene as a raw material. Next, the sheet is stretched in the longitudinal direction and/or the transverse direction at an area magnification of 4 times or more, preferably 9 times or more, and further heat-treated at 120 to 250°C, whereby the apparent specific gravity of the present invention is 0.4 to 0.4.
1.3, and the concealment degree is 0.2 or more, and the air leakage index is 50.
Films containing microbubbles can be easily produced in ~10,000 seconds. Thus, the film of the present invention can be produced as a white polyester having a low specific gravity and a high degree of hiding, but there is no problem in adding various additives as long as the basic properties are not impaired. Such additives include, for example, antioxidants, ultraviolet absorbers, lubricants, antistatic agents, dyes, pigments, fluorescent whitening agents, matting agents, surfactants, etc., and can be added at any time as needed. They may be blended in appropriate amounts using a suitable method. Further, the film of the present invention can be subjected to various surface treatments in order to improve dyeability and adhesion with dyes, or to prevent blocking and charging in a thermal transfer device. Examples of surface treatment methods include coating treatment, flame treatment, solvent treatment, plasma treatment, corona discharge treatment, ultraviolet treatment, ion plating treatment, and sandblasting treatment, which can be performed at an appropriate time. Among such surface treatments, coating treatment is particularly preferably employed in the present invention. As long as the substance constituting the coating layer satisfies the properties of the film serving as the base of the present invention, the coating material and coating thickness can be freely selected depending on other necessary properties and purposes.
For example, a thermoplastic resin, a crosslinkable resin, or a composition in which various additives and the like are blended therewith can be used as required. Examples of additives include dyes, pigments, lubricants, antioxidants, ultraviolet absorbers, antistatic agents, inorganic fine particles, surfactants, etc., and are added in appropriate amounts as necessary. The method for forming the coating layer is not particularly limited, and the coating layer may be coated onto a film that has already been formed, or may be formed during the film manufacturing process. For example, when providing a coating layer on a biaxially stretched microcellular polyester film, the coating agent is applied to the film that has been uniaxially stretched in the longitudinal direction, stretched in the horizontal direction while the coating agent is dry or undried, and immediately heat-treated. This method is particularly preferably adopted because film formation, coating, and drying can be carried out simultaneously, which has a great advantage in terms of production costs. The coating layer can be formed on one side or both sides, and when it is formed on both sides, the coating agent may be the same or different. <Examples> The present invention will be specifically explained below using Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. The various properties in the present invention were measured and evaluated by the following methods. (1) Apparent specific gravity: Cut 5 square pieces of 10cm x 10cm from any part of polyester film,
For each sample, measure the thickness at nine arbitrary points with a micrometer, calculate the volume from the average thickness of each, then weigh each cut sample to calculate the number of grams per 1 cm3. The average value of the five samples was taken as the apparent specific gravity of the film. (2) Hiding degree: The density of transmitted light under the G filter was measured using a Macbeth densitometer model TD-904.
The larger this value is, the higher the degree of concealment is. Measurements were made at three points, and the average value was taken as the measured value. (3) Air leakage index: Measured using a Bekk smoothness measuring machine specified in JIS P8119-1976. The larger this number is, the smoother the surface is. Measurement was performed at 5 points, and the average value was taken as the measured value. (4) Heat shrinkage rate: Calculated using the following formula by heat-treating in a 180°C atmosphere for 5 minutes without tension and measuring the length of the sample before and after the treatment. Heat shrinkage rate (%) = (sample length before heat treatment) mm
- (Sample length after heat treatment) mm / (Sample length before heat treatment) mm × 100 (5) Flexibility θ (deg): A test piece cut from a sheet to a width of 12.7 mm and a length of 150 mm is 127 mm in the longitudinal direction. After fixing it horizontally so that it sticks out, attach a 0.9g weight to the tip of the protruding test piece and hang it down. Measure the distance amm from the side of the specimen from a point 30 mm vertically below the horizontally fixed point to the horizontally hanging film.
Formula; hanging angle θ (deg.) from tanθ=a/30
was calculated and used as an index of flexibility. Measurements were performed at three points, and the average value was taken as the measured value. The smaller this value is, the better the flexibility is. (6) Print quality: Cut the film into an A4 size sheet, perform thermal transfer recording on it using a Sharp CX-5000 color printer, and visually check the print density, print unevenness, and contrast of the resulting hard copy. Evaluation was made on the following five scales. Evaluation criteria 5: (Very good) 4: (Good) 3: (No practical problems) 2: (Practical problems) 1: (Bad) (7) Practical suitability: 20 times the film is the size of an A4 sheet. The sheets were cut, stacked, and placed in a receiving paper feed cassette of a thermal transfer recording device used in a print quality test. From this state, thermal transfer recording was actually performed on 20 consecutive sheets, and the occurrence of operational troubles such as paper jams in the receiver paper feed section and poor running within the apparatus was observed. If no trouble occurred even once in the test of 20 sheets, it was evaluated as ○, and if trouble occurred one or more times, it was evaluated as ×. Example 1 Poly(ethylene terephthalate) with an intrinsic viscosity of 0.648 containing 5 wt% of white pigment 0.3 μm titanium oxide
A raw material made by blending chips with 10wt% of MFI5 crystalline polypropylene homopolymer chips was melted at 290℃ in an extruder and extruded into a sheet onto a 40℃ cooling drum to obtain an amorphous sheet with a thickness of 0.7mm. Ta. Then, the sheet was heated 3 times in the longitudinal direction at 85°C.
The film was stretched 3.2 times in the transverse direction at 95°C and heat treated at 240°C for 5 seconds to finally obtain a white biaxially stretched polyester film with a film thickness of 100 μm. The film had an apparent specific gravity of 0.98, a degree of hiding of 0.5, and an air leakage index of 4000 seconds. Further, the heat shrinkage rate of the film was 1.1% in the longitudinal direction and 1.6% in the transverse direction, and the flexibility θ was 40 degrees. When this film was cut into an A-4 size image-receiving sheet and the print quality was evaluated, a good image was obtained with print density of 4, print unevenness of 5, and contrast of 5, and there were no paper jams or running defects during image-receiving operation. It showed good practical suitability. Example 2 Instead of the poly(ethylene terephthalate) containing white pigment used in Example 1, poly(ethylene terephthalate) containing no pigment and having an intrinsic viscosity of 0.650 was used, and the blending amount of polypropylene was 20 wt%. A white biaxially stretched polyester film having a film thickness of 100 μm was obtained in the same manner as in Example 1 except for this. However, in order to make the final biaxially stretched film 100 μm thick, the amount of polymer extruded from the extruder was adjusted to reduce the thickness of the amorphous sheet.
It was set to 0.5mm. In the following comparative examples as well, the thickness of the amorphous sheet was adjusted by changing the amount of polymer extrusion in order to adjust the thickness of the stretched film. The biaxially stretched film thus obtained had an apparent specific gravity of 0.71, a degree of hiding of 0.6, and an air leakage index of 1100 seconds. Further, the heat shrinkage rate of the film was 1.2% in the longitudinal direction and 1.9% in the transverse direction, and the flexibility θ was 35 degrees. When the printing quality of this film was evaluated in the same manner as in Example 1, a good image was obtained with printing density of 5, printing unevenness of 4, and contrast of 5, and the practical suitability was good with no paper jams or poor running. Example 3 After longitudinal stretching using the same raw materials as in Example 2 and under the same conditions, one side was coated with water-dispersible polyester resin/water-dispersible polyester polyurethane resin/surfactant = 20/79/1 using a roll coater. A 100 μm white biaxially oriented polyester with a final coating layer of 1 μm thickness was prepared in the same manner as in Example 2 except that an aqueous dispersion containing (weight ratio) was applied onto a sheet and immediately led to a transverse stretching machine. I got the film. The apparent specific gravity of this film was 0.72, the degree of hiding was 0.6, and the air leakage index on the coated layer side was 5000 seconds, and on the opposite side was 1100 seconds. Further, the thermal shrinkage rate and flexibility θ were the same values as in Example 2. When the film was subjected to a thermal transfer device so that the image was received on the coated layer side and the print quality was evaluated, an extremely good reproduced image was obtained with print density of 5, print unevenness of 5, and contrast of 5. Furthermore, there was no paper jam or poor running in the device, and the device was highly suitable for practical use. Comparative Example 1 A film was produced in the same manner as in the example except that polyethylene terephthalate having an intrinsic viscosity of 0.650 was used as a raw material, and a biaxially stretched polyester film was obtained with a final thickness of 100 μm. The film had an apparent specific gravity of 1.4, a degree of hiding of 0.1, an air leakage index of 12,000 seconds, and was a transparent film with a flat surface. The heat shrinkage rate of the film is 1.2% in the vertical direction and 1.4% in the horizontal direction.
%, and the flexibility θ was 44 degrees. When the printing quality of this film was evaluated as an image-receiving sheet, the printing density was 3, the printing unevenness was 3, and the contrast was 1, which was poor. Further, paper jams and poor running occurred frequently within the thermal transfer device, and the practical suitability of the device was also poor. Comparative Example 2 A film was produced in the same manner as Comparative Example 1 except that 10 wt % of calcium carbonate particles with an average particle size of 2.5 μm were dry blended with the raw materials used in Comparative Example 1 and fed to the extruder hopper, and finally a film with a thickness of 100 μm was prepared. A biaxially stretched polyester film was obtained. The apparent specific gravity of the film was 1.2, the degree of hiding was 0.8, and the film had an extremely roughened surface with an air leakage index of 30 seconds. The heat shrinkage rate was 1.2% in the longitudinal direction and 1.4% in the transverse direction, and the flexibility θ was 43 degrees. When such a film was used as an image-receiving sheet, no paper jams or running defects occurred and it had good practical suitability, but the printing quality was extremely poor with printing density of 2, printing unevenness of 1, and contrast of 2. It was hot. Comparative Example 3 In the same manner as Comparative Example 1 except that polyethylene terephthalate with an intrinsic viscosity of 0.653 containing 15 wt% of 0.3 μm titanium oxide was used instead of the raw material used in Comparative Example 1, a 100 μm biaxially stretched polyester was finally produced. I got the film. The obtained film had a hiding degree of 1.2 and an air leakage index of 7000 seconds, indicating excellent hiding properties and a flat surface, but the apparent specific gravity showed a high value of 1.5. The heat shrinkage rate is 1.0% in the vertical direction and 1.1% in the horizontal direction, and the flexibility θ is
It was 46deg. When this film was used as an image-receiving sheet and the printing quality was evaluated, the contrast was good at 5, but the printing density was 3 and the printing unevenness was poor at 2, which was not satisfactory. Furthermore, there were problems with poor running within the thermal transfer device, and the practical applicability was also poor. Comparative Example 4 An attempt was made to produce a film in the same manner as in Example 1 except that the amount of polypropylene blended in Example 1 was changed to 50 wt%, but the film frequently broke during stretching and the productivity was extremely poor. It turns out that there is something. By the way, when I took a small leaf sample and measured the apparent specific gravity of a 100 μm thick part, it was 0.4. However, since the mechanical strength was extremely poor, it was not possible to evaluate the film's physical properties and printing quality. Table 1 summarizes the raw material composition, physical properties of the films obtained in Examples 1 to 3 and Comparative Examples 1 to 3, and the printing quality and practical characteristics when used as image-receiving sheets. The evaluation results of printing quality and practical suitability of the films of Examples 1 to 3 obtained in the present invention were all good. The degree of concealment was also sufficient, and there was no possibility that the image could be seen through the back side. The thermal shrinkage rate was also 2% or less in all cases, and the dimensional stability was excellent, so no waving or curling of the film was observed after printing. In addition, since it has good flexibility, it not only has good printing quality and practical characteristics, but also improved handling properties. Thus, the film of the present invention was excellent as an image-receiving sheet for thermal transfer. On the other hand, in Comparative Examples 1 to 4, the requirements of the present invention were not met, so the effects were not sufficiently obtained.
No satisfactory evaluation results were obtained as an image-receiving sheet for thermal transfer.

【表】 <発明の効果> 本発明の表面及び内部に微細な独立気泡を含有
せしめたポリエステルフイルムを用いた感熱転写
用受像シートは従来のセルロース紙、合成紙等の
受像紙と比較して、高強度で、寸法安定性、耐熱
性に優れ、受像時の熱による収縮やカールが無
く、また、無塵性に優れている。 また、微細気泡を含まない通常のポリエステル
フイルムとの比較においては、適度な凹凸及び柔
軟性を有することから、感熱転写時の印字斑が極
めて少なくコントラストが良好で鮮明な画像が得
られる。 また、フイルム見掛け比重の軽減により柔軟
性、即ち、しなやかさが付与されたことにより、
転写操作時の走行トラブルは極めて少なくなり、
受像紙の取扱い性が良好となつた。
[Table] <Effects of the Invention> The image-receiving sheet for thermal transfer using the polyester film containing fine closed cells on the surface and inside of the present invention has the following effects compared to conventional image-receiving papers such as cellulose paper and synthetic paper. It has high strength, excellent dimensional stability and heat resistance, does not shrink or curl due to heat during image reception, and is dust-free. In addition, in comparison with a normal polyester film that does not contain microbubbles, it has appropriate unevenness and flexibility, so it produces clear images with very little printing unevenness during thermal transfer and good contrast. In addition, by reducing the apparent specific gravity of the film, it has been given flexibility, that is, suppleness.
Running troubles during transfer operations are extremely reduced.
The handling of the receiver paper became better.

Claims (1)

【特許請求の範囲】[Claims] 1 見掛け比重が0.4〜1.3の範囲であり、隠蔽度
が0.2以上であり、且つ空気漏れ指数が50〜10000
秒の範囲である、少なくとも1軸方向に延伸され
た微細気泡含有ポリエステルフイルムから成るこ
とを特徴とする感熱転写用受像シート。
1 The apparent specific gravity is in the range of 0.4 to 1.3, the degree of concealment is 0.2 or more, and the air leakage index is 50 to 10,000.
1. An image-receiving sheet for thermal transfer, comprising a polyester film containing fine bubbles stretched in at least one axial direction within a range of seconds.
JP62329253A 1987-12-25 1987-12-25 Image receiving sheet for thermosensitive transfer Granted JPH01168493A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62329253A JPH01168493A (en) 1987-12-25 1987-12-25 Image receiving sheet for thermosensitive transfer
EP19880121526 EP0322771A3 (en) 1987-12-25 1988-12-22 Image-receiving sheet for heat sensitive transfer
KR1019880017470A KR960016057B1 (en) 1987-12-25 1988-12-24 Image-receiving sheet for heat sensitive transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329253A JPH01168493A (en) 1987-12-25 1987-12-25 Image receiving sheet for thermosensitive transfer

Publications (2)

Publication Number Publication Date
JPH01168493A JPH01168493A (en) 1989-07-03
JPH0416078B2 true JPH0416078B2 (en) 1992-03-19

Family

ID=18219373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329253A Granted JPH01168493A (en) 1987-12-25 1987-12-25 Image receiving sheet for thermosensitive transfer

Country Status (3)

Country Link
EP (1) EP0322771A3 (en)
JP (1) JPH01168493A (en)
KR (1) KR960016057B1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8817221D0 (en) * 1988-07-20 1988-08-24 Ici Plc Receiver sheet
JPH0240565U (en) * 1988-09-07 1990-03-20
JP2701436B2 (en) * 1989-03-16 1998-01-21 ダイアホイルヘキスト株式会社 Polyester laminated film
JP2952918B2 (en) * 1990-01-08 1999-09-27 東レ株式会社 Heat transfer sheet
CA2038306A1 (en) * 1990-04-30 1991-10-31 Larry K. Maier Microvoided supports for receiving element used in thermal dye transfer
US5100862A (en) * 1990-04-30 1992-03-31 Eastman Kodak Company Microvoided supports for receiving element used in thermal dye transfer
JP2603474Y2 (en) * 1991-12-26 2000-03-13 国際チャート株式会社 Sheet for handy terminal printer
US5244861A (en) * 1992-01-17 1993-09-14 Eastman Kodak Company Receiving element for use in thermal dye transfer
EP0582750A1 (en) * 1992-08-11 1994-02-16 Agfa-Gevaert N.V. Photographic material with opaque polyester film support
US5698489A (en) * 1994-02-25 1997-12-16 Dai Nippon Printing Co., Ltd. Thermal transfer image-receiving sheet
JP3339746B2 (en) * 1994-05-19 2002-10-28 三菱化学ポリエステルフィルム株式会社 Polyester film for sublimation type thermal transfer recording material
JP3667371B2 (en) * 1995-01-11 2005-07-06 大日本印刷株式会社 Thermal transfer image receiving sheet
EP0884347B1 (en) 1997-06-09 2004-08-25 Toyo Boseki Kabushiki Kaisha Porous polyester film and thermal transfer image-receiving sheet
US6379780B1 (en) 1999-12-27 2002-04-30 Eastman Kodak Company Permeable surface imaging support
US6649250B2 (en) 2001-10-11 2003-11-18 Eastman Kodak Company Gloss coating on permeable surface imaging support
US11884838B1 (en) * 2022-07-07 2024-01-30 Toray Plastics (America), Inc. Soft matte non-silicone film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496052A (en) * 1978-01-14 1979-07-30 Nippon Telegr & Teleph Corp <Ntt> Heat recording paper
JPS59182787A (en) * 1983-04-01 1984-10-17 Kanzaki Paper Mfg Co Ltd Image receiving sheet for heat transfer recording
JPS6189888A (en) * 1984-10-09 1986-05-08 Kanzaki Paper Mfg Co Ltd Image-receiving sheet for heat transfer recording
JPS61108587A (en) * 1984-10-31 1986-05-27 Fuji Xerox Co Ltd Thermal transfer recording medium
JPS61121993A (en) * 1984-11-20 1986-06-09 Matsushita Electric Ind Co Ltd Image receiving body for thermal transfer recording
JPS6287390A (en) * 1985-10-15 1987-04-21 Oji Yuka Gouseishi Kk Image-receiving sheet for thermal transfer recording
JPS62278088A (en) * 1986-05-28 1987-12-02 Oji Paper Co Ltd Receiving sheet for thermal transfer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814657B1 (en) * 1970-05-26 1973-05-09
US3944699A (en) * 1972-10-24 1976-03-16 Imperial Chemical Industries Limited Opaque molecularly oriented and heat set linear polyester film and process for making same
EP0044616B1 (en) * 1980-07-17 1985-01-09 Imperial Chemical Industries Plc Films from compositions of polyesters and olefine polymers
JPS57159690A (en) * 1981-03-30 1982-10-01 Honshu Paper Co Ltd Heat-sensitive recording body
JPH0717777B2 (en) * 1987-02-05 1995-03-01 ダイアホイルヘキスト株式会社 Polyester film containing fine bubbles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496052A (en) * 1978-01-14 1979-07-30 Nippon Telegr & Teleph Corp <Ntt> Heat recording paper
JPS59182787A (en) * 1983-04-01 1984-10-17 Kanzaki Paper Mfg Co Ltd Image receiving sheet for heat transfer recording
JPS6189888A (en) * 1984-10-09 1986-05-08 Kanzaki Paper Mfg Co Ltd Image-receiving sheet for heat transfer recording
JPS61108587A (en) * 1984-10-31 1986-05-27 Fuji Xerox Co Ltd Thermal transfer recording medium
JPS61121993A (en) * 1984-11-20 1986-06-09 Matsushita Electric Ind Co Ltd Image receiving body for thermal transfer recording
JPS6287390A (en) * 1985-10-15 1987-04-21 Oji Yuka Gouseishi Kk Image-receiving sheet for thermal transfer recording
JPS62278088A (en) * 1986-05-28 1987-12-02 Oji Paper Co Ltd Receiving sheet for thermal transfer

Also Published As

Publication number Publication date
KR890009648A (en) 1989-08-03
KR960016057B1 (en) 1996-11-27
EP0322771A2 (en) 1989-07-05
EP0322771A3 (en) 1991-01-23
JPH01168493A (en) 1989-07-03

Similar Documents

Publication Publication Date Title
US7001557B2 (en) Biaxially oriented polyester film, and a production method thereof
US6562451B2 (en) Coated film
JPH0416078B2 (en)
EP1029704B1 (en) Biaxially oriented polyester film for ribbon for use in thermal transfer recording, and laminated film comprising the same and method for manufacture thereof
KR20010024241A (en) Thermal transfer ribbon and base film thereof
WO2000073081A1 (en) Polyester film for ink image receiving substrate and ink image receiving substrate
KR940011167B1 (en) Minute-cellular polyester film provided with coating
JPH10316783A (en) Film
JP2775742B2 (en) Printing substrate for printer
JP3169047B2 (en) the film
JP2611752B2 (en) Polyester resin film or sheet containing fine voids and method for producing the same
JPH0453716B2 (en)
JP3129907B2 (en) Polyester film
KR100243945B1 (en) Polyester film and the method of producing the same
JP3820033B2 (en) Biaxially oriented polyester film
JP2990695B2 (en) Transfer material for printer
JP3826330B2 (en) Coating film
JPH091760A (en) Conductive polyester film and manufacture thereof
KR100333940B1 (en) Polyester resin film or sheet containing fine cavities and manufacturing method thereof
JP2005007787A (en) Polyester film for thermal transfer ribbon
JP2599459B2 (en) Film for heat-sensitive stencil printing base paper
JPH0455378B2 (en)
JPH0952460A (en) Heat transfer image receiving body
JPH03169591A (en) Picture-receiving sheet for thermal transfer
JPH0247093A (en) Transfer material for printer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees