JPH04148508A - Method of producing uniaxially anisotropic rare-earth magnet - Google Patents

Method of producing uniaxially anisotropic rare-earth magnet

Info

Publication number
JPH04148508A
JPH04148508A JP2274379A JP27437990A JPH04148508A JP H04148508 A JPH04148508 A JP H04148508A JP 2274379 A JP2274379 A JP 2274379A JP 27437990 A JP27437990 A JP 27437990A JP H04148508 A JPH04148508 A JP H04148508A
Authority
JP
Japan
Prior art keywords
extrusion
powder
thickness
iron
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2274379A
Other languages
Japanese (ja)
Inventor
Ichiro Takasu
一郎 高須
Noboru Harada
昇 原田
Tomohiro Nishiyama
智宏 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2274379A priority Critical patent/JPH04148508A/en
Publication of JPH04148508A publication Critical patent/JPH04148508A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To obtain a magnetic material and also contribute to single axis anisotropy at once by using a hot extrusion process to form a magnetic alloy quenched powder which contains rare-earth elements, iron, and boron into a board shape with improved substantiality and reduced thickness. CONSTITUTION:When forming a board-shaped extrusion mold, it is necessary for at least one section to have a logarithmic strain absolute value higher than 0.5 to receive compression strain in the thickness direction. In order to achieve this, the aspect ratio of the cross section which crosses in the extrusion direction must be 2.0 or higher. For example, Nd, electrolytic iron, and boron are blended and a nodular powder using the gas atomizing method. After classification, this powder is inserted into an iron capsule, a vacuum is created inside, and a billet is obtained. This is filled into a die 3 of the thermal extruder and extruded by the stem 4. The cross section shape of nozzle 5 at the opening 5i is nearly equivalent to the end face of the metal capsule 2 and as movement proceeds in the extrusion direction Z, the dimensions in the direction X are virtually unchanged, while the dimensions in the direction Y are gradually diminished. As a result, the magnetic features in the thickness direction of the mold are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、希土類元素を含む一軸異方性永久磁石の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a uniaxially anisotropic permanent magnet containing rare earth elements.

(従来の技術) 従来、R−Fe−B系異方性磁石(Rは希土類元素)の
製造方法として、特開昭59−46008号公報、特開
昭60−100402号公報等に示されている方法か知
られている。
(Prior Art) Conventionally, methods for manufacturing R-Fe-B based anisotropic magnets (R is a rare earth element) have been disclosed in JP-A-59-46008, JP-A-60-100402, etc. How is it known?

前者の特開昭59−46008号公報に示されている方
法は、R−Fe −B系合金の鋳造材を粉砕して得た正
方晶相を主体とする粉末を磁場中で成形して焼結し、こ
の焼結体を熱処理するものであり、この方法による一軸
異方性磁石は既に市販されている。
The former method disclosed in JP-A No. 59-46008 involves crushing a cast material of an R-Fe-B alloy, forming a powder mainly consisting of a tetragonal phase in a magnetic field, and sintering it. The sintered body is then heat-treated, and uniaxially anisotropic magnets produced by this method are already commercially available.

後者の特開昭60−100402号公報に示されている
方法は、R−Fe−B系合金の非晶質相と微細結晶質相
とからなる溶湯急冷粉末を、高温成形して一旦等方性磁
石体を作成した後、高温で据込加工、後方押出加工等を
行なうことによって、据込方向に一軸異方性の、または
放射状に均等な−軸異方性の磁石を造るものである。
The latter method disclosed in Japanese Patent Application Laid-Open No. 100402/1980 involves molding a molten quenched powder consisting of an amorphous phase and a fine crystalline phase of an R-Fe-B alloy at a high temperature and then isotropically After creating a magnetic body, a magnet with uniaxial anisotropy in the upsetting direction or radially uniform -axial anisotropy is created by performing upsetting processing, backward extrusion processing, etc. at high temperatures. .

(発明か解決しようとする課題) このうち、前者の方法はpf−賎合金か活性なため、鋳
造材を数鉾■にまで粉砕するのに危険と手間か伴い、ま
た、焼結、熱処理などが必要なためにコストか嵩み、生
産性も高くないなどの難点かある。
(Problem to be solved by the invention) Among these methods, the former method uses a pf-powder alloy or is active, so it is dangerous and time-consuming to crush the cast material to several pieces, and it also requires sintering, heat treatment, etc. There are disadvantages such as the cost and bulk required, and the productivity is not high.

後者の方法は、製造に特殊な装置は必要でないか、等方
性磁石作成時及び異方性附与時の二段階の塑性加工か必
要なために、コスト面て問題かある。また、異方性附与
のための塑性加工としては、生産性の良い通常の相似形
断面への前方押出加工を行なったのでは、磁気特性が改
善される方向か押出方向に直交する2軸方向に現われる
ため、−軸異方性のものに較べて磁気特性か劣る。
The latter method does not require any special equipment for manufacturing, or requires two-step plastic working, one at the time of making the isotropic magnet and one at the time of imparting anisotropy, which poses a problem in terms of cost. In addition, as plastic processing for imparting anisotropy, it is difficult to perform forward extrusion processing on a normally similar cross section, which is highly productive, but it is difficult to perform plastic processing in the direction in which the magnetic properties are improved or in two axes orthogonal to the extrusion direction. Since it appears in the direction, its magnetic properties are inferior to those with -axis anisotropy.

この発明は、急冷粉末を用い、前方押出加工のみにより
磁石体の作成と一軸異方性の附与とを一挙に行なう製造
方法を実現しようとするものである。
This invention aims to realize a manufacturing method in which a magnet body is created and uniaxial anisotropy is imparted at the same time by using rapidly cooled powder and only by forward extrusion processing.

〔課題を解決するための手段〕[Means to solve the problem]

この発明においては、R−Fe −B系合金の急冷粉末
は、熱間押出加工によって、充実質化されると同時に、
厚味の逓減を受けて平板状に成形される。
In this invention, the rapidly solidified powder of the R-Fe-B alloy is enriched and refined by hot extrusion, and at the same time,
It is formed into a flat plate with decreasing thickness.

ここて使用される希土類元素Rは、ネオジムNd、プラ
セオジムPr、ランタンLa、セリウムCeのうちの一
種類または複数種類である。
The rare earth element R used here is one or more of neodymium Nd, praseodymium Pr, lanthanum La, and cerium Ce.

上記の平板状の熱間押出成形物は、その熱間押出加工中
に、少なくとも一部分において対数歪の絶対値か0.5
よりも大きい圧縮歪をその厚み方向に受けることか必要
である。そして、厚み方向の圧縮歪をこのような値にす
るためには、押出方向に直交する断面の縦横比(幅と厚
みの比)か2.0以上であることか必要である。
The flat plate-shaped hot extrusion molded product has an absolute value of logarithmic strain of 0.5 at least in a portion during hot extrusion processing.
It is necessary to receive a compressive strain larger than that in the thickness direction. In order to make the compressive strain in the thickness direction such a value, it is necessary that the aspect ratio (ratio of width to thickness) of the cross section perpendicular to the extrusion direction is 2.0 or more.

〔作   用〕[For production]

WS1図に示すように、R−Fe−B系合金の急冷粉末
1は適当な金属カプセル2に充填され、これをビレット
として熱間押出機のダイス3に装填され、ステム4によ
って押圧されてノズル5から押出される。ノズル5の断
面形状は、82図に示すように、λ口51ては金属カプ
セル2の端面にほぼ等しく、押出方向2に向うに従って
X方向の寸法は殆ど変化しないかY方向の寸法か漸減し
、出口5oてはX方向に長い長方形をなしている。従っ
て押出された成形物は、Y方向の厚みに較べてX方向の
幅か大てあり、2方向に長いものとなる。このようにし
て、成形物は厚み方向Yに強い圧縮歪を受けているため
に、厚み方向の磁気特性か大きく改善される。
As shown in Figure WS1, a rapidly solidified powder 1 of an R-Fe-B alloy is filled into a suitable metal capsule 2, which is then loaded into a die 3 of a hot extruder as a billet, and is pressed by a stem 4 to form a nozzle. Extruded from 5. As shown in Fig. 82, the cross-sectional shape of the nozzle 5 is such that the λ port 51 is approximately equal to the end surface of the metal capsule 2, and the dimension in the X direction hardly changes or the dimension in the Y direction gradually decreases as you move toward the extrusion direction 2. , the outlet 5o is in the form of a long rectangle in the X direction. Therefore, the extruded molded product has a larger width in the X direction than a thickness in the Y direction, and is longer in both directions. In this way, since the molded product is subjected to strong compressive strain in the thickness direction Y, the magnetic properties in the thickness direction are greatly improved.

上述のような厚みの減小(縦横比の増大)を伴なう熱間
押出加工の代りに、単に直径の減小と長さの増大とを生
ずる通常の相似形断面への熱間押出加工を行なった場合
は、次のようになる。
Instead of hot extrusion with a reduction in thickness (increase in aspect ratio) as described above, hot extrusion into a conventional similar cross-section which simply results in a reduction in diameter and an increase in length. If you do this, it will look like this:

第4図(a)に示すように、直径り、高さHの円柱形ビ
レウド41を熱間押出加工して、同図(b)に示すよう
な直径d、高さhの成形物42を得た場合、この成形物
42の中心43からRの距離にある微細部分44の押出
方向Zの対数歪ε2、半径方向rの対数歪εr及びZr
に共に直交するθ方向の対数歪εθは次のように表わさ
れる。
As shown in FIG. 4(a), a cylindrical bead 41 with a diameter and a height H is hot extruded to form a molded product 42 with a diameter d and a height h as shown in FIG. 4(b). When obtained, the logarithmic strain ε2 in the extrusion direction Z, the logarithmic strain εr in the radial direction r, and Zr of the fine part 44 located at a distance R from the center 43 of this molded article 42
The logarithmic strain εθ in the θ direction which is perpendicular to εθ is expressed as follows.

εz=io (h/)i) ε r= ε θ=−0,51rl (h/H)そして
、D=28−一、d=17mmとした場合は、微細部分
44のこれら対数歪は、距離Rに対応して同図(c)の
ようになる。
εz=io (h/)i) ε r= ε θ=-0,51rl (h/H) And when D=28-1 and d=17mm, these logarithmic strains of the minute part 44 are Corresponding to R, the result is as shown in FIG.

ここで、成形物42の直径dを変えることによって半径
方向対数歪ε「を変化させ、それによる磁気特性(BH
)■axの変化を調べた結果を第5図に示す。同図から
明らかなように、半径方向対数歪(rの絶対値か0.5
になるまでは磁気特性か向上するか、0.5を越えると
磁気特性の向上か飽和してしまい、それ以上の改善か望
めない、その理由は、このように成形物42か材料4■
と相似形の断面を持つ場合は、2軸r、θの双方に圧縮
歪か加わり、その結果これら2軸「、θの双方に磁気特
性の改善か分散されるためである。
Here, by changing the diameter d of the molded product 42, the radial logarithmic strain ε'' is changed, and the resulting magnetic properties (BH
) ■ Figure 5 shows the results of examining changes in ax. As is clear from the figure, the radial logarithmic strain (the absolute value of r is 0.5
The magnetic properties improve until it reaches 0.5, but once it exceeds 0.5, the magnetic properties reach saturation, and no further improvement can be expected.
This is because when the cross section is similar to that of , compressive strain is applied to both the two axes r and θ, and as a result, the magnetic properties are improved or distributed in both of these two axes r and θ.

ところか、この発明においては、第3図(a)に示すよ
うな直径D、高さHのビレット31は、第2図に示した
ようなノズル5を通過することによって、第3図(b)
のように、X方向の幅かa、Y方向ノ厚みかす、z方向
の長さがhである平板状に押出成形される。
However, in this invention, a billet 31 having a diameter D and a height H as shown in FIG. 3(a) passes through a nozzle 5 as shown in FIG. )
It is extruded into a flat plate having a width in the X direction of a, a thickness in the Y direction, and a length in the z direction, as shown in FIG.

この場合、成形物42の中心43からyの距離にあるx
、Z軸に平行な平面44内におけるX方向の対数歪をε
X、中心43からXの距離にあるY、Z軸に平行な平面
45内におけるY方向の対数歪をεy、2方向の対数歪
をε2とすると、これらは次のように表わされる。
In this case, x located at a distance y from the center 43 of the molded product 42
, the logarithmic strain in the X direction in the plane 44 parallel to the Z axis is ε
Let εy be the logarithmic strain in the Y direction in the plane 45 parallel to the Y and Z axes at a distance of X from the center 43, and let ε2 be the logarithmic strain in the two directions, these can be expressed as follows.

εX=交n  (b/丁τ7−−ロS)εy= −1n
  (a / W)4x”)ε2=−交n  (h/H
) そして。
εX=cross n (b/Ding τ7--RoS) εy= -1n
(a/W)4x”)ε2=-intersection n (h/H
) and.

D = 1las a : 10璽l b=3mm の場合の上記各対数歪は、第3図(C)に示すようにな
る。即ち成形¥@42は、X方向(幅方向)には殆ど圧
縮歪か存在していないのに対し、Y方向(厚み方向)に
は大きな圧縮歪が存在していることかわかる。従って、
この成形物は、従来の製造方法における高温プレス加工
や後方押出加工と同様に一軸異方性磁石を得ることがで
きる。
The above-mentioned logarithmic distortions in the case of D=1las a : 10cm b=3mm are as shown in FIG. 3(C). That is, it can be seen that in molding ¥@42, there is almost no compressive strain in the X direction (width direction), but there is a large compressive strain in the Y direction (thickness direction). Therefore,
A uniaxially anisotropic magnet can be obtained from this molded product in the same manner as high temperature press processing or backward extrusion processing in conventional manufacturing methods.

(実 施 例) 実施例1 Ndメタルと電解鉄とホウ素とを配合して、ガスアトマ
イズ法によって球状粉末を作製し、この粉末を500p
m以下の粒径の粉末に分級した。なお、この粉末を組成
分析したところ、Ndか17.Oat%、Bか6.Oa
t%、Feか76.5mm%及び少量の不純物からなっ
ていた。
(Example) Example 1 A spherical powder was prepared by blending Nd metal, electrolytic iron, and boron using a gas atomization method.
The powder was classified into powders with a particle size of m or less. When this powder was analyzed for its composition, it was found to be Nd or 17. Oat%, B or 6. Oa
t%, 76.5 mm% of Fe, and a small amount of impurities.

次に、外径11mm、長さ40mm、厚み1mmの鉄製
カプセル中に上記粉末を封入し、内部を真空排気してビ
レットを得た。
Next, the powder was encapsulated in an iron capsule with an outer diameter of 11 mm, a length of 40 mm, and a thickness of 1 mm, and the inside was evacuated to obtain a billet.

内径か1211て、ノズル出口形状が10smX 3■
■の長方形であるダイスを700°Cに加熱し、外面に
黒鉛系潤滑剤を塗布した上記ビレットをこのダイスに装
填し、プレス機によりステムを押込み、上記ビレットを
押出加工し1次々にビレ・ントを装填しなからこの押出
加工を反覆して、押出成形物を作製した。なお、押出加
工は、歪速度0.05sec−’で実施した。
Inner diameter is 1211, nozzle exit shape is 10sm x 3■
A rectangular die shown in (3) is heated to 700°C, the billet coated with graphite-based lubricant on the outer surface is loaded into the die, the stem is pushed in by a press, the billet is extruded, and the billets are formed one after another. The extrusion process was repeated without loading the sample to produce an extrudate. Note that the extrusion process was performed at a strain rate of 0.05 sec-'.

得られた輻10■鳳、厚み3■Iの平板材の中心部から
211角の立方体を切出して、各方向の対数歪ε及び測
定した磁気特性を第1表に示す。
A 211-sided cube was cut from the center of the obtained flat plate material with a diameter of 10 mm and a thickness of 3 mm, and the logarithmic strain ε in each direction and the measured magnetic properties are shown in Table 1.

なお、第1表における比較例は、同し粉末を外径28m
m、長さ40■鳳、肉厚l■−の鉄製カプセルに封入し
て真空排気し、これを直径14m−の丸棒に熱間押出し
て得た成形物から得た2■l角の立方体の測定値である
In addition, the comparative example in Table 1 uses the same powder with an outer diameter of 28 m.
A 2-inch square cube obtained from a molded product obtained by enclosing it in an iron capsule with a length of 40 mm and a wall thickness of 1-inch, evacuating it, and hot extruding it into a round bar with a diameter of 14 meters. is the measured value.

第   1   表 実施例2 Ndメタルと電解鉄とホウ素とを配合して、単ロール式
の溶湯急冷法によって合金薄片を作製し、さらにこの薄
片を500井■以下の粒径の粉末に粉砕した。なお、こ
の薄片を分析したところ、Ndか1:1.Oat%、B
か4.3mm%、Feが82.5mm%及び不純物少量
からなっていた。
Table 1 Example 2 Nd metal, electrolytic iron, and boron were blended to produce alloy flakes by a single-roll molten metal quenching method, and the flakes were ground into powder with a particle size of 500 wells or less. When this thin piece was analyzed, it was found that Nd was 1:1. Oat%, B
4.3 mm% of Fe, 82.5 mm% of Fe, and a small amount of impurities.

次に、この粉末を実施例1と同寸法のカプセルに充填し
て真空封止し、実施例1と同一の熱間押出加工を行ない
、輻lO■l、厚み3麿■の平板材を得た。
Next, this powder was filled into capsules with the same dimensions as in Example 1, vacuum-sealed, and subjected to the same hot extrusion process as in Example 1 to obtain a flat plate material with a diameter of 10 mm and a thickness of 3 mm. Ta.

この平板材の中心部と、中心からh幅(2,5−園)の
位置とから2麿園角の立方体を切出して、各方向の対数
歪ε及びこれについて測定した磁気特性を第2表に示す
A cube with an angle of 2 square meters was cut out from the center of this flat plate and a position h width (2,5-zono) from the center, and the logarithmic strain ε in each direction and the magnetic properties measured for this are shown in Table 2. Shown below.

比較例は、上記粉末を実施例1に掲げた比較例と全く同
一の条件て加工して得た直径14mmの丸棒の磁気特性
である。
The comparative example shows the magnetic properties of a round bar with a diameter of 14 mm obtained by processing the above powder under exactly the same conditions as the comparative example listed in Example 1.

第 表 実施例3 実施例2と同し合金粉末を、外径16■、長さ40m麿
、肉厚1mmの鉄製カプセルに充填して真空封止し、内
径が16m−でノズル出口形状か9.8■@X4.8■
■の長方形であるダイスを用い、ダイス温度700℃て
実施例1と同様の手法により押出加工を行ない、輻9.
8■−1厚み4.81の平板材を得た。
Table Example 3 The same alloy powder as in Example 2 was filled into an iron capsule with an outer diameter of 16 mm, a length of 40 m, and a wall thickness of 1 mm, and the capsule was vacuum sealed. .8■@X4.8■
Using a rectangular die shown in (3), extrusion processing was carried out in the same manner as in Example 1 at a die temperature of 700°C.
A flat plate material having a thickness of 4.81 mm was obtained.

この平板材の中心部から切出した2■角の立方体及び実
施例1で掲げた比較例の各方向の対数歪ε及び磁気特性
を第3表に示す。
Table 3 shows the logarithmic strain ε and magnetic properties in each direction of a 2 square cube cut from the center of this flat plate material and the comparative example listed in Example 1.

第   3   表 (発明の効果) 以上のように、この発明によるときは、生産性か良好な
熱間前方押出加工により一挙に合金粉末から一軸異方性
磁石材料を生産することかてきその押出成形物の磁気特
性は良好である。従って軸異方性磁石の生産コストの引
下げに貢献することかてきる。
Table 3 (Effects of the Invention) As described above, according to the present invention, it is possible to produce a uniaxially anisotropic magnet material from alloy powder at once by hot forward extrusion, which has good productivity. The magnetic properties of the object are good. Therefore, it can contribute to lowering the production cost of axially anisotropic magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施に使用する熱間押出ダイスの断
面図、第2図は同ダイスの押出ノズルの形状の見取図、
第3図はこの発明に用いるビレット及び成形物の見取図
と成形物の対数歪特性線図、第4図は従来の熱間押出加
工におけるビレット及び成形物の見取図と成形物の対数
歪特性線図、第5図は第4図示の成形物の対数歪と磁気
特性の関係を示す線図である。 1・・・合金粉末、2・・・カプセル、3・・・ダイス
、5・・・ノズル、42・・・成形物。 特許出願人  山陽特殊製鋼株式会社 代  理  人   清  水   哲  はか22晃 亮 国 (a) (b) χ、チ(mm) 拓 図
Fig. 1 is a sectional view of a hot extrusion die used in carrying out the present invention, Fig. 2 is a sketch of the shape of the extrusion nozzle of the die,
Figure 3 is a sketch of the billet and molded product used in this invention, and a logarithmic strain characteristic diagram of the molded product. Figure 4 is a diagram of the billet and molded product used in the conventional hot extrusion process, and a logarithmic strain characteristic diagram of the molded product. , FIG. 5 is a diagram showing the relationship between logarithmic strain and magnetic properties of the molded product shown in FIG. 4. DESCRIPTION OF SYMBOLS 1... Alloy powder, 2... Capsule, 3... Dice, 5... Nozzle, 42... Molded article. Patent applicant: Sanyo Special Steel Co., Ltd. Representative: Satoshi Shimizu Haka22 Kosuke (a) (b) χ, chi (mm) Taku

Claims (3)

【特許請求の範囲】[Claims] (1)希土類元素、鉄及びホウ素を主成分とする磁石合
金の急冷粉末を高温処理によって充実質化する磁石製造
方法において、上記磁石合金粉末を厚味の逓減を伴なう
熱間押出加工によって平板形状に成形することを特徴と
する一軸異方性希土類磁石の製造方法。
(1) In a magnet manufacturing method in which rapidly solidified magnetic alloy powder containing rare earth elements, iron, and boron as main components is enriched by high-temperature treatment, the magnetic alloy powder is subjected to hot extrusion processing that involves gradual reduction in thickness. A method for manufacturing a uniaxially anisotropic rare earth magnet, characterized by forming it into a flat plate shape.
(2)上記熱間押出成形物の少なくとも一部分において
、厚み方向に対数歪の絶対値が0.5より大きな圧縮歪
が加わっていることを特徴とする特許請求の範囲第1項
記載の一軸異方性希土類磁石の製造方法。
(2) A uniaxial strain according to claim 1, characterized in that compressive strain with an absolute value of logarithmic strain of more than 0.5 is applied in the thickness direction to at least a portion of the hot extruded product. Method for manufacturing a tropic rare earth magnet.
(3)上記熱間押出成形物の押出方向に直交する断面の
縦横比が2.0以上であることを特徴とする特許請求の
範囲第1項記載の一軸異方性希土類磁石の製造方法。
(3) The method for producing a uniaxially anisotropic rare earth magnet according to claim 1, wherein the aspect ratio of the cross section perpendicular to the extrusion direction of the hot extruded product is 2.0 or more.
JP2274379A 1990-10-11 1990-10-11 Method of producing uniaxially anisotropic rare-earth magnet Pending JPH04148508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2274379A JPH04148508A (en) 1990-10-11 1990-10-11 Method of producing uniaxially anisotropic rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2274379A JPH04148508A (en) 1990-10-11 1990-10-11 Method of producing uniaxially anisotropic rare-earth magnet

Publications (1)

Publication Number Publication Date
JPH04148508A true JPH04148508A (en) 1992-05-21

Family

ID=17540843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274379A Pending JPH04148508A (en) 1990-10-11 1990-10-11 Method of producing uniaxially anisotropic rare-earth magnet

Country Status (1)

Country Link
JP (1) JPH04148508A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533017A (en) * 2000-05-04 2003-11-05 アドヴァンスト・マテリアルズ・コーポレイション Method of manufacturing high energy product anisotropic magnet by extrusion
JP2008091867A (en) * 2006-09-06 2008-04-17 Daido Steel Co Ltd Method for manufacturing permanent magnet, and permanent magnet
JP2008258585A (en) * 2007-03-13 2008-10-23 Daido Steel Co Ltd Synthetic molded body for permanent magnet and manufacturing method for permanent magnet raw material
CN115139105A (en) * 2022-08-05 2022-10-04 泰州汇品不锈钢有限公司 Pipeline mount welding equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115104A (en) * 1987-10-28 1989-05-08 Matsushita Electric Ind Co Ltd Manufacture of rare earth magnet
JPH01248503A (en) * 1988-03-29 1989-10-04 Daido Steel Co Ltd Manufacture of r-fe-b family anisotropy magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115104A (en) * 1987-10-28 1989-05-08 Matsushita Electric Ind Co Ltd Manufacture of rare earth magnet
JPH01248503A (en) * 1988-03-29 1989-10-04 Daido Steel Co Ltd Manufacture of r-fe-b family anisotropy magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533017A (en) * 2000-05-04 2003-11-05 アドヴァンスト・マテリアルズ・コーポレイション Method of manufacturing high energy product anisotropic magnet by extrusion
JP2008091867A (en) * 2006-09-06 2008-04-17 Daido Steel Co Ltd Method for manufacturing permanent magnet, and permanent magnet
JP2008258585A (en) * 2007-03-13 2008-10-23 Daido Steel Co Ltd Synthetic molded body for permanent magnet and manufacturing method for permanent magnet raw material
CN115139105A (en) * 2022-08-05 2022-10-04 泰州汇品不锈钢有限公司 Pipeline mount welding equipment
CN115139105B (en) * 2022-08-05 2023-10-13 泰州汇品不锈钢有限公司 Pipeline fixing frame welding equipment

Similar Documents

Publication Publication Date Title
US4921553A (en) Magnetically anisotropic bond magnet, magnetic powder for the magnet and manufacturing method of the powder
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JP6613730B2 (en) Rare earth magnet manufacturing method
US5127970A (en) Method for producing rare earth magnet particles of improved coercivity
JPH04148508A (en) Method of producing uniaxially anisotropic rare-earth magnet
RU2337975C2 (en) Method of constant magnet receiving from alloys on basis of system neodymium-iron-boron or praseodymium- iron-boron
JPS61268006A (en) Anisotropic magnet
JPH02208902A (en) Hot-worked magnet and manufacture thereof
JPS63289905A (en) Manufacture of rare earth-fe-b magnet
JPS61119006A (en) Manufacture of sintered magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
US11515066B2 (en) Heat treatable magnets having improved alignment through application of external magnetic field during binder-assisted molding
JPH05152119A (en) Hot-worked rare earth element-iron-carbon magnet
JPS5843881B2 (en) Manufacturing method of linear magnet
JPH04304380A (en) Production of magnetic powder for anisotropic bonded magnet
JPS61208809A (en) Manufacture of sintered magnet
JPH03290906A (en) Warm-worked magnet and its manufacture
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPS58108711A (en) Manufacture of rare earth permanent magnet
JPH04321202A (en) Manufacture of anisotropic permanent magnet
KR20230128177A (en) METHOD OF PREPARING Fe-BASED PERMANENT MAGNET AND Fe-BASED PERMANENT MAGNET THEREFROM
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPH03247703A (en) Manufacture of permanent magnet
JPH0478699B2 (en)
JPH04352402A (en) Circular arc-shaped magnet and manufacture thereof