JP2008258585A - Synthetic molded body for permanent magnet and manufacturing method for permanent magnet raw material - Google Patents

Synthetic molded body for permanent magnet and manufacturing method for permanent magnet raw material Download PDF

Info

Publication number
JP2008258585A
JP2008258585A JP2008032476A JP2008032476A JP2008258585A JP 2008258585 A JP2008258585 A JP 2008258585A JP 2008032476 A JP2008032476 A JP 2008032476A JP 2008032476 A JP2008032476 A JP 2008032476A JP 2008258585 A JP2008258585 A JP 2008258585A
Authority
JP
Japan
Prior art keywords
molded body
body element
permanent magnet
ihc
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008032476A
Other languages
Japanese (ja)
Other versions
JP5130941B2 (en
Inventor
Junichi Ezaki
潤一 江崎
Takahiro Yamamoto
隆弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2008032476A priority Critical patent/JP5130941B2/en
Priority to CN200810083586.7A priority patent/CN101299363B/en
Priority to SG200802057-0A priority patent/SG146561A1/en
Publication of JP2008258585A publication Critical patent/JP2008258585A/en
Application granted granted Critical
Publication of JP5130941B2 publication Critical patent/JP5130941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synthetic molded body for a permanent magnet which can be used for a long life because a magnetic characteristic of the whole permanent magnet is hardly deteriorated, even if it is used in such an environment that the magnetic characteristic has an unfavorable effect, for example, being exposed to a high temperature of the permanent magnet provided by magnetizing a permanent magnet raw material using a synthetic molded body, and to provide a manufacturing method for permanent magnet raw material. <P>SOLUTION: This synthetic molded body is provided by combining and integrating a high iHc molded body element A formed of magnetic powder Ma whose coercive force is higher compared with a high Br molded body element B and whose remaining magnetic flux density is lower compared with the high Br molded body element B, and the high Br molded body element B formed of magnetic powder Mb whose remaining magnetic flux density is higher compared with the high iHc molded body element A, and whose coercive force is lower compared with the high iHc molded body element A. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、永久磁石用合成成形体及び永久磁石素材の製造方法に関し、詳しくは、希土類系の材料を用いて永久磁石用合成成形体及び永久磁石素材を製造する方法に関する。   The present invention relates to a synthetic molded body for permanent magnets and a method for producing a permanent magnet material, and more specifically to a synthetic molded body for permanent magnets and a method for producing a permanent magnet material using a rare earth material.

従来より、電動機、発電機等(例えば、ACサーボモータ、同期モータ、ステッピングモータ、ブラシ付きDCモータ、同期発電機など)においては、例えば界磁に永久磁石を用いたものがある。これらに用いられる永久磁石に関しては、希土類系の材料を塑性加工して永久磁石素材を製造し、それに着磁して用いる方法は広く知られている。例えば特許文献1に示される永久磁石素材の製造方法は次のようにされている。希土類、鉄族金属およびホウ素を配合した原料を溶解し、単ロール法により超急冷して薄帯としたものを所要粒径に粉砕した後、冷間プレスで圧粉成形し、さらに、ホットプレスして高密度化し、更に、塑性加工を行なって所定形状のカップ状体(永久磁石素材ともいう)を製造する。以上のような方法で製造された永久磁石素材は磁気異方性(magnetic anisotropy)を有し、要求に対応して着磁されることにより、磁気特性の優れた永久磁石として利用できる特長がある。   2. Description of the Related Art Conventionally, some motors, generators, etc. (for example, AC servo motors, synchronous motors, stepping motors, DC motors with brushes, synchronous generators, etc.) use permanent magnets for the field. As for the permanent magnets used for these, a method of manufacturing a permanent magnet material by plastic processing of a rare earth material and magnetizing it is widely known. For example, the manufacturing method of the permanent magnet material shown in Patent Document 1 is as follows. A raw material blended with rare earth, iron group metal and boron is melted, and then rapidly quenched by a single roll method and pulverized to a required particle size, then compacted with a cold press, and then hot pressed Then, the density is increased and plastic processing is performed to manufacture a cup-shaped body (also referred to as a permanent magnet material) having a predetermined shape. The permanent magnet material manufactured by the method as described above has magnetic anisotropy, and is magnetized according to demands, so that it can be used as a permanent magnet with excellent magnetic properties. .

特開平9−129463号公報JP-A-9-129463

従来の永久磁石素材は、要求に対応して着磁された永久磁石を、高熱に晒される、又は外部からの減磁界を受ける、又はこれらが複合した(以下、本明細書においては単に” 高熱に晒される等”ともいう)環境下で使用した場合、短期間で永久磁石における一部に熱による減磁、又は外部磁界からの減磁、又はこれらが複合した減磁(以下、総称して不可逆減磁と呼ぶ)が生じ、性能が劣化する問題点がある。そこで一般的には、永久磁石の保磁力を高めることで、不可逆減磁が生じないように対策されている。
希土類系の永久磁石(例えばNd−Fe−B系永久磁石やPr−Fe−B系永久磁石)の保磁力を高めるには、化学量論組成(stoichiometric composition)(例えばNd2Fe14BやPr2Fe14B)よりも希土類元素の組成を増やして希土類元素リッチの組成にしたり、Feの一部をCoと置換したり、ホウ素の割合を増やしたりするが、この方法では効果には限界がある。そこで希土類元素中のNdやPrの一部をDyやTb等の保磁力を向上させる元素(以下、本明細書においては単に”Dy等”ともいう)と置換することが行われている。
しかしながら、この方法では以下のような問題点がある。すなわちDy、Tbなどの元素は大変高価であり、これらの元素を大量に使用した高保磁力用途の永久磁石はコストが高くなってしまう。また、Dy、Tbで置換する方法では、確かに保磁力は高くなるが、残留磁束密度は低くなってしまう欠点がある。更には、低い残留磁束密度を補うため、どうしても高い磁束量を要する用途では、磁石そのものの使用量を増やして対応せざるを得ないため、なおさら永久磁石コストが上昇する、といった悪循環に陥ってしまう。また永久磁石の使用量の増加は、これが組み込まれる機器の容積が大型化してしまうといった問題点も有する。
ところが近年、永久磁石に対する要求は年々過酷さを増しており、高温下、軽量化、小型化、低コスト化の全てを満足する必要がある。従って、高熱に晒される等の環境下で使用した場合でも不可逆減磁が起こらず、更にはDy、Tbなどの元素の使用量を減らし、なおかつ磁石そのものを小型化させる要求が高まってきた。
A conventional permanent magnet material is obtained by subjecting a permanent magnet that has been magnetized in accordance with requirements to high heat, receiving a demagnetizing field from the outside, or a combination of these (hereinafter simply referred to as “high heat” in this specification). When used in an environment where the permanent magnet is partially demagnetized by heat, demagnetized from an external magnetic field, or a combination of these two (denoted collectively) There is a problem that the performance is deteriorated. Therefore, in general, measures are taken to prevent irreversible demagnetization by increasing the coercive force of the permanent magnet.
In order to increase the coercive force of rare earth permanent magnets (eg, Nd—Fe—B permanent magnets or Pr—Fe—B permanent magnets), a stoichiometric composition (eg, Nd 2 Fe 14 B or Pr) is used. 2 Fe 14 B) The composition of the rare earth element is increased to be richer than that of Fe 14 B), or a part of Fe is replaced with Co, or the proportion of boron is increased. is there. Therefore, replacement of a part of Nd and Pr in the rare earth element with an element that improves the coercive force such as Dy or Tb (hereinafter, also simply referred to as “Dy or the like” in this specification) is performed.
However, this method has the following problems. That is, elements such as Dy and Tb are very expensive, and a permanent magnet for high coercive force using a large amount of these elements is expensive. In addition, in the method of replacing with Dy and Tb, the coercive force is certainly increased, but the residual magnetic flux density is disadvantageous. Furthermore, in order to compensate for the low residual magnetic flux density, in applications that require a high amount of magnetic flux, it is necessary to increase the usage of the magnet itself, so that a vicious cycle occurs in which the permanent magnet cost increases. . In addition, an increase in the amount of permanent magnets used has a problem that the volume of equipment in which the permanent magnets are incorporated increases.
However, in recent years, the demand for permanent magnets has become more severe year by year, and it is necessary to satisfy all of light weight, size reduction, and cost reduction at high temperatures. Therefore, irreversible demagnetization does not occur even when used in an environment such as being exposed to high heat, and there is an increasing demand for reducing the amount of elements such as Dy and Tb and miniaturizing the magnet itself.

本件出願の目的は、合成成形体を用いた永久磁石素材に対して着磁することにより、磁気特性の優れた永久磁石として利用できることは勿論、永久磁石素材に着磁してなる永久磁石が高熱に晒される等、磁気特性に悪影響が及ぶような環境下で使用する場合でも、永久磁石全体の磁気特性は劣化し難く、長寿命で使用することができる永久磁石用合成成形体及び永久磁石素材の製造方法を提供しようとするものである。
他の目的は、永久磁石素材全体におけるDy等の使用量は少なくても、保磁力の高い永久磁石素材を提供できる永久磁石用合成成形体及び永久磁石素材の製造方法を提供しようとするものである。
他の目的及び利点は図面及びそれに関連した以下の説明により容易に明らかになるであろう。
The purpose of this application is to magnetize a permanent magnet material using a synthetic molded body so that it can be used as a permanent magnet with excellent magnetic properties. Even if it is used in an environment where the magnetic properties are adversely affected, such as being exposed to the magnetic field, the magnetic properties of the permanent magnets are not easily deteriorated and can be used for a long life. It is intended to provide a manufacturing method.
Another object is to provide a permanent magnet synthetic molded body and a method for producing a permanent magnet material that can provide a permanent magnet material having a high coercive force even if the amount of Dy used in the entire permanent magnet material is small. is there.
Other objects and advantages will be readily apparent from the drawings and the following description associated therewith.

本発明における永久磁石素材の製造方法は、保磁力が高Br成形体要素Bに比較して高く、かつ、残留磁束密度が高Br成形体要素Bに比較して低い材質の磁性粉末Maで形成される高iHc成形体要素Aと、残留磁束密度が高iHc成形体要素Aに比較して高く、かつ、保磁力が高iHc成形体要素Aに比較して低い材質の磁性粉末Mbで形成される高Br成形体要素Bとを、寄せ合わせ、一体化させるものである。   The method for producing a permanent magnet material in the present invention is formed of magnetic powder Ma having a material having a higher coercive force than that of the high Br molded body element B and a residual magnetic flux density lower than that of the high Br molded body element B. The high iHc molded body element A and the residual magnetic flux density are higher than those of the high iHc molded body element A and the coercive force is lower than that of the high iHc molded body element A. The high Br molded body element B is brought together and integrated.

また好ましくは、保磁力が高Br成形体要素Bに比較して高く、かつ、残留磁束密度が高Br成形体要素Bに比較して低い材質の磁性粉末Maで形成される高iHc成形体要素Aと、残留磁束密度が高iHc成形体要素Aに比較して高く、かつ、保磁力が高iHc成形体要素Aに比較して低い材質の磁性粉末Mbで形成される高Br成形体要素Bと、中間用の磁性粉末Mcで形成される中間成形体要素Cとを、上記高iHc成形体要素Aと上記高Br成形体要素Bとの間に上記中間成形体要素Cが介在する状態で、寄せ合わせ、一体化して永久磁石用合成成形体Eを形成し、上記中間成形体要素Cの磁性粉末Mcの材質の設定は、上記寄せ合わせ一体化した永久磁石用合成成形体Eの状態で、保磁力が上記高iHc成形体要素A から上記高Br成形体要素Bに向けて順次低くなる材質であって、しかも、残留磁束密度が上記高Br成形体要素B から上記 高iHc成形体要素Aに向けて順次低くなる材質に設定したものであればよい。   Preferably, the high iHc molded body element is formed of magnetic powder Ma having a coercive force higher than that of the high Br molded body element B and a residual magnetic flux density lower than that of the high Br molded body element B. A and a high Br molded body element B formed of magnetic powder Mb having a higher residual magnetic flux density than that of the high iHc molded body element A and a coercive force lower than that of the high iHc molded body element A. And an intermediate molded body element C formed of the intermediate magnetic powder Mc in a state in which the intermediate molded body element C is interposed between the high iHc molded body element A and the high Br molded body element B. The synthetic molded body E for permanent magnets is formed by assembling and integrating, and the material of the magnetic powder Mc of the intermediate molded body element C is set in the state of the synthetic molded body E for permanent magnets assembled together. , A material whose coercive force gradually decreases from the high iHc molded body element A to the high Br molded body element B. In addition, any material may be used as long as the residual magnetic flux density is gradually decreased from the high Br molded body element B 1 toward the high iHc molded body element A.

また好ましくは、保磁力が高Br成形体要素Bに比較して高く、かつ、残留磁束密度が高Br成形体要素Bに比較して低い材質の磁性粉末Maで形成される高iHc成形体要素Aと、残留磁束密度が高iHc成形体要素Aに比較して高く、かつ、保磁力が高iHc成形体要素Aに比較して低い材質の磁性粉末Mbで形成される高Br成形体要素Bと、夫々は相互に材質の異なる複数の中間用の磁性粉末Mcで形成される複数の中間成形体要素Cとを、上記高iHc成形体要素Aと上記高Br成形体要素Bとの間に上記複数の中間成形体要素が介在する状態で、寄せ合わせ、一体化して永久磁石用合成成形体Eを形成し、上記複数の中間成形体要素Cの各磁性粉末Mcの夫々の材質の設定は、上記寄せ合わせ一体化した永久磁石用合成成形体Eの状態で、保磁力が上記高iHc成形体要素Aから上記高Br成形体要素B に向けて夫々順次低くなる材質であって、しかも、残留磁束密度が上記高Br成形体要素Bから上記高iHc成形体要素A に向けて夫々順次低くなる材質に夫々設定したものであればよい。   Preferably, the high iHc molded body element is formed of magnetic powder Ma having a coercive force higher than that of the high Br molded body element B and a residual magnetic flux density lower than that of the high Br molded body element B. A and a high Br molded body element B formed of magnetic powder Mb having a higher residual magnetic flux density than that of the high iHc molded body element A and a coercive force lower than that of the high iHc molded body element A. And a plurality of intermediate molded body elements C each formed of a plurality of intermediate magnetic powders Mc of different materials, between the high iHc molded body element A and the high Br molded body element B. In a state where the plurality of intermediate molded body elements are interposed, they are brought together and integrated to form a permanent magnet composite molded body E, and the setting of each material of each magnetic powder Mc of the plurality of intermediate molded body elements C is as follows. In the state of the above-mentioned integrated molded E for permanent magnets, the coercive force of the above-mentioned high iHc molded body is required. A material that gradually decreases from A toward the high Br molded body element B 1, and a material whose residual magnetic flux density decreases sequentially from the high Br molded body element B toward the high iHc molded body element A 1. As long as it is set to each.

以上のように本発明は、夫々上記磁性粉末 (magnetic powder )で形成される高iHc成形体要素Aと高Br成形体要素Bとを寄せ合わせ一体化して永久磁石用合成成形体Eを形成したものであるから、従来と同様に上記永久磁石用合成成形体Eに基づく永久磁石素材Fに対して着磁することにより、磁気特性(magnetic properties)の優れた永久磁石として利用できる。   As described above, according to the present invention, the high iHc molded body element A and the high Br molded body element B each formed of the magnetic powder are brought together and integrated to form a synthetic molded body E for permanent magnets. Therefore, it can be used as a permanent magnet having excellent magnetic properties by magnetizing the permanent magnet material F based on the synthetic molding E for permanent magnet as in the prior art.

しかも、本発明は、保磁力(intrinsic coercive force)が高Br成形体要素Bに比較して高く、かつ、残留磁束密度が高Br成形体要素Bに比較して低い材質の磁性粉末Maで形成される高iHc成形体要素Aと、残留磁束密度が高iHc成形体要素Aに比較して高く、かつ、保磁力が高iHc成形体要素Aに比較して低い材質の磁性粉末Mbで形成される高Br成形体要素Bとを寄せ合わせ一体化して、永久磁石用合成成形体Eを形成するものであるから、上記永久磁石用合成成形体Eに基づく上記永久磁石素材Fに着磁した永久磁石を熱に晒される等の環境下で使用する際、永久磁石における高iHc成形体要素側を高熱等の影響を受ける側に配置して使用することにより、永久磁石の上記高iHc成形体要素側は不可逆減磁(irreversible demagnetization)しにくい特長がある。よって、永久磁石全体としては磁気特性が劣化しにくく、磁気特性の優れた永久磁石として長寿命で使用することができるという使用上の効果がある。   Moreover, the present invention is formed of magnetic powder Ma made of a material having a coercive force (intrinsic coercive force) higher than that of the high Br molded body element B and a residual magnetic flux density lower than that of the high Br molded body element B. The high iHc molded body element A and the residual magnetic flux density are higher than those of the high iHc molded body element A and the coercive force is lower than that of the high iHc molded body element A. And the high Br molded body element B are combined together to form a permanent magnet synthetic molded body E. Therefore, the permanent magnet material F based on the permanent magnet synthetic molded body E is permanently magnetized. When the magnet is used in an environment where it is exposed to heat, the high iHc molded body element of the permanent magnet is used by placing the high iHc molded body element side of the permanent magnet on the side affected by the high heat or the like. The side has a feature that is difficult to irreversible demagnetization. Therefore, the magnetic characteristics of the permanent magnet as a whole are not easily deteriorated, and there is an effect in use that the permanent magnet can be used with a long life as a permanent magnet having excellent magnetic characteristics.

その上、本発明は、上記のように磁気特性が劣化しにくく、磁気特性の優れた永久磁石を長寿命で使用することができるものであっても、保磁力の高い磁性粉末Maを用いた高iHc成形体要素Aと、残留磁束密度の高い磁性粉末Mbを用いた高Br成形体要素Bとを寄せ合わせ一体化して、永久磁石用合成成形体Eを形成するようにしたものだから、不可逆減磁しにくく、しかも、残留磁束密度の高い特長を合せ備える永久磁石用合成成形体Eを提供することができる。   Moreover, the present invention uses the magnetic powder Ma having a high coercive force even if the permanent magnet having excellent magnetic properties is not easily deteriorated and can be used for a long lifetime as described above. Since the high iHc molded body element A and the high Br molded body element B using magnetic powder Mb having a high residual magnetic flux density are brought together and integrated to form a synthetic molded body E for permanent magnets, it is irreversible. It is possible to provide a synthetic molded body E for permanent magnets that is difficult to demagnetize and that has a feature of high residual magnetic flux density.

その上に、保磁力の高い磁性粉末Maを用いた高iHc成形体要素Aは、永久磁石用合成成形体E全体の内の一部分でよく、高価なDy等はその一部分に対して使用すれば足りる特長がある。このことは、永久磁石用合成成形体E全体における高価なDy等の使用量は僅かで、保磁力の高い永久磁石用合成成形体Eを安価なコストで提供することができる経済上の効果がある。   In addition, the high iHc molded body element A using the magnetic powder Ma having a high coercive force may be a part of the entire synthetic molded body E for permanent magnets, and expensive Dy or the like may be used for that part. There are enough features. This is because the amount of expensive Dy and the like used in the permanent magnet synthetic molded body E as a whole is small, and there is an economic effect that can provide the permanent magnet synthetic molded body E with high coercive force at a low cost. is there.

さらに本発明にあっては、保磁力の高い磁性粉末Maを用いた高iHc成形体要素Aと、残留磁束密度の高い磁性粉末Mbを用いた高Br成形体要素Bとの間に、保磁力が上記高iHc成形体要素Aから上記高Br成形体要素Bに向けて順次低くなる材質であって、しかも、残留磁束密度が上記高Br成形体要素Bから上記高iHc成形体要素Aに向けて順次低くなる材質に設定してある中間用の磁性粉末Mcで形成される中間成形体要素Cを1又は2以上介在させる場合にも、上記高価なDy等の使用量を減量させて、永久磁石用合成成形体Eのコストの低減を図ることのできる経済効果もある。
他の発明の効果は以下の説明により容易に明らかになるであろう。
Furthermore, in the present invention, the coercive force between the high iHc molded body element A using the magnetic powder Ma having a high coercive force and the high Br molded body element B using the magnetic powder Mb having a high residual magnetic flux density. Is a material that gradually decreases from the high iHc molded body element A to the high Br molded body element B, and the residual magnetic flux density is directed from the high Br molded body element B to the high iHc molded body element A. Even when one or more intermediate molded body elements C formed of intermediate magnetic powder Mc, which are set to sequentially lower materials, are interposed, the amount of the above-mentioned expensive Dy and the like is reduced to be permanent. There is also an economic effect capable of reducing the cost of the synthetic molded body E for magnets.
The effects of other inventions will be readily apparent from the following description.

以下本発明の実施の形態に関し、図面を用いて説明する。
まず、図1〜図12を用いて本発明の実施に関連する技術的事項について説明する。
図1は永久磁石素材Fを作るための製法を説明する為の図面で、磁性粉末Mから形成された粉末状要素2に順次、冷間プレス、熱間プレス、塑性加工を施すことによって磁気異方性を備える永久磁石素材Fを作る例を示す。
図1(a)における2は、冷間プレスにおけるダイのキャビティ(図示省略)中に磁性粉末Mを充填して、磁性粉末Mをキャビティの内形に対応させた形状にしたものである。本件の特許請求の範囲、明細書、図面(以下「本件」という)では、これを「粉末状要素」と称する。
磁性粉末Mは、周知の手段で製造されたもの、例えば、希土類、鉄族金属およびホウ素を配合した原料を溶解して得られた溶湯を回転ロールに噴出させて、フレーク状の超急冷リボンを製造し、このフレーク状の超急冷リボンを所要粒径に粉砕すると得られる。
磁性粉末Mは、一般的に上記希土類、鉄族金属およびホウ素 を原料として製造された粉末の総称として使用されている。磁性粉末Mの合金の組成としては、要望に対応した種々の組成のものが用いられる。例えば、希土類としては、Y、ランタノイドを採用可能であるが、特にNd、Pr、Dy、Tbもしくはこれらの2種以上の混合物を好適に採用できる。また鉄族金属としては、Fe、Co、Niを採用可能であるが、特にFe、Co、もしくは両者の混合物を好適に採用できる。なお、塑性加工性(割れ防止)を向上する目的で、必要に応じてGaを添加してもよい。
図1(b)における3は、粉末状要素2を周知の冷間プレス手段(例えば、室温、面圧200〜300MPa)によって圧縮して形成された固形物である(本件では、これを「固形状要素」と称する)。図1(c)における4は固形状要素3を周知の熱間または温間プレス手段(例えば、Ar雰囲気中、700〜900℃、面圧200〜300MPa)によって圧縮して形成された固形物である(本件では、これを「高密度要素」と称する)。図1(d)におけるFは高密度要素4に塑性加工を施すことによって(例えば、700〜900℃、大気中で押出し加工を施すことによって)成形された永久磁石素材を示す(図1(d)は単一の永久磁石素材60を示す)。上記永久磁石素材Fは厚み方向(X方向)に沿って永久磁石素材F全体の磁化容易軸69が揃っており、磁気異方性を有する。例えば上記のようにして、上記磁性粉末Mから永久磁石素材Fは造られる。この永久磁石素材Fに周知の方法で着磁することにより永久磁石(図示省略)が得られる。
Embodiments of the present invention will be described below with reference to the drawings.
First, technical matters relating to the implementation of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram for explaining a manufacturing method for making a permanent magnet material F. A magnetic element is formed by sequentially performing cold pressing, hot pressing, and plastic working on a powdery element 2 formed from magnetic powder M. FIG. An example of making a permanent magnet material F having directionality is shown.
Reference numeral 2 in FIG. 1 (a) denotes a shape in which the magnetic powder M is filled in the cavity (not shown) of the die in the cold press so that the magnetic powder M corresponds to the inner shape of the cavity. In the claims, specification and drawings of the present application (hereinafter referred to as “the present application”), this is referred to as “powder element”.
The magnetic powder M is manufactured by well-known means, for example, a molten metal obtained by melting a raw material containing rare earth, iron group metal and boron is jetted onto a rotating roll, and a flaky ultra-cooled ribbon is obtained. It is obtained by manufacturing and pulverizing this flaky ultra-quenched ribbon to the required particle size.
The magnetic powder M is generally used as a general term for powders produced from the rare earth, iron group metal and boron as raw materials. As the composition of the alloy of the magnetic powder M, various compositions corresponding to the request are used. For example, Y or a lanthanoid can be employed as the rare earth, but Nd, Pr, Dy, Tb, or a mixture of two or more thereof can be suitably employed. Further, as the iron group metal, Fe, Co, and Ni can be adopted, but in particular, Fe, Co, or a mixture of both can be suitably employed. Note that Ga may be added as necessary for the purpose of improving plastic workability (preventing cracking).
1 in FIG. 1 (b) is a solid material formed by compressing the powdered element 2 by a known cold pressing means (for example, room temperature, surface pressure 200 to 300 MPa) (in this case, this is expressed as “solid”). Referred to as "shape element"). 1 in FIG. 1 (c) is a solid material formed by compressing the solid element 3 by a known hot or warm press means (for example, 700 to 900 ° C., surface pressure 200 to 300 MPa in Ar atmosphere). Yes (in this case, this is referred to as a “high density element”). F in FIG. 1 (d) indicates a permanent magnet material formed by subjecting the high-density element 4 to plastic working (for example, by extruding at 700 to 900 ° C. in the air) (FIG. 1 (d). ) Shows a single permanent magnet material 60). The permanent magnet material F has the magnetization easy axis 69 of the entire permanent magnet material F along the thickness direction (X direction), and has magnetic anisotropy. For example, the permanent magnet material F is made from the magnetic powder M as described above. A permanent magnet (not shown) is obtained by magnetizing the permanent magnet material F by a known method.

次に、上記押出し加工に用いる押出し金型について説明する。
図2は、永久磁石素材Fの製造方法に用いる押出し金型を示すものであって、ダイスホルダ70に装着された押出し金型71には、貫通孔73、テーパ孔75および等形通孔76が直列に形成されている。そして、貫通孔73に装填した高密度要素4を押圧パンチ(図示せず)により押圧プレスすることで、該高密度要素4がテーパ孔75および等形通孔76に押出されて、板形状の永久磁石素材Fに成形される。
Next, an extrusion die used for the extrusion process will be described.
FIG. 2 shows an extrusion die used in the manufacturing method of the permanent magnet material F. The extrusion die 71 attached to the die holder 70 has a through hole 73, a tapered hole 75, and an isomorphic through hole 76. It is formed in series. Then, the high-density element 4 loaded in the through-hole 73 is pressed and pressed by a pressing punch (not shown), whereby the high-density element 4 is extruded into the taper hole 75 and the isomorphic through-hole 76 to form a plate shape. It is formed into a permanent magnet material F.

前記押出金型71は、図8(a)、(b)から理解できるように押出し方向(矢印79方向)と直交する断面(押出し断面)が長方形の高密度要素4を、厚み(X方向)T1に対して幅(Y方向)W1が長い断面矩形板状の永久磁石素材Fに成形するよう形成されたものである。
すなわち、図2からも理解できるように、押出し方向79に所定長さで延在する前記貫通孔73が形成された入側金型72と、該入側金型72の出側に配置されて、貫通孔73に連通する前記テーパ孔75が形成された成形ダイス74とから押出金型71が構成され、該成形ダイス74にはテーパ孔75に連通する前記等形通孔76が出側74bに形成されている。
As can be understood from FIGS. 8A and 8B, the extrusion die 71 has a high-density element 4 having a rectangular cross section (extrusion cross section) orthogonal to the extrusion direction (arrow 79 direction) and a thickness (X direction). It is formed so as to be formed into a permanent magnet material F having a rectangular cross-sectional shape with a width (Y direction) W1 longer than T1.
That is, as can be understood from FIG. 2, the inlet side mold 72 in which the through-hole 73 extending in a predetermined length in the extrusion direction 79 is formed and the outlet side of the inlet side mold 72 are arranged. The extrusion die 71 is composed of a forming die 74 in which the tapered hole 75 communicating with the through hole 73 is formed, and the isolating through hole 76 communicating with the tapered hole 75 is formed on the output side 74b. Is formed.

前記入側金型72に形成される貫通孔73は、押出し方向79と直交する断面におけるX方向およびこれと直交するY方向の各寸法が、前記高密度要素4の厚みTおよび幅Wと略同一寸法となる長方形に形成され、貫通孔73に対して高密度要素4は厚み方向をX方向および幅方向をY方向に一致させた状態で長さ方向(X方向およびY方向と直交するZ方向)に沿って装填される。
また前記成形ダイス74の出側に形成される等形通孔76は、押出し方向79と直交する断面におけるX方向およびこれと直交するY方向の各寸法が、図8(b)に示す製造する永久磁石素材Fの押出し方向79と直交する断面(押出し断面)での寸法における厚みT1および幅W1と同一に設定された矩形状に形成されている。
これに対し、前記成形ダイス74に形成されるテーパ孔75については、図3〜図6に示すように、該テーパ孔75における入口74aは、X方向およびY方向の各寸法が貫通孔73の対応する方向と同一となる長方形(X方向の寸法がTでY方向の寸法がW)に形成されると共に、該テーパ孔の出側24bは、X方向およびY方向の各寸法が等形通孔76の対応する方向と同一の矩形状(X方向の寸法がT1でY方向の寸法がW1)に形成されている。そして、テーパ孔75において、入口74aから出側74bに向けて、X方向は絞られ(図2(b)、図4参照)、Y方向は拡げられる(図2、図3参照)ように、テーパが形成されている。
すなわち、押出金型71で押出し加工される断面長方形の高密度要素4は、図7に示す如く、X方向が絞られ(潰され)、Y方向が拡げられることで、断面矩形板状の永久磁石素材Fに成形される。言い替えれば、X方向は押出し加工に際して高密度要素4を絞る(潰す)方向であり、Y方向は押出し加工に際して高密度要素4が拡がる方向である。この場合に、永久磁石素材Fは、最大圧縮方向であるX方向に磁気異方化される。
The through-holes 73 formed in the entry-side mold 72 are approximately the same as the thickness T and the width W of the high-density element 4 in the dimensions of the X direction in the cross section orthogonal to the extrusion direction 79 and the Y direction orthogonal thereto. The high-density element 4 is formed in a rectangular shape having the same dimensions, and the high-density element 4 with respect to the through-hole 73 has a length direction (Z orthogonal to the X direction and the Y direction) with the thickness direction aligned with the X direction and the width direction aligned with the Y direction. Direction).
Further, the isomorphic through-hole 76 formed on the exit side of the forming die 74 is manufactured as shown in FIG. 8B in which the dimensions in the X direction in the cross section orthogonal to the extrusion direction 79 and the Y direction orthogonal thereto are shown. The permanent magnet material F is formed in a rectangular shape that is set to have the same thickness T1 and width W1 in a cross section (extrusion cross section) orthogonal to the extrusion direction 79.
On the other hand, with respect to the tapered hole 75 formed in the forming die 74, as shown in FIGS. 3 to 6, the inlet 74a in the tapered hole 75 has dimensions in the X direction and the Y direction of the through hole 73. A rectangular shape (X dimension is T and Y dimension is W) is formed in the same direction as the corresponding direction, and the outlet side 24b of the tapered hole has an isomorphous dimension in each of the X and Y directions. The hole 76 is formed in the same rectangular shape as the corresponding direction (the dimension in the X direction is T1 and the dimension in the Y direction is W1). Then, in the tapered hole 75, the X direction is narrowed from the inlet 74a toward the outlet side 74b (see FIG. 2 (b) and FIG. 4), and the Y direction is widened (see FIG. 2 and FIG. 3). A taper is formed.
That is, as shown in FIG. 7, the high-density element 4 having a rectangular cross section that is extruded by the extrusion die 71 is squeezed (crushed) in the X direction and expanded in the Y direction. It is formed into a magnet material F. In other words, the X direction is a direction in which the high density element 4 is squeezed (crushed) during the extrusion process, and the Y direction is a direction in which the high density element 4 expands during the extrusion process. In this case, the permanent magnet material F is magnetically anisotropic in the X direction, which is the maximum compression direction.

なお、前記テーパ孔75は、曲面形状で滑らかに傾斜するよう設定され、高密度要素4の円滑な塑性加工を達成し得るようにしてある。また成形ダイス74では、前記入口74aは、対応する貫通孔73と同一寸法で軸方向に所定長さで延在するよう形成され、入口74aと傾斜面との連接部も所要曲率の曲面に形成されて、高密度要素4の円滑な塑性加工を図るようにしている。また、テーパ孔75の出側74bは、等形通孔76に対して滑らかに連続して、高密度要素4の円滑な塑性加工を図るようになっている。   The tapered hole 75 has a curved shape and is set so as to be smoothly inclined so that smooth plastic working of the high-density element 4 can be achieved. Further, in the forming die 74, the inlet 74a is formed to have the same dimension as the corresponding through-hole 73 and extend in a predetermined length in the axial direction, and the connecting portion between the inlet 74a and the inclined surface is also formed in a curved surface having a required curvature. Thus, smooth plastic working of the high density element 4 is achieved. Further, the outlet side 74 b of the tapered hole 75 is smoothly continuous with the isomorphic through-hole 76 so as to achieve smooth plastic working of the high-density element 4.

前記高密度要素4、押出金型71における貫通孔73、テーパ孔75および等形通孔76のX方向、Y方向およびZ方向の各寸法は、高密度要素4に対して押出し成形された永久磁石素材Fの押出し方向のひずみε1と、Y方向のひずみε2とのひずみ比ε2/ε1が、0.2〜3.5の範囲、好ましくは0.4〜1.6の範囲となるよう設定される。すなわち、厚みT1、幅W1で長さL1の板形状の永久磁石素材Fを、上記のように厚みT、幅Wで長さLの断面長方形の高密度要素4から成形する場合は、下記の式1で示す関係となるように、高密度要素4、貫通孔73、テーパ孔75および等形通孔76の前記各方向の寸法が設定される。
ε2/ε1=ln(W1/W)/ln(L1/L)=0.2〜3.5・・・(式1)
ln:自然対数
The X-, Y-, and Z-direction dimensions of the high-density element 4, the through-hole 73, the taper hole 75, and the isomorphic through-hole 76 in the extrusion die 71 are permanently extruded to the high-density element 4. The strain ratio ε 2 / ε 1 between the strain ε 1 in the extrusion direction of the magnet material F and the strain ε 2 in the Y direction is in the range of 0.2 to 3.5, preferably in the range of 0.4 to 1.6. Is set to be That is, when the plate-shaped permanent magnet material F having the thickness T1, the width W1, and the length L1 is formed from the high-density element 4 having the thickness T, the width W, and the length L as described above, The dimensions of each direction of the high-density element 4, the through hole 73, the tapered hole 75, and the isomorphic through hole 76 are set so as to satisfy the relationship represented by Expression 1.
ε 2 / ε 1 = ln (W1 / W) / ln (L1 / L) = 0.2-3.5 (Expression 1)
ln: natural logarithm

そして、ひずみ比ε2/ε1を前記式1に示す範囲に収めることで、押出し加工で得られる永久磁石の残留磁束密度(Br)、IH曲線の保磁力(iHc)および最大エネルギー積((BH)max)等の磁気特性は、据込み加工で製造した永久磁石の磁気特性と同等、あるいはそれ以上に向上する。更に、ひずみ比ε2/ε1を0.4〜1.6の範囲とすることで、得られる永久磁石の磁気特性がより向上する。
すなわち、塑性加工により永久磁石素材Fに与えられる押出し方向のひずみε1と、Y方向のひずみε2とを等しくすることで、X方向の磁気異方化度が高まり、高い磁気特性が得られるものである。従って、ひずみ比ε2/ε1を1とすることで、磁気特性は最も向上する。なお、ひずみ比ε2/ε1が前記範囲外となる場合は、X方向の磁気異方化度が低く、高い磁気特性が得られにくくなる。
Then, by keeping the strain ratio ε 2 / ε 1 within the range shown in the above formula 1, the residual magnetic flux density (Br) of the permanent magnet obtained by extrusion, the coercive force (iHc) of the IH curve, and the maximum energy product (( The magnetic properties such as BH) max) are improved to be equal to or better than those of permanent magnets manufactured by upsetting. Furthermore, by setting the strain ratio ε 2 / ε 1 in the range of 0.4 to 1.6, the magnetic properties of the obtained permanent magnet are further improved.
That is, by making the strain ε 1 in the extrusion direction and the strain ε 2 in the Y direction applied to the permanent magnet material F by plastic working equal, the degree of magnetic anisotropy in the X direction increases and high magnetic properties can be obtained. Is. Therefore, by setting the strain ratio ε 2 / ε 1 to 1, the magnetic characteristics are most improved. When the strain ratio ε 2 / ε 1 is out of the above range, the degree of magnetic anisotropy in the X direction is low and it is difficult to obtain high magnetic characteristics.

〔実験例1〕
Nd:29.5質量%、Co:5質量%、B:0.9質量%、Ga:0.6質量%、残部が実質的にFeからなる磁性合金を溶製し、単ロール法で急冷して厚さ25μm、平均結晶粒径0.1μm以下の磁性薄帯を得た。更に、この磁性薄帯を粉砕して200μm以下の長さの磁性粉末Mを得た。この130.8gの磁性粉末Mで形成される粉末状要素2を常温、面圧200MPaで冷間プレスを行い圧粉成形し、厚みT=36mm、幅W=19mm、長さL=36mmの固形状要素3を得た。更にAr雰囲気下において温度800℃、圧力200MPaでホットプレスを行ない、厚みT=36mm、幅W=19mm、長さL=25mmの断面長方形の高密度要素4を製造した。このときの高密度要素4の平均結晶粒径は0.1μmであった。また嵩密度/真密度は0.999であった。なお、実験例1では、定形の高密度要素4から押出し成形される永久磁石素材Fにおける前記ひずみ比ε2/ε1を変えることで、該ひずみ比ε2/ε1の影響を検証した。
[Experimental Example 1]
Nd: 29.5% by mass, Co: 5% by mass, B: 0.9% by mass, Ga: 0.6% by mass, a magnetic alloy consisting essentially of Fe is melted and rapidly cooled by a single roll method Thus, a magnetic ribbon having a thickness of 25 μm and an average crystal grain size of 0.1 μm or less was obtained. Further, the magnetic ribbon was pulverized to obtain a magnetic powder M having a length of 200 μm or less. The powdery element 2 formed of 130.8 g of the magnetic powder M is cold-pressed by cold pressing at room temperature and a surface pressure of 200 MPa to form a solid with a thickness T = 36 mm, a width W = 19 mm, and a length L = 36 mm. Shape element 3 was obtained. Furthermore, hot pressing was performed at a temperature of 800 ° C. and a pressure of 200 MPa in an Ar atmosphere to manufacture a high-density element 4 having a rectangular cross section having a thickness T = 36 mm, a width W = 19 mm, and a length L = 25 mm. The average crystal grain size of the high-density element 4 at this time was 0.1 μm. The bulk density / true density was 0.999. In Experimental Example 1, the influence of the strain ratio ε 2 / ε 1 was verified by changing the strain ratio ε 2 / ε 1 in the permanent magnet material F extruded from the fixed high-density element 4.

すなわち、表1、表2に表れているように、前記高密度要素4に対して、押出し後の厚みT1が8mmとなり、なおかつひずみ比ε2/ε1が0.1となる例1、ひずみ比ε2/ε1が0.2となる例2、ひずみ比ε2/ε1が0.4となる例3、ひずみ比ε2/ε1が0.8となる例4、ひずみ比ε2/ε1が1.0となる比較例1、ひずみ比ε2/ε1が1.6となる例5、ひずみ比ε2/ε1が2.0となる例6、ひずみ比ε2/ε1が3.5となる例7、およびひずみ比ε2/ε1が4.0となる例8の、夫々の永久磁石素材Fが得られるように貫通孔73、テーパ孔75および等形通孔76を設計した押出金型71で、高密度要素4を押出し加工した。そして、得られた各例の永久磁石素材Fにつき、同一条件で磁化した永久磁石のX方向の残留磁束密度(Br)、IH曲線の保磁力(iHc)および最大エネルギー積((BH)max)を測定し、その結果を表1に示した。また、例1〜8および比較例1の各高密度要素4および得られた永久磁石素材Fの寸法を表2に示す。 That is, as shown in Tables 1 and 2, with respect to the high-density element 4, the thickness T1 after extrusion is 8 mm, and the strain ratio ε 2 / ε 1 is 0.1. the ratio epsilon 2 / epsilon 1 0.2 become example 2, strain ratio epsilon 2 / epsilon 1 is 0.4 example 3, strain ratio epsilon 2 / epsilon 1 is example 4 of 0.8, strain ratio epsilon Comparative Example 1 in which 2 / ε 1 is 1.0, Example 5 in which the strain ratio ε 2 / ε 1 is 1.6, Example 6 in which the strain ratio ε 2 / ε 1 is 2.0, Strain ratio ε 2 The through-hole 73, the tapered hole 75, and the like so that the permanent magnet material F of Example 7 where / ε 1 becomes 3.5 and Example 8 where the strain ratio ε 2 / ε 1 becomes 4.0 are obtained. The high-density element 4 was extruded using an extrusion die 71 in which the shape through hole 76 was designed. Then, with respect to the obtained permanent magnet material F of each example, the residual magnetic flux density (Br) in the X direction, the coercive force (iHc) and the maximum energy product ((BH) max) of the IH curve of the permanent magnet magnetized under the same conditions. The results are shown in Table 1. Table 2 shows the dimensions of the high-density elements 4 of Examples 1 to 8 and Comparative Example 1 and the obtained permanent magnet material F.

なお、押出し加工時の高密度要素4および押出金型71の温度は800℃とし、加工機としては80トン油圧プレスを用いた。
また、例1〜8および比較例1の各永久磁石素材Fの磁気特性の具体的な測定については、永久磁石素材Fの幅中央部でかつ長さ中央部から、幅×長さ×厚みが8mm×8mm×8mmとなる磁気測定試料を採取し、該試料を3.2MA/mの磁界中で着磁したものを使用した。そして、前記着磁により飽和磁化に達している各磁気測定試料について、BHトレーサーにて磁気特性を測定した。なお、比較例1の磁気測定試料を用いて、その結晶粒の組織を観察すると偏平形状になっており、その大きさはX方向で平均0.1μm、Y方向で平均0.5μmであった。
The temperature of the high-density element 4 and the extrusion die 71 during the extrusion process was 800 ° C., and an 80-ton hydraulic press was used as the processing machine.
Moreover, about the specific measurement of the magnetic characteristic of each permanent magnet raw material F of Examples 1-8 and Comparative Example 1, the width × length × thickness is the width central portion and the length central portion of the permanent magnet raw material F. A magnetic measurement sample having a size of 8 mm × 8 mm × 8 mm was collected, and the sample was magnetized in a magnetic field of 3.2 MA / m. And about each magnetic measurement sample which has reached saturation magnetization by the said magnetization, the magnetic characteristic was measured with the BH tracer. In addition, when the structure of the crystal grain was observed using the magnetic measurement sample of Comparative Example 1, it was a flat shape, and its size was an average of 0.1 μm in the X direction and an average of 0.5 μm in the Y direction. .

Figure 2008258585
Figure 2008258585

Figure 2008258585
Figure 2008258585

〔実験例2〕
Nd:26.8質量%、Pr:0.1質量%、Dy:3.6質量%、Co:6質量%、B:0.89質量%、Ga:0.57質量%、残部が実質的にFeの磁性合金を用い、前記実験例1と同一条件で磁性粉末Mを得、順次、粉末状要素2、固形状要素3、高密度要素4を製造した。その製造した比較例1と同一寸法の高密度要素4に対し、前記比較例1と同じく、押出し後の厚みT1が8mmで、ひずみ比ε2/ε1が1.0となるよう押出し成形された永久磁石素材Fの磁気特性を、表1に比較例2として示す。また、比較例2における高密度要素4および得られた永久磁石素材Fの寸法を表2に示した。なお、押出し成形の条件および磁気特性の測定の具体的な方法は、実験例1と同じである。
[Experiment 2]
Nd: 26.8% by mass, Pr: 0.1% by mass, Dy: 3.6% by mass, Co: 6% by mass, B: 0.89% by mass, Ga: 0.57% by mass, the balance being substantial A magnetic powder M was obtained under the same conditions as in Experimental Example 1 using an Fe magnetic alloy, and a powdered element 2, a solid element 3 and a high-density element 4 were sequentially manufactured. The manufactured high-density element 4 having the same dimensions as Comparative Example 1 was extruded so that the thickness T1 after extrusion was 8 mm and the strain ratio ε 2 / ε 1 was 1.0, as in Comparative Example 1. Table 1 shows the magnetic properties of the permanent magnet material F as Comparative Example 2. The dimensions of the high-density element 4 and the obtained permanent magnet material F in Comparative Example 2 are shown in Table 2. Note that the conditions for extrusion molding and the specific method for measuring the magnetic properties are the same as in Experimental Example 1.

次に、図1〜図8において、永久磁石素材Fに磁気異方性を備えさせる為の塑性加工として押出加工の例を説明した。しかし、磁気異方性を備えさせる為の塑性加工としては、上述の押出し加工の他に、周知のように据込み加工、圧延加工等があり、必要に応じてそれらの塑性加工を選択利用すればよい。
さらに、図1〜図8において、単一の高密度要素4に塑性加工を施して永久磁石素材Fを成形する場合について前述した。しかし、上記塑性加工及び他の周知の塑性加工は、上記高密度要素4と同視できる他の合成成形体E、即ち、図13〜33に表われる夫々の合成成形体Eについても、同様の塑性加工を適用して、夫々、対応する永久磁石素材Fを成形することができる。
Next, in FIGS. 1-8, the example of the extrusion process was demonstrated as a plastic processing for providing the permanent magnet raw material F with magnetic anisotropy. However, as plastic processing for providing magnetic anisotropy, there are upsetting processing, rolling processing, etc. as well known as the above-described extrusion processing, and those plastic processing can be selected and used as necessary. That's fine.
Furthermore, in FIGS. 1-8, the case where the permanent magnet raw material F was shape | molded by giving a plastic processing to the single high-density element 4 was mentioned above. However, the above-mentioned plastic working and other known plastic workings are also performed on other synthetic molded bodies E that can be regarded as the high-density element 4, that is, the respective synthetic molded bodies E shown in FIGS. By applying the processing, the corresponding permanent magnet material F can be respectively formed.

次に、図1〜図8の高密度要素4、永久磁石素材F、押出金型71とは、高密度要素4と永久磁石素材Fの形状、押出し金型における貫通孔73、テーパ孔75、等形通孔76、成形ダイス74等の形状の点において異なる例を示す図9、図10について説明する。
図1〜図8を用いて上述したように、断面長方形の高密度要素4から板形状の永久磁石素材Fを製造する場合を説明したが、図9(a),(b)に示す如く、円柱形状の高密度要素4aから板形状の永久磁石素材F(永久磁石素材60a)を製造するものであってもよい。
すなわち、厚みT1、幅W1で長さL1の板形状の永久磁石素材60aを、直径(X方向およびY方向)D、長さ(Z方向)Lの円柱形状の高密度要素4aから押出し成形するに際し、そのひずみ比ε2/ε1=ln(W1/D)/ln(L1/L)が、0.2〜3.5の範囲、好ましくは0.4〜1.6の範囲となるよう貫通孔テーパ孔および等形通孔の各寸法を設定することで、上述と同様の作用効果が得られる。
ちなみに、図9の永久磁石素材60aを製造するための成形ダイス84では、図10から理解できるように、テーパ孔85は、入口84aが高密度要素4aと同一直径の円形に形成されると共に、該テーパ孔85の出側84bおよび等形通孔86が、永久磁石素材60aと同一のX方向の寸法がT1でY方向の寸法がW1の矩形状に形成されていればよい。
Next, the high-density element 4, the permanent magnet material F, and the extrusion die 71 in FIGS. 1 to 8 are the shapes of the high-density element 4 and the permanent magnet material F, the through holes 73 in the extrusion mold, the taper holes 75, 9 and 10 showing different examples in terms of the shape of the isomorphic through hole 76, the forming die 74, and the like will be described.
As described above with reference to FIGS. 1 to 8, the case where the plate-shaped permanent magnet material F is manufactured from the high-density element 4 having a rectangular cross section has been described. As shown in FIGS. 9A and 9B, A plate-shaped permanent magnet material F (permanent magnet material 60a) may be manufactured from the cylindrical high-density element 4a.
That is, a plate-shaped permanent magnet material 60a having a thickness T1, a width W1, and a length L1 is extruded from a cylindrical high-density element 4a having a diameter (X direction and Y direction) D and a length (Z direction) L. In this case, the strain ratio ε 2 / ε 1 = ln (W1 / D) / ln (L1 / L) is in the range of 0.2 to 3.5, preferably in the range of 0.4 to 1.6. By setting the dimensions of the through hole tapered hole and the isomorphic through hole, the same effects as described above can be obtained.
Incidentally, in the forming die 84 for producing the permanent magnet material 60a of FIG. 9, as can be understood from FIG. 10, the tapered hole 85 is formed in a circular shape with the inlet 84a having the same diameter as the high-density element 4a, The outlet side 84b of the taper hole 85 and the isomorphic through-hole 86 may be formed in the same rectangular shape as the permanent magnet material 60a in which the dimension in the X direction is T1 and the dimension in the Y direction is W1.

〔実験例3〕
前記実験例1と同一組成の磁性合金を用い、実験例1と同一条件で製造した直径D=14.5mm、長さL=22.5mmの円柱形状の高密度要素4aに対し、押出し後の厚みT1が3mmとなり、なおかつひずみ比ε2/ε1が1.0となるよう押出し成形された永久磁石素材60aのX方向の磁気特性を、表1に例9として示した。また、例9における高密度要素4aおよび得られた永久磁石素材60aの寸法を表3に示した。なお、例9の永久磁石素材Fの磁気特性の具体的な測定については、永久磁石素材Fの幅中央部でかつ長さ中央部から、幅×長さ×厚みが8mm×8mm×3mmとなる磁気測定試料を採取し、該試料を3.2MA/mの磁界中で着磁したものを、BHトレーサーにて測定した。
[Experimental Example 3]
Using a magnetic alloy having the same composition as in Experimental Example 1, a cylindrical high density element 4a having a diameter D = 14.5 mm and a length L = 22.5 mm manufactured under the same conditions as in Experimental Example 1, Table 9 shows the magnetic characteristics in the X direction of the permanent magnet material 60a extruded so that the thickness T1 is 3 mm and the strain ratio ε 2 / ε 1 is 1.0. Table 3 shows the dimensions of the high-density element 4a and the obtained permanent magnet material 60a in Example 9. In addition, about the specific measurement of the magnetic characteristic of the permanent-magnet raw material F of Example 9, width x length x thickness is 8 mm x 8 mm x 3 mm from the width center part and length center part of the permanent magnet material F. A sample for magnetic measurement was collected, and the sample magnetized in a magnetic field of 3.2 MA / m was measured with a BH tracer.

Figure 2008258585
Figure 2008258585

次に、図1〜図8の高密度要素4、永久磁石素材Fとは、高密度要素4と永久磁石素材Fの形状の点において異なる例を示す図11について説明する。
図11(a),(b)に示す如く、厚み(X方向)T、幅(Y方向)Wで長さ(Z方向)Lの断面長方形の高密度要素4bから、厚み(X方向)T1、外周側の円弧長(Y方向)W1、内周側の円弧長(Y方向)W2で長さ(Z方向)L1の断面円弧状の永久磁石素材F(永久磁石素材60b)を押出し成形する場合を示す。
押出し成形するに際し、ひずみ比ε2/ε1=ln(((W1+W2)/2)/W)/ln(L1/L)が、0.2〜3.5の範囲、好ましくは0.4〜1.6の範囲となるよう押出金型における貫通孔73、テーパ孔75および等形通孔76等の各寸法を設定すればよい。
このように設定することで、図1〜図8を用いて上述したと同様の作用効果が得られる。なお、図11に示される永久磁石素材60bの磁気異方化方向は、円弧に沿って直角なラジアル方向となる。
Next, FIG. 11 which shows an example in which the high-density element 4 and the permanent magnet material F in FIGS. 1 to 8 are different from each other in terms of the shapes of the high-density element 4 and the permanent magnet material F will be described.
As shown in FIGS. 11 (a) and 11 (b), a thickness (X direction) T1 is obtained from a high density element 4b having a thickness (X direction) T, a width (Y direction) W, and a length (Z direction) L having a rectangular section. The outer circumferential arc length (Y direction) W1 and the inner circumferential arc length (Y direction) W2 and the length (Z direction) L1 of a cross-sectional permanent magnet material F (permanent magnet material 60b) are extruded. Show the case.
In extrusion molding, the strain ratio ε 2 / ε 1 = ln (((W1 + W2) / 2) / W) / ln (L1 / L) is in the range of 0.2 to 3.5, preferably 0.4 to What is necessary is just to set each dimension of the through-hole 73 in the extrusion die, the taper hole 75, the isomorphic through-hole 76, etc. so that it may become the range of 1.6.
By setting in this way, the same effects as described above with reference to FIGS. 1 to 8 can be obtained. Note that the magnetic anisotropic direction of the permanent magnet material 60b shown in FIG. 11 is a radial direction perpendicular to the arc.

〔実験例4〕
前記実験例1と同一組成の磁性合金を用い、実験例1と同一条件で製造した厚みT=24mm、幅W=23mm、長さL=25mmの断面長方形の高密度要素4bに対し、厚みT1=8mm、円弧長((W1+W2)/2)=40mm、円弧半径R1=40mmとなり、なおかつひずみ比ε2/ε1が1.0となるよう断面円弧状に押出し成形された永久磁石素材60bの磁気特性を、表1に例10として示した。
また、例10における高密度要素4bおよび得られた永久磁石素材60bの寸法を表4に示した。なお、例10の永久磁石素材60bの磁気特性の具体的な測定については、永久磁石素材60bの幅中央部でかつ長さ中央部から、幅×長さが8mm×8mmのものを切り出した後、円弧になった部分を厚み方向の両端面において片側約0.5mmずつ削って厚み7mmの磁気測定試料を採取し、該試料を3.2MA/mの磁界中で着磁したものを、BHトレーサーにて測定した。
[Experimental Example 4]
Thickness T1 is applied to a high density element 4b having a rectangular cross section having a thickness T = 24 mm, a width W = 23 mm, and a length L = 25 mm manufactured using the magnetic alloy having the same composition as in Experimental Example 1 under the same conditions as in Experimental Example 1. = 8 mm, arc length ((W 1 + W 2) / 2) = 40 mm, arc radius R 1 = 40 mm, and the permanent magnet material 60b extruded into an arc shape in cross section so that the strain ratio ε 2 / ε 1 is 1.0. The magnetic properties are shown in Table 1 as Example 10.
Table 4 shows dimensions of the high-density element 4b and the obtained permanent magnet material 60b in Example 10. In addition, about the specific measurement of the magnetic characteristic of the permanent magnet raw material 60b of Example 10, after cutting out the thing of width x length 8mm x 8mm from the width center part and length center part of the permanent magnet material 60b. The arc-shaped portion was cut by about 0.5 mm on each side at both end surfaces in the thickness direction, a 7 mm thick magnetic measurement sample was taken, and the sample was magnetized in a 3.2 MA / m magnetic field. Measured with a tracer.

Figure 2008258585
Figure 2008258585

表1に示す実験結果から、ひずみ比ε2/ε1について、0.2≦ε2/ε1≦3.5の範囲に設定することで、磁気特性が向上することが確認され、0.4≦ε2/ε1≦1.6の範囲とすることで、磁気特性が更に向上することが確認された。更には、ひずみ比ε2/ε1が1に近づくにつれて、磁気特性が最も向上することが確認された。また、比較例1、2及び例1〜10の永久磁石素材Fは、何れも外観は良好であり、切捨てが必要な部分は、長さ方向の最先端部および最後端部の夫々約2mmを除いて皆無であった。更に、浸透探傷試験および過流探傷試験の結果、表面割れおよび内部割れの発生は確認されなかった。すなわち、本発明によれば、高い磁気特性を有する永久磁石を、生産性、歩留および製造コストの点で優れている押出し加工により製造し得ることが確認された。 From the experimental results shown in Table 1, it is confirmed that the magnetic characteristics are improved by setting the strain ratio ε 2 / ε 1 in the range of 0.2 ≦ ε 2 / ε 1 ≦ 3.5. It was confirmed that the magnetic properties were further improved by setting the range of 4 ≦ ε 2 / ε 1 ≦ 1.6. Furthermore, it was confirmed that as the strain ratio ε 2 / ε 1 approaches 1, the magnetic characteristics are most improved. Moreover, the permanent magnet materials F of Comparative Examples 1 and 2 and Examples 1 to 10 all have a good appearance, and the portions that need to be cut off are about 2 mm at the most distal end and the last end in the length direction. There was nothing except. Further, as a result of the penetration inspection test and the overflow inspection test, generation of surface cracks and internal cracks was not confirmed. That is, according to the present invention, it has been confirmed that a permanent magnet having high magnetic properties can be manufactured by an extrusion process that is excellent in terms of productivity, yield, and manufacturing cost.

次に、図1〜図8の高密度要素4、永久磁石素材Fとは、高密度要素4と永久磁石素材Fの形状の点において異なる例を示す図12について説明する。
1.図12(a)に示す如く、短軸D1、長軸D2で長さ(Z方向)Lの断面楕円形の高密度要素4cから、図12(b)に示すように、最大厚み(X方向)T1、円弧辺の円弧長(Y方向)W1、直線辺の幅(Y方向)W2で長さ(Z方向)L1の断面蒲鉾形の永久磁石素材F(断面蒲鉾形のの永久磁石素材60c)、または図12(c)に示すように、最大厚み(X方向)T1、外周側の円弧長(Y方向)W1、内周側の円弧長(Y方向)W2で長さ(Z方向)L1の断面三日月形の永久磁石素材F(断面三日月形のの永久磁石素材60d)を製造するものであってもよい。
この場合は、ひずみ比ε2/ε1=ln(((W1+W2)/2)/D2)/ln(L1/L)が、0.2〜3.5の範囲、好ましくは0.4〜1.6の範囲となるよう、押出金型71の貫通孔73、テーパ孔75および等形通孔76等の各方向の寸法を設定することで、図1〜図8を用いて上述したと同様の作用効果が得られる。
ここで、断面楕円形の高密度要素4cから断面蒲鉾形の永久磁石素材60cあるいは断面三日月形の永久磁石素材60dを製造する場合における高密度要素4cのX方向およびY方向は、得られる永久磁石素材60c、60dの厚みT1、幅(円弧長)W1,W2の関係によって決まる。
すなわち、短軸D1がX方向で長軸D2がY方向となる場合と、短軸D1がY方向で長軸D2がX方向となる場合とがある。ちなみに、この関係は楕円形から矩形に成形する場合で考えても同様であるので、その具体例を表5に示す。
Next, FIG. 12 which shows an example which differs in the point of the shape of the high-density element 4 and the permanent magnet raw material F of the high-density element 4 and the permanent magnet raw material F of FIGS.
1. As shown in FIG. 12 (a), from the high-density element 4c having an elliptical cross section having a short axis D1 and a long axis D2 and a length (Z direction) L, as shown in FIG. ) T1, arc length of arc side (Y direction) W1, straight side width (Y direction) W2 and length (Z direction) L1 cross section saddle-shaped permanent magnet material F (cross section saddle shape permanent magnet material 60c) ) Or as shown in FIG. 12 (c), the maximum thickness (X direction) T1, the outer arc length (Y direction) W1, the inner arc length (Y direction) W2 and the length (Z direction). The L1 cross-section crescent-shaped permanent magnet material F (the crescent cross-section permanent magnet material 60d) may be manufactured.
In this case, the strain ratio ε 2 / ε 1 = ln (((W1 + W2) / 2) / D2) / ln (L1 / L) is in the range of 0.2 to 3.5, preferably 0.4 to 1. As in the case described above with reference to FIGS. 1 to 8, by setting the dimensions in each direction of the through hole 73, the tapered hole 75, the isomorphic through hole 76, etc. The following effects can be obtained.
Here, the X direction and the Y direction of the high density element 4c when the permanent magnet material 60c having the saddle shape in cross section or the permanent magnet material 60d having the crescent shape in cross section are manufactured from the high density element 4c having the elliptical cross section are obtained permanent magnets. It is determined by the relationship between the thickness T1 and the width (arc length) W1, W2 of the materials 60c, 60d.
That is, there are a case where the short axis D1 is the X direction and the long axis D2 is the Y direction, and a case where the short axis D1 is the Y direction and the long axis D2 is the X direction. Incidentally, this relationship is the same even when considered from the case of molding from an ellipse to a rectangle, and a specific example is shown in Table 5.

Figure 2008258585

2.予備成形体および永久磁石の断面形状に関しては、各例で示した以外の形状であってもよい。また、予備成形体と永久磁石の断面の組合わせについては、実施例の組合わせ以外であってもよい。
3.図2〜図7を用いて前述した上記成形ダイス74では、そのテーパ孔75の入口を、貫通孔73に対して等形となる部分を所定長さで形成したが、貫通孔73の端にテーパが直接連続するようにテーパ孔75を形成してもよい。
Figure 2008258585

2. Regarding the cross-sectional shapes of the preform and the permanent magnet, shapes other than those shown in the examples may be used. Further, the combination of the cross sections of the preform and the permanent magnet may be other than the combination of the examples.
3. In the above-described forming die 74 described with reference to FIGS. The tapered hole 75 may be formed so that the taper is directly continuous.

次に図13〜図42に示されている本発明の実施例を説明する。   Next, an embodiment of the present invention shown in FIGS. 13 to 42 will be described.

永久磁石素材Fの製造方法は、図13に表れているように、保磁力が高Br成形体要素Bに比較して高く、かつ、残留磁束密度が高Br成形体要素Bに比較して低い材質の磁性粉末で形成される高iHc成形体要素Aと、残留磁束密度が高iHc成形体要素Aに比較して高く、かつ、保磁力が高iHc成形体要素Aに比較して低い材質の磁性粉末で形成される高Br成形体要素Bとを、寄せ合わせ、一体化して永久磁石用の合成成形体Eを形成し、上記合成成形体Eに塑性加工を施すことによって磁気異方性を備えさせるようにしてある。   As shown in FIG. 13, the manufacturing method of the permanent magnet material F has a higher coercive force than that of the high Br molded body element B and a lower residual magnetic flux density than that of the high Br molded body element B. A high iHc molded body element A made of a magnetic powder of a material and a material having a residual magnetic flux density higher than that of the high iHc molded body element A and a coercive force lower than that of the high iHc molded body element A. The high-Br molded body element B formed of magnetic powder is brought together and integrated to form a synthetic molded body E for permanent magnets, and the synthetic molded body E is subjected to plastic working to provide magnetic anisotropy. It is designed to be prepared.

この点を図13を用いてさらに詳しく説明する。図13は永久磁石素材Fの製法を説明する為の図面で、(a)〜(d)に順次表われるように、個別に高iHc成形体要素Aと、高Br成形体要素Bを形成し、それらを寄せ合わせ一体化して永久磁石用合成成形体E(
本件では、これを「合成成形体E」とも称する。)を形成し、さらに合成成形体Eに塑性加工を施して永久磁石素材Fを作る例を示す。
図13(a)、(b)、(c)夫々の上段の高iHc成形体要素Aにおいて、6は冷間プレスにおけるダイのキャビティ(図示省略)中に、磁性粉末を充填して形成された高iHc粉末状要素を示す。なお、上記磁性粉末は、図1を用いて前述した磁性粉末Mと同様に、周知の手段で製造すればよい。この磁性粉末の材質は、高Br成形体要素Bを形成する磁性粉末に比較して保磁力が高く、かつ、残留磁束密度が低い材質であればよい。例えば、上記実験例2で用いた磁性粉末Mを用いてもよいし、又は、不可逆減磁に対する要望、サイズの大小やコストに係る要望等により、磁性合金の組成を変えたり、Dy等を増減した磁性粉末を用いてもよい。本件では、これらの磁性粉末を「磁性粉末Ma」とも称する。このような磁性粉末Maの残留磁束密度は、高Br成形体要素Bの残留磁束密度より低く、かつ、保磁力は、高Br成形体要素Bの保磁力より高いという条件を備える。なお、高iHc成形体要素Aに用いられる磁性粉末は、全てが磁性粉末Maであってもよいし、上記の条件の範囲で磁性粉末Maと後述の磁性粉末Mbを適量宛配合したものであってもよい。 7は、高iHc粉末状要素6を冷間プレス手段によって成形される高iHc固形状要素、8は、高iHc固形状要素7を熱間または温間プレス手段によって製造される高iHc高密度要素を示す。なお、冷間プレス手段、熱間または温間プレスとしては、周知の手段を用いればよく、例えば、図1を用いて前述したと同様に冷間プレス手段、熱間または温間プレス手段を行なえばよい。
This point will be described in more detail with reference to FIG. FIG. 13 is a drawing for explaining the manufacturing method of the permanent magnet material F. The high iHc molded body element A and the high Br molded body element B are individually formed as sequentially shown in (a) to (d). , Combining them together to form a permanent magnet synthetic molded body E (
In this case, this is also referred to as “synthetic molded body E”. ) Is formed, and the synthetic molded body E is plastically processed to produce the permanent magnet material F.
13 (a), (b), and (c), each of the high iHc molded body elements A in the upper stage, 6 is formed by filling magnetic powder in a cavity (not shown) of a die in a cold press. A high iHc powdery element is shown. The magnetic powder may be manufactured by a known means, like the magnetic powder M described above with reference to FIG. The material of this magnetic powder should just be a material with a high coercive force compared with the magnetic powder which forms the high Br molded body element B, and a low residual magnetic flux density. For example, the magnetic powder M used in Experimental Example 2 may be used, or the composition of the magnetic alloy may be changed or the Dy may be increased or decreased depending on the demand for irreversible demagnetization, the size, the cost, etc. Magnetic powder may be used. In the present case, these magnetic powders are also referred to as “magnetic powder Ma”. The residual magnetic flux density of such magnetic powder Ma is lower than the residual magnetic flux density of the high Br molded body element B, and the coercive force is higher than the coercive force of the high Br molded body element B. Note that the magnetic powder used for the high iHc molded body element A may be all magnetic powder Ma, or a mixture of magnetic powder Ma and magnetic powder Mb described later in an appropriate amount within the range of the above conditions. May be. 7 is a high iHc solid element in which the high iHc powder element 6 is formed by cold pressing means, and 8 is a high iHc high density element in which the high iHc solid element 7 is produced by hot or warm pressing means. Indicates. As the cold press means, the hot or warm press, a known means may be used. For example, the cold press means, the hot or warm press means may be performed in the same manner as described above with reference to FIG. That's fine.

次に、図13(a)、(b)、(c)夫々の下段の高Br成形体要素Bにおいて、11は、冷間プレスにおけるダイのキャビティ(図示省略)中に、磁性粉末Mbを充填して形成された高Br粉末状要素を示す。なお、この磁性粉末Mbは、図1を用いて前述した磁性粉末Mと同様に、周知の手段で製造すればよい。この磁性粉末Mbの材質は、高iHc成形体要素Aを形成する磁性粉末Maに比較して保磁力が低く、かつ、残留磁束密度が高いという条件を備える材質であればよい。例えば、上記実験例1で用いた磁性粉末M(Br:1.47T、iHc:1.22MA/m)を用いてもよいし、又は、不可逆減磁に対する要望、サイズの大小やコストに係る要望等により、磁性合金の組成を変えたり、Dy等を加えたりした磁性粉末を用いてもよい。本件では、これらの磁性粉末を「磁性粉末Mb」とも称する。なお、高Br成形体要素Bに用いられる磁性粉末は、全てが上記磁性粉末Mbであってもよいし、上記の条件の範囲で磁性粉末Mbと磁性粉末Maを適量宛配合したものであってもよい。
12は高Br粉末状要素11を冷間プレス手段によって成形される高Br固形状要素、13は高Br固形状要素12を熱間または温間プレス手段によって製造される高Br高密度要素を示す。なお、冷間プレス手段、熱間または温間プレス手段としては、周知の手段を用いればよく、例えば、図1を用いて前述したと同様に冷間プレス手段、熱間または温間プレスを行なえばよい。
Next, in FIGS. 13A, 13B, and 13C, in the lower high Br molded body element B, 11 is filled with magnetic powder Mb in the die cavity (not shown) in the cold press. The high Br powder-like element formed in this way is shown. In addition, what is necessary is just to manufacture this magnetic powder Mb by a well-known means similarly to the magnetic powder M mentioned above using FIG. The material of the magnetic powder Mb may be any material that satisfies the conditions that the coercive force is low and the residual magnetic flux density is high as compared with the magnetic powder Ma forming the high iHc molded body element A. For example, the magnetic powder M (Br: 1.47T, iHc: 1.22 MA / m) used in Experimental Example 1 may be used, or a request for irreversible demagnetization, a request for size and cost. For example, a magnetic powder in which the composition of the magnetic alloy is changed or Dy is added may be used. In this case, these magnetic powders are also referred to as “magnetic powder Mb”. The magnetic powder used for the high Br molded body element B may be all the magnetic powder Mb, or may be a mixture of the magnetic powder Mb and the magnetic powder Ma within the above conditions. Also good.
Reference numeral 12 denotes a high Br solid element formed by cold pressing means of the high Br powdered element 11, and 13 denotes a high Br high density element manufactured by hot or warm pressing means of the high Br solid element 12. . As the cold pressing means, the hot or warm pressing means, a known means may be used. For example, the cold pressing means, the hot or warm pressing may be performed in the same manner as described above with reference to FIG. That's fine.

なお、高iHc高密度要素8と高Br高密度要素13の夫々の外形寸法は、両者を寄せ合わせ一体化したときに、所定の外形寸法の合成成形体Eになるような寸法に形成すればよい。例えば、高iHc高密度要素8:厚みT2=18mm、幅W2=19mm、長さL2=25mm; 高Br高密度要素13:厚みT2=18mm、幅W2=19mm、長さL2=25mmとすればよい。すると合成成形体Eは、厚みT=36mm、幅W=19mm、長さL=25mmとなる。   Note that the external dimensions of the high iHc high-density element 8 and the high Br high-density element 13 may be formed so as to form a composite molded body E having a predetermined external dimension when the both are brought together and integrated. Good. For example, high iHc high density element 8: thickness T2 = 18 mm, width W2 = 19 mm, length L2 = 25 mm; high Br high density element 13: thickness T2 = 18 mm, width W2 = 19 mm, length L2 = 25 mm Good. Then, the synthetic molded body E has a thickness T = 36 mm, a width W = 19 mm, and a length L = 25 mm.

次に、夫々個別に製造した高iHc高密度要素8(高iHc成形体要素A)と、高Br高密度要素13(高Br成形体要素B)とを、図13(c2)に表われているように、任意周知の手段で寄せ合わせる。この寄せ合せた状態は、次段の塑性加工に用いる金型に挿入するまでバラバラ(離れ離れ)にならないよう軽い力で押えておけばよい(例えば、各要素をロボットハンド等で金型に挿入する直前まで押さえておけばよい)。上記寄せ合わせた状態の合成成形体Eには、一体化する為の任意の周知の手段、例えば、周知の一体化させる為のプレス手段を施せば一体化させることができる。またこの時点で、要望に対応して、後述する図20〜図22に表われているような任意の外形形状に成形してもよい。   Next, a high iHc high density element 8 (high iHc molded body element A) and a high Br high density element 13 (high Br molded body element B), which are individually manufactured, are shown in FIG. 13 (c2). As well as by any known means. In this assembled state, it is only necessary to hold it with a light force so that it does not come apart (separate) until it is inserted into the mold used for the next stage of plastic working (for example, each element is inserted into the mold with a robot hand or the like). Just hold it down to the last minute). The synthetic molded body E in the assembled state can be integrated by applying any known means for integration, for example, a known pressing means for integration. Further, at this point, it may be formed into an arbitrary outer shape as shown in FIGS.

次に、図13(c2)の寄せ合わせた状態の合成成形体E(2種合成成形体51)に、磁気異方性を備えさせる為の塑性加工を施して、図13(d)の永久磁石素材F(2種永久磁石素材61)を成形する。塑性加工としては、前述した種々の塑性加工を用いればよく、例えば、図1〜図8を用いて前述したと同様に、押出し金型71を用いる押出加工を施して成形すればよい。合成成形体Eは、塑性加工で高温になることで希土類元素リッチ相が溶融し、自然に一体化する。
次に上記押出し加工に際しての押出し方向は、磁極における一方の側が保磁力の高い側となり、他方の側が残留磁束密度の高い側となるようにして利用する場合は、例えば、上記合成成形体Eにおける高Br成形体要素Bと高iHc成形体要素Aとの合せ面57に平行する方向(矢印79方向)へ押出し、上記合成成形体Eを潰す方向は、上記合せ面57に直交する方向(X方向)へ潰して(絞って)、永久磁石素材Fにおける磁化容易軸69を上記合せ面57に直交する方向(X方向)に向くようにするとよい。
このような押出加工を施すことは、本発明の目的である「磁極の一方側に保磁力が高い高iHc成形体要素A側が位置し、磁極の他方側に残留磁束密度が高い高Br粉末状要素B側が夫々位置させる」ことになる。このことは図15、16、24、26、28、30、33に表われる夫々の合成成形体Eに塑性加工を施して、永久磁石素材Fを成形する場合においても同様である。
上記永久磁石素材Fに着磁を施して永久磁石として利用する場合は、磁極における一方の側が保磁力の高い側となり、他方の側が残留磁束密度の高い側となるようにして利用することのできる特長がある。
図13(d)の永久磁石素材Fにおいて、67は高iHc成形体要素A側、68は高Br成形体要素B側を示し、69は磁化容易軸の方向を示す。
なお、永久磁石素材Fの外形寸法は、合成成形体Eに施す塑性加工により相違するが、例えば、上記実験例1における比較例1と同様の押出し加工を施した場合、合成成形体E:厚みT=36mm、幅W=19mm、長さL=25mmの場合、永久磁石素材F:厚みT1=8mm、幅W1=40mm、長さL1=53.4mmとなる。
Next, a plastic working for providing magnetic anisotropy is applied to the composite molded body E (two-type composite molded body 51) in a state of being brought together in FIG. Magnet material F (2 type permanent magnet material 61) is formed. As the plastic working, the above-described various plastic workings may be used. For example, as described above with reference to FIGS. 1 to 8, the forming may be performed by performing the extrusion using the extrusion die 71. In the synthetic molded body E, the rare earth element rich phase is melted and naturally integrated by being heated to a high temperature by plastic working.
Next, the extrusion direction in the extrusion process is such that, for example, in the synthetic molded body E, when one side of the magnetic pole is a side having a high coercive force and the other side is a side having a high residual magnetic flux density. The direction of crushing the synthetic molded body E in the direction parallel to the mating surface 57 of the high Br molded body element B and the high iHc molded body element A (arrow 79 direction) is the direction orthogonal to the mating surface 57 (X It is preferable that the easy magnetization axis 69 of the permanent magnet material F is oriented in the direction (X direction) perpendicular to the mating surface 57.
Applying such an extrusion process is an object of the present invention, “a high Br powder state in which the high iHc molded body element A side having a high coercive force is located on one side of the magnetic pole and the residual magnetic flux density is high on the other side of the magnetic pole. The element B side is positioned ". The same applies to the case where the permanent magnet material F is molded by plastic processing each synthetic molded body E shown in FIGS. 15, 16, 24, 26, 28, 30 and 33.
When the permanent magnet material F is magnetized and used as a permanent magnet, it can be used such that one side of the magnetic pole is a side having a high coercive force and the other side is a side having a high residual magnetic flux density. There are features.
In the permanent magnet material F of FIG. 13D, 67 indicates the high iHc molded body element A side, 68 indicates the high Br molded body element B side, and 69 indicates the direction of the easy axis of magnetization.
In addition, although the external dimension of the permanent magnet raw material F changes with the plastic processing given to the synthetic molded object E, for example, when the extrusion process similar to the comparative example 1 in the said experimental example 1 is given, the synthetic molded object E: thickness When T = 36 mm, width W = 19 mm, and length L = 25 mm, the permanent magnet material F: thickness T1 = 8 mm, width W1 = 40 mm, and length L1 = 53.4 mm.

以上のように製造された2層の永久磁石素材Fは、全体の磁化容易軸69が揃っており、磁気異方性を有する。よって、永久磁石素材Fに着磁することにより、磁気特性の優れた永久磁石として利用できる。この永久磁石における残留磁束密度(Br)、保磁力(iHc)及びDy含有率を表6に示す。さらに、この永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフを図14に示す。   The two-layer permanent magnet material F manufactured as described above has the entire easy magnetization axis 69 and has magnetic anisotropy. Therefore, by magnetizing the permanent magnet material F, it can be used as a permanent magnet having excellent magnetic properties. Table 6 shows the residual magnetic flux density (Br), coercive force (iHc), and Dy content of this permanent magnet. Furthermore, the graph which shows the relationship between the residual magnetic flux density (Br) in this permanent magnet and the coercive force (iHc) is shown in FIG.

Figure 2008258585
Figure 2008258585

上記表6、図14に示されるように、永久磁石の高iHc成形体要素A側は、Dy含有率は3.6質量%だから保磁力は極めて高い(1.85MA/m)。よって、永久磁石を熱に晒される環境下で使用する際、永久磁石における高iHc成形体要素A側を熱の影響を受ける側に配置して使用することにより、永久磁石の高iHc成形体要素A側は不可逆減磁しにくい特長があるので、永久磁石全体として磁気特性が劣化しにくく、磁気特性の優れた永久磁石として長寿命で使用することができる。
しかも、表6に示されるように、永久磁石全体におけるDyの使用量は、高iHc成形体要素Aと高Br成形体要素Bの平均値で1.8質量%となり、高価なDyを少ない使用量で上記のような高保磁力を発揮できる永久磁石を得ることが可能となる特長がある。
なお、永久磁石の高iHc成形体要素A側の保磁力、高Br粉末状要素B側の保磁力として、夫々1.85MA/m、1.22MA/mのものを例示した。しかし、これらは、図13(d)の永久磁石素材Fに着磁したものの一例を示すものである。一般に、永久磁石素材Fに着磁する永久磁石の使用場所、温度条件、外部磁界の大きさ、磁石の寸法によって必要な保磁力は異なる。よって、必要に応じて、高iHc成形体要素A側と高Br成形体要素B側の夫々の磁性粉末Ma、Mbの組成を変える等して保磁力を設定すればよい。
As shown in Table 6 and FIG. 14, the coercive force is extremely high (1.85 MA / m) on the high iHc molded body element A side of the permanent magnet because the Dy content is 3.6 mass%. Therefore, when the permanent magnet is used in an environment exposed to heat, the high iHc molded body element of the permanent magnet is used by arranging the high iHc molded body element A side of the permanent magnet on the side affected by the heat. Since the A side has a feature that it is difficult to irreversibly demagnetize, the magnetic properties of the permanent magnet as a whole are not easily deteriorated, and it can be used as a permanent magnet having excellent magnetic properties with a long life.
Moreover, as shown in Table 6, the amount of Dy used in the entire permanent magnet is 1.8% by mass in terms of the average value of the high iHc molded body element A and the high Br molded body element B, and the expensive Dy is used in a small amount. There is a feature that it is possible to obtain a permanent magnet capable of exhibiting a high coercive force as described above.
In addition, examples of the coercive force on the high iHc molded body element A side and the coercive force on the high Br powdered element B side of the permanent magnet are 1.85 MA / m and 1.22 MA / m, respectively. However, these show an example of what was magnetized to the permanent magnet raw material F of FIG.13 (d). In general, the required coercive force differs depending on the location of use of the permanent magnet magnetized on the permanent magnet material F, the temperature conditions, the magnitude of the external magnetic field, and the size of the magnet. Therefore, the coercive force may be set by changing the composition of the magnetic powders Ma and Mb on the high iHc molded body element A side and the high Br molded body element B side, if necessary.

次に、図13(a)〜(c2)の合成成形体Eに至る過程とは、高iHc成形体要素Aと、高Br成形体要素Bとを寄せ合わせ、一体化する過程の点において異なる例を示す図15、図16について説明する。   Next, the process leading to the synthetic molded body E shown in FIGS. 13A to 13C differs in the process of bringing the high iHc molded body element A and the high Br molded body element B together and integrating them. Examples of FIGS. 15 and 16 will be described.

図15は、(a)〜(d)に順次表われるように、個別に高iHc成形体要素Aと、高Br成形体要素Bを形成し、それらを図15(b2)の時点で寄せ合わせ、一体化して合成された固形状要素10を形成し、その合成固形状要素10に熱間プレスを施して合成成形体Eを形成し、さらに合成成形体Eに塑性加工を施して永久磁石素材Fを作る例を示す。
なお、本件における各図においては、他の図のものと機能、性質、手段又は特徴等が同一又は均等と考えられる部分には、他の図に用いたと同一の符号を付して、他の図に係る機能、性質、手段又は特徴等についての説明を援用する。よって重複する説明は省略する。
In FIG. 15, the high iHc molded body element A and the high Br molded body element B are individually formed as shown sequentially in (a) to (d), and they are brought together at the time of FIG. 15 (b <b> 2). The integrated solid element 10 is formed, and the synthetic solid element 10 is hot-pressed to form a synthetic molded body E, and the synthetic molded body E is plastically processed to obtain a permanent magnet material. An example of creating F will be shown.
In each figure in this case, parts that are considered to be the same or equivalent in function, property, means, or feature, etc., in other figures are given the same reference numerals as those used in the other figures, and other parts. The description of the functions, properties, means, features, and the like according to the drawings is incorporated. Therefore, the overlapping description is omitted.

図15(b2)において、10は、高iHc固形状要素7(高iHc成形体要素A)と、高Br固形状要素12(高Br成形体要素B)とを、寄せ合わせ一体化した合成固形状要素を示す。この寄せ合せは、次段の熱間または温間プレスに用いる金型に挿入するまでバラバラ(離れ離れ)にならないよう図13(c2)について説明したと同様に軽い力で押えておけばよい。この合成固形状要素10を熱間または温間プレス手段によって一体化し、図15(c)の合成成形体E(2種合成成形体51)を形成する。合成固形状要素10は、熱間または温間プレスで高温にすることで希土類元素リッチ相が溶融し、自然に一体化する。
なお、熱間または温間プレスとしては、周知の手段を用いればよく、例えば、図1を用いて前述したと同様に冷間プレス手段、熱間または温間プレスを行なえばよい。
In FIG. 15 (b2), 10 is a synthetic solid obtained by bringing together a high iHc solid element 7 (high iHc molded body element A) and a high Br solid element 12 (high Br molded body element B). Indicates a shape element. This assembling may be suppressed with a light force as described with reference to FIG. 13 (c2) so as not to be separated (separated) until it is inserted into a die used for the next stage of hot or warm press. This synthetic solid element 10 is integrated by hot or warm pressing means to form a synthetic molded body E (two-type synthetic molded body 51) of FIG. 15 (c). In the synthetic solid element 10, the rare earth element-rich phase is melted by being heated to a high temperature by hot or warm pressing, and is naturally integrated.
As the hot or warm press, a known means may be used. For example, the cold press means, the hot or warm press may be performed in the same manner as described above with reference to FIG.

次に、図15(c)の合成成形体Eに塑性加工を施して、図15(d)の永久磁石素材Fを成形する。塑性加工としては、前述した種々の塑性加工を用いればよい。
以上のように製造された永久磁石素材F(2種永久磁石素材61)は、実施例1と同様の作用効果が得られる。
Next, the synthetic molded body E in FIG. 15C is subjected to plastic working to form the permanent magnet material F in FIG. As the plastic processing, the various plastic processing described above may be used.
The permanent magnet material F (type 2 permanent magnet material 61) manufactured as described above has the same effects as those of the first embodiment.

次に、図16は、図16(a)の時点で図13で説明した磁性粉末Maと磁性粉末Mbとをキャビティ内において寄せ合わせ、一体化して合成された粉末状要素9を形成し、その合成粉末状要素9を冷間プレス、熱間プレスによって、順次、合成固形状要素10、合成成形体Eを形成し、さらに合成成形体Eに塑性加工を施して永久磁石素材Fを作る例を示す。   Next, FIG. 16 forms the powdered element 9 synthesized by combining the magnetic powder Ma and the magnetic powder Mb described in FIG. 13 at the time of FIG. An example of forming a permanent magnet material F by forming a synthetic solid element 10 and a synthetic molded body E in order by cold pressing and hot pressing the synthetic powdered element 9 and then subjecting the synthetic molded body E to plastic working. Show.

図16(a)の合成粉末状要素9を構成する高iHc粉末状要素6と高Br粉末状要素11は、磁性粉末Maと磁性粉末Mbとを寄せ合わせ(ダイのキャビティ中に並列状態に充填して)一体化して形成された粉末状要素である。なお、磁性粉末Maと磁性粉末Mbとをダイのキャビティ中に充填する際には、予めキャビティ内に任意の仕切り用の治具を用いて磁性粉末Maと磁性粉末Mbを充填する空間を仕切るようにしておけばよい。さらに、上記治具表面に予めステアリン酸Liを塗布しておくとよい。そのようにすると、磁性粉末Maと磁性粉末Mbの充填後、治具を引き抜くとき、粉末の持ち上がりが解消される。   The high iHc powder-like element 6 and the high Br powder-like element 11 constituting the synthetic powder-like element 9 in FIG. 16A are made by bringing the magnetic powder Ma and the magnetic powder Mb together (filled in a parallel state in the die cavity) A powdered element formed integrally. When filling the magnetic powder Ma and the magnetic powder Mb into the cavity of the die, the space for filling the magnetic powder Ma and the magnetic powder Mb is partitioned in advance using an arbitrary partitioning jig. Just keep it. Furthermore, it is preferable to apply Li stearate to the jig surface in advance. By doing so, when the jig is pulled out after filling with the magnetic powder Ma and the magnetic powder Mb, the lifting of the powder is eliminated.

図16(b)の10は合成粉末状要素9を冷間プレス手段によって形成された合成固形状要素を示し、高iHc成形体要素Aと高Br成形体要素Bとを寄せ合わせ一体化して形成されたものである。この合成固形状要素10に熱間または温間プレス手段によって図16(c)の合成成形体E(2種合成成形体51)を形成する。なお、冷間プレス手段、熱間または温間プレス手段としては、周知の手段を用いればよく、例えば、図1を用いて前述したと同様に冷間プレス手段、熱間または温間プレスを行なえばよい。
次に、図16(c)の合成成形体Eに塑性加工を施して、図16(d)の永久磁石素材Fを成形する。塑性加工としては、前述した種々の塑性加工を用いればよい。
以上のように製造された永久磁石素材F(2種永久磁石素材61)は、実施例1と同様の作用効果が得られる。
In FIG. 16 (b), reference numeral 10 denotes a synthetic solid element formed by the cold pressing means of the synthetic powder element 9, and is formed by bringing the high iHc molded body element A and the high Br molded body element B together. It has been done. A synthetic molded body E (two-type synthetic molded body 51) of FIG. 16C is formed on the synthetic solid element 10 by hot or warm pressing means. As the cold pressing means, the hot or warm pressing means, a known means may be used. For example, the cold pressing means, the hot or warm pressing may be performed in the same manner as described above with reference to FIG. That's fine.
Next, the composite molded body E shown in FIG. 16C is subjected to plastic working to form the permanent magnet material F shown in FIG. As the plastic processing, the various plastic processing described above may be used.
The permanent magnet material F (type 2 permanent magnet material 61) manufactured as described above has the same effects as those of the first embodiment.

次に、図13(c2)の合成成形体Eに施す塑性加工における潰す方向(X方向)とは、押出加工に際しての合成成形体Eを潰す方向を、合成成形体Eの合せ面57に平行する方向で、かつ、押出し方向79に直交する方向(Y方向)へ潰した点において異なる例を示す図17について説明する。
この図17に示す例は、本発明の目的である次の点、即ち、永久磁石素材Fにおける磁化容易軸69を、上記合せ面57に平行する方向で、かつ、押出し方向79に直交する方向に向くようにする永久磁石素材Fの製造方法を提供する例である。
Next, the crushing direction (X direction) in the plastic working performed on the synthetic molded body E in FIG. 13C2 is parallel to the mating surface 57 of the synthetic molded body E. 17 which shows a different example in that it is crushed in the direction to be pushed and in the direction orthogonal to the extrusion direction 79 (Y direction) will be described.
The example shown in FIG. 17 is the next point which is the object of the present invention, that is, a direction in which the easy magnetization axis 69 in the permanent magnet material F is parallel to the mating surface 57 and perpendicular to the extrusion direction 79. It is an example which provides the manufacturing method of the permanent-magnet raw material F made to face.

図17(a)〜(c)に順次表れるように、個別に高iHc成形体要素Aと、高Br成形体要素Bを製造する。次に、夫々個別に製造した図17(c)の高iHc成形体要素A(高iHc高密度要素8)と、高Br成形体要素B(高Br高密度要素13)とを、図17(c2)に表われているように、幅方向(Y方向)に寄せ合わせ一体化して合成成形体E(2種合成成形体51)を製造する。
なお、図17(c)の高iHc高密度要素8と高Br高密度要素13の夫々の外形寸法は、両者を寄せ合わせ一体化したときに、所定の外形寸法の合成成形体Eになるような寸法に形成すればよい。例えば、高iHc高密度要素8:厚みT2=36mm、幅W2=9.5mm、長さL2=25mm; 高Br高密度要素13:厚みT2=36mm、幅W2=9.5mm、長さL2=25mmとすればよい。このようにすると合成成形体Eは、厚みT=36mm、幅W=19mm、長さL=25mmとなる。
The high iHc molded body element A and the high Br molded body element B are individually manufactured as shown in FIGS. Next, the high iHc molded body element A (high iHc high density element 8) and the high Br molded body element B (high Br high density element 13) shown in FIG. As shown in c2), the synthetic molded body E (two-type synthetic molded body 51) is manufactured by bringing them together in the width direction (Y direction).
The external dimensions of the high iHc high-density element 8 and the high Br high-density element 13 in FIG. 17C are such that when the two are brought together and integrated, a composite molded body E having a predetermined external dimension is obtained. What is necessary is just to form in the dimension. For example, high iHc high density element 8: thickness T2 = 36 mm, width W2 = 9.5 mm, length L2 = 25 mm; high Br high density element 13: thickness T2 = 36 mm, width W2 = 9.5 mm, length L2 = 25 mm do it. In this way, the synthetic molded body E has a thickness T = 36 mm, a width W = 19 mm, and a length L = 25 mm.

次に、図17(c2)の合成成形体Eに塑性加工を施して、図17(d)の永久磁石素材Fを成形する。塑性加工としては、前述した種々の塑性加工を用いればよい。
さらに、上記押出し加工に際しての押出し方向は、図13の場合とは異なり、上記合成成形体Eにおける高Br成形体要素Bと高iHc成形体要素Aとの合せ面57に平行する方向(矢印79方向)へ押出し、上記合成成形体Eを潰す(絞る)方向は、上記合せ面57に平行する方向で、かつ、上記押出し方向に直交する方向へ潰して、永久磁石素材Fにおける磁化容易軸を、上記合せ面に平行する方向で、かつ、上記押出し方向に直交する方向に向くようにしてもよい。
上記図17(図18、図19の場合も同旨)のように構成された永久磁石素材Fに、着磁を施して永久磁石として利用する場合は、一方の側が保磁力の高い側となり、他方の側が残留磁束密度の高い側となるようにして利用することができる。
以上のように製造された永久磁石素材F(2種永久磁石素材61)は、実施例1と同様の作用効果が得られる。
Next, the synthetic molded body E in FIG. 17 (c2) is plastically processed to form the permanent magnet material F in FIG. 17 (d). As the plastic processing, the various plastic processing described above may be used.
Further, the extrusion direction during the extrusion process is different from the case of FIG. 13 in the direction parallel to the mating surface 57 of the high Br molded body element B and the high iHc molded body element A in the synthetic molded body E (arrow 79). The direction of crushing (squeezing) the synthetic molded body E is the direction parallel to the mating surface 57 and the direction perpendicular to the extrusion direction, and the easy magnetization axis in the permanent magnet material F is Further, it may be directed in a direction parallel to the mating surface and in a direction orthogonal to the extrusion direction.
When the permanent magnet material F configured as shown in FIG. 17 (the same applies to FIGS. 18 and 19) is magnetized and used as a permanent magnet, one side becomes the side with the higher coercive force, This side can be utilized such that it becomes the side with the higher residual magnetic flux density.
The permanent magnet material F (type 2 permanent magnet material 61) manufactured as described above has the same effects as those of the first embodiment.

次に、図17(a)〜(c2)の合成成形体Eに至る過程とは、高iHc成形体要素Aと、高Br成形体要素Bとを寄せ合わせ一体化する過程の点において異なる例を示す図18、図19について説明する。   Next, the process leading to the synthetic molded body E in FIGS. 17A to 17C differs from the process in which the high iHc molded body element A and the high Br molded body element B are brought together and integrated. 18 and 19 showing the above will be described.

図18は永久磁石素材Fの製法を説明する為の図面で、(a)〜(d)に順次表われるように、個別に高iHc成形体要素Aと、高Br成形体要素Bを形成し、それらを図18(b2)の時点で、図17(c)の場合と同様に幅方向(Y方向)に寄せ合わせ一体化して合成固形状要素10を形成する。上記合成固形状要素10は、高iHc固形状要素7(高iHc成形体要素A)と、高Br固形状要素12(高Br成形体要素B)とを、寄せ合わせ一体化した合成固形状要素を示す。
この合成固形状要素10を熱間または温間プレス手段によって図18(c)の合成成形体E(2種合成成形体51)を形成する。なお、熱間または温間プレスとしては、周知の手段を用いればよく、例えば、図1を用いて前述したと同様に冷間プレス手段、熱間または温間プレスを行なえばよい。
FIG. 18 is a drawing for explaining the manufacturing method of the permanent magnet material F. The high iHc molded body element A and the high Br molded body element B are individually formed as sequentially shown in (a) to (d). Then, at the time of FIG. 18 (b2), they are brought together and integrated in the width direction (Y direction) as in the case of FIG. 17 (c) to form the composite solid element 10. The synthetic solid element 10 is a synthetic solid element in which a high iHc solid element 7 (high iHc molded element A) and a high Br solid element 12 (high Br molded element B) are brought together and integrated. Indicates.
A synthetic molded body E (two-type synthetic molded body 51) shown in FIG. 18C is formed from the synthetic solid element 10 by hot or warm pressing means. As the hot or warm press, a known means may be used. For example, the cold press means, the hot or warm press may be performed in the same manner as described above with reference to FIG.

次に、図18(c)の合成成形体Eに塑性加工を施して、図18(d)の永久磁石素材Fを成形する。塑性加工としては、前述した種々の塑性加工を用いればよい。
以上のように製造された永久磁石素材F(2種永久磁石素材61)は、実施例4と同様の作用効果が得られる。
Next, the synthetic molded body E in FIG. 18C is subjected to plastic working to form the permanent magnet material F in FIG. As the plastic processing, the various plastic processing described above may be used.
The permanent magnet material F (type 2 permanent magnet material 61) manufactured as described above has the same effects as those of the fourth embodiment.

図19は永久磁石素材Fの製法を説明する為の図面で、(a)〜(d)に順次表われるように、図19(a)の時点で高iHc成形体要素Aと高Br成形体要素Bとを寄せ合わせ一体化して合成粉末状要素9を形成する。
上記合成粉末状要素9は、高iHc粉末状要素6(高iHc成形体要素A)と高Br粉末状要素11(高Br成形体要素B)とを寄せ合わせ(ダイのキャビティ中に共に充填して)一体化して形成された合成した粉末状要素を示す。なお、粉末状要素6、11の充填手段は、図16について説明したと同様にすればよい。
FIG. 19 is a drawing for explaining the manufacturing method of the permanent magnet material F. As shown in the order (a) to (d), the high iHc molded body element A and the high Br molded body at the time of FIG. The element B is brought together and integrated to form the synthetic powder element 9.
The synthetic powdery element 9 is composed of a high iHc powdery element 6 (high iHc molded body element A) and a high Br powdery element 11 (high Br molded body element B) which are packed together in the die cavity. B) shows a synthesized powdery element formed integrally. The filling means for the powder elements 6 and 11 may be the same as described with reference to FIG.

図19(b)の10は合成粉末状要素9を冷間プレス手段によって形成された合成固形状要素を示し、この合成固形状要素10には前述の実施例5の場合と同様の考え方で熱間または温間プレス手段と塑性加工を施して、図19(d)の永久磁石素材Fを成形する。
以上のように製造された永久磁石素材F(2種永久磁石素材61)は、実施例4と同様の作用効果が得られる。
Reference numeral 10 in FIG. 19 (b) shows a synthetic solid element in which the synthetic powder element 9 is formed by cold pressing means, and the synthetic solid element 10 is heated in the same way as in Example 5 described above. The permanent magnet material F shown in FIG. 19 (d) is formed by performing plastic working with warm or warm pressing means.
The permanent magnet material F (type 2 permanent magnet material 61) manufactured as described above has the same effects as those of the fourth embodiment.

次に、図13の合成成形体E、永久磁石素材Fとは、形状の点において異なる例を示す図20、21、22について説明する。
図20は、円柱形状の合成成形体Eから板形状の永久磁石素材Fを製造する方法を提供するものである。図21は、断面長方形の合成成形体Eから断面円弧状の永久磁石素材Fを製造する方法を提供するものである。図22は、図22(a)の断面楕円形の合成成形体Eから図22(b)の断面蒲鉾形の永久磁石素材Fを製造する方法を提供するものである。さらに、図22(a)の断面楕円形の合成成形体Eから図22(c)の断面三日月形永久磁石素材Fを製造する方法を提供するものである。
Next, FIGS. 20, 21, and 22 showing examples different from the synthetic molded body E and the permanent magnet material F in FIG. 13 in terms of shape will be described.
FIG. 20 provides a method for producing a plate-shaped permanent magnet material F from a cylindrical synthetic molded body E. FIG. FIG. 21 provides a method for producing a permanent magnet material F having a circular arc shape from a synthetic molded body E having a rectangular cross section. FIG. 22 provides a method for producing a permanent magnet material F having a bowl-shaped cross section in FIG. 22B from a synthetic molded body E having an elliptical section in FIG. 22A. Furthermore, the present invention provides a method for producing the cross-sectional crescent-shaped permanent magnet material F shown in FIG. 22 (c) from the composite molded body E having the elliptical cross-section shown in FIG. 22 (a).

図20(a)の円柱形状の合成成形体Eの外径寸法(直径D、長さL)は、上記図9を用いて前述した高密度要素4aと同様に設定すれば良い。
さらに、高iHc成形体要素Aと高Br成形体要素Bの夫々の外形寸法は、両者を寄せ合わせ一体化したときに、所定の外形寸法の合成成形体Eになるような寸法に形成すればよい。例えば、高iHc成形体要素Aと高Br成形体要素Bとを、合成成形体Eを合せ面57で2等分した寸法にすればよい。
次に、図20(b)の板形状の永久磁石素材Fの外径寸法(厚みT1、幅W1、長さL1)は、上記図9を用いて前述した永久磁石素材60aと同様に設定すれば良い。
合成成形体Eを永久磁石素材Fに成形する塑性加工としては、周知の塑性加工を用いればよく、例えば、図9、10を用いて前述したと同様に、押出加工を施して成形すればよい。
The outer diameter dimension (diameter D, length L) of the cylindrical synthetic molded body E in FIG. 20A may be set similarly to the high-density element 4a described above with reference to FIG.
Furthermore, if the external dimensions of the high iHc molded body element A and the high Br molded body element B are formed so as to become a composite molded body E having a predetermined external dimension when the two are brought together and integrated. Good. For example, the high iHc molded body element A and the high Br molded body element B may be dimensioned by dividing the synthetic molded body E into two equal parts at the mating surface 57.
Next, the outer diameter dimensions (thickness T1, width W1, length L1) of the plate-shaped permanent magnet material F of FIG. 20B are set in the same manner as the permanent magnet material 60a described above with reference to FIG. It ’s fine.
As the plastic processing for forming the synthetic molded body E into the permanent magnet material F, a known plastic processing may be used. For example, as described above with reference to FIGS. .

次に図21(a)の合成成形体Eの外径寸法(厚み(X方向)T、幅(Y方向)W、で長さ(Z方向)L)は、上記図11を用いて前述した高密度要素4bと同様に設定すれば良い。
なお、高iHc成形体要素Aと高Br成形体要素Bの夫々の外形寸法は、両者を寄せ合わせ一体化したときに、所定の外形寸法の合成成形体Eになるような寸法に形成すればよい。例えば、高iHc成形体要素Aと高Br成形体要素Bとを、合成成形体Eを合せ面57で2等分した寸法にすればよい。
次に、図21(b)の断面円弧状の永久磁石素材Fの外径寸法(厚み(X方向)T1、外周側の円弧長(Y方向)W1、内周側の円弧長(Y方向)W2、長さ(Z方向)L1)は、上記図11を用いて前述した永久磁石素材60bと同様に設定すれば良い。
合成成形体Eを永久磁石素材F(図21(b)参照)に成形する塑性加工としては、周知の塑性加工を用いればよく、例えば、図11を用いて前述したと同様に押出加工を施して成形すればよい。
Next, the outer diameter dimensions (thickness (X direction) T, width (Y direction) W, and length (Z direction) L) of the synthetic molded body E in FIG. 21 (a) were described above with reference to FIG. What is necessary is just to set similarly to the high density element 4b.
The outer dimensions of the high iHc molded body element A and the high Br molded body element B may be formed so as to become a composite molded body E having a predetermined outer dimension when the two are brought together and integrated. Good. For example, the high iHc molded body element A and the high Br molded body element B may be dimensioned by dividing the synthetic molded body E into two equal parts at the mating surface 57.
Next, the outer diameter dimension (thickness (X direction) T1, outer circumference arc length (Y direction) W1, inner circumference arc length (Y direction) of the permanent magnet material F having a circular arc cross section in FIG. W2 and length (Z direction) L1) may be set similarly to the permanent magnet material 60b described above with reference to FIG.
As the plastic processing for forming the composite molded body E into the permanent magnet material F (see FIG. 21B), a known plastic processing may be used. Can be molded.

次に図22(a)の合成成形体Eの外径寸法(短軸D1、長軸D2、長さ(Z方向)L)、は、図12を用いて前述した高密度要素4cと同様に設定すれば良い。なお、図22(a)の合成成形体Eを形成する高iHc成形体要素Aと高Br成形体要素Bの夫々の外形寸法は、両者を寄せ合わせ一体化したときに、所定の外形寸法の合成成形体Eになるような寸法に形成すればよい。例えば、高iHc成形体要素Aと高Br成形体要素Bとを、合成成形体Eを合せ面57で2等分した寸法にすればよい。
図22(b)に示される断面蒲鉾形のの永久磁石素材Fの外径寸法(最大厚み(X方向)T1、円弧辺の円弧長(Y方向)W1、直線辺の幅(Y方向)W2で長さ(Z方向)L1)は、上記図12を用いて前述した永久磁石素材60cと同様に設定すれば良い。
図22(c)の断面三日月形の永久磁石素材Fの外径寸法(最大厚み(X方向)T1、外周側の円弧長(Y方向)W1、内周側の円弧長(Y方向)W2で長さ(Z方向)L1)は、図12を用いて前述した永久磁石素材60cと同様に設定すれば良い。
なお、合成成形体Eを永久磁石素材F(図22(b)又は図22(c)参照)に成形する塑性加工としては、周知の塑性加工を用いればよく、例えば、図11を用いて前述したと同様に押出加工を施して成形すればよい。
Next, the outer diameter dimensions (short axis D1, long axis D2, length (Z direction) L) of the synthetic molded body E of FIG. 22A are the same as those of the high-density element 4c described above with reference to FIG. Set it. The external dimensions of the high iHc molded body element A and the high Br molded body element B forming the synthetic molded body E of FIG. 22 (a) are the predetermined external dimensions when the two are brought together and integrated. What is necessary is just to form in the dimension which becomes the synthetic molded object E. For example, the high iHc molded body element A and the high Br molded body element B may be dimensioned by dividing the synthetic molded body E into two equal parts at the mating surface 57.
The outer diameter dimensions (maximum thickness (X direction) T1, arc length of arc side (Y direction) W1, and width of straight side (Y direction) W2) of the permanent magnet material F having a bowl-shaped cross section shown in FIG. The length (Z direction) L1) may be set similarly to the permanent magnet material 60c described above with reference to FIG.
The outer diameter dimensions (maximum thickness (X direction) T1, outer circumference arc length (Y direction) W1, inner circumference arc length (Y direction) W2 of crescent-shaped permanent magnet material F in FIG. 22 (c) The length (Z direction) L1) may be set similarly to the permanent magnet material 60c described above with reference to FIG.
In addition, as plastic processing which shape | molds the synthetic molding E to the permanent magnet raw material F (refer FIG.22 (b) or FIG.22 (c)), what is necessary is just to use a well-known plastic processing, for example, it mentioned above using FIG. In the same manner as described above, it may be formed by extrusion.

次に、図13の合成成形体Eを構成するにあたり、高iHc成形体要素Aに用いられる磁性粉末Maと、磁性粉末Mb、及び高Br成形体要素Bに用いられる磁性粉末Mbと、磁性粉末Maとの配合割合は、用途においての要望(例えば、不可逆減磁に対する要望、サイズの大小、コストの低減等)によって相対的に配合割合を増減して決定すればよい。なお、このことは、例えば表7、9、11、13、15、17のいずれに関しても、磁性粉末Maと磁性粉末Mbとの配合割合は、要望される永久磁石について、夫々対応できるように加減して決定すればよいものである。
次に、相対的な割合の増減例を説明する。本例は、図13(d)の永久磁石素材Fに着磁することにより使用される永久磁石における高Br成形体要素B部に、より高保磁力が要求される場合、その要求に対応することができる永久磁石素材Fの製造方法を提供するものである。なお、上記要求される保磁力として、例えば、後出の図34の条件の場合、すなわち、永久磁石の厚み方向の距離t=0で1.85MA/m、t=T1で1.22MA/m、t=0〜T1の間は直線的に変化するような保磁力が要求されるような条件の場合を想定する。本例の高iHc成形体要素A及び高Br成形体要素Bに用いられる磁性粉末Mbの例としては、例えば表7に示される配合割合、比率を用いればよい。なお、2層目には2種類の粉末を配合して使用したが、当然ながら直接iHc=1.535MA/mの特性をもつ1種類の磁性粉末を準備して使用しても良い。この時の成分組成は、実験例2で用いた磁性粉末と実験例1で用いた磁性粉末の全成分を足して2で割った値となる。
Next, in composing the synthetic molded body E of FIG. 13, the magnetic powder Ma used for the high iHc molded body element A, the magnetic powder Mb, the magnetic powder Mb used for the high Br molded body element B, and the magnetic powder. The blending ratio with Ma may be determined by increasing / decreasing the blending ratio relatively according to the demand in the application (for example, the demand for irreversible demagnetization, the size, the cost reduction, etc.). Note that, for example, in any of Tables 7, 9, 11, 13, 15, and 17, the mixing ratio of the magnetic powder Ma and the magnetic powder Mb is adjusted so as to correspond to the desired permanent magnet. It can be decided.
Next, an example of increasing or decreasing the relative ratio will be described. In this example, when a higher coercive force is required for the high Br molded body element B portion in the permanent magnet used by magnetizing the permanent magnet material F in FIG. The manufacturing method of the permanent magnet raw material F which can do is provided. As the required coercive force, for example, in the case of the conditions shown in FIG. 34 described later, that is, the distance t = 0 in the thickness direction of the permanent magnet is 1.85 MA / m, and t = T1 is 1.22 MA / m. A case is assumed in which a coercive force that changes linearly is required between t = 0 and T1. As examples of the magnetic powder Mb used in the high iHc molded body element A and the high Br molded body element B of this example, for example, the blending ratios and ratios shown in Table 7 may be used. In the second layer, two types of powders are blended and used. Of course, one type of magnetic powder having the characteristic of iHc = 1.535 MA / m may be prepared and used. The component composition at this time is a value obtained by adding all the components of the magnetic powder used in Experimental Example 2 and the magnetic powder used in Experimental Example 1 and dividing by two.

Figure 2008258585
Figure 2008258585

表7に示されるような材質で形成される高iHc成形体要素Aと高Br粉末状要素Bとを用い、図13(a)〜(d)に順次示されるように永久磁石素材F(2種永久磁石素材61)を製造する。図13(a)〜(d)の過程については、図13を用いて前述したと同様に行なえばよい。   Using the high iHc molded body element A and the high Br powder-like element B formed of materials as shown in Table 7, permanent magnet material F (2 A seed permanent magnet material 61) is manufactured. 13A to 13D may be performed in the same manner as described above with reference to FIG.

以上のように製造された2層の永久磁石素材Fに着磁された永久磁石における残留磁束密度(Br)、保磁力(iHc)及びDy含有率を表8に示す。さらに、この永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフを図23に示す。   Table 8 shows the residual magnetic flux density (Br), coercive force (iHc), and Dy content in the permanent magnets magnetized on the two-layer permanent magnet material F manufactured as described above. Furthermore, a graph showing the relationship between the residual magnetic flux density (Br) and the coercive force (iHc) in this permanent magnet is shown in FIG.

Figure 2008258585
Figure 2008258585

上記表8、図23に示されるように、永久磁石の高iHc成形体要素A側は、Dy含有率は3.6質量%だから保磁力は極めて高い(1.85MA/m)。また、永久磁石の高Br成形体要素B側は、Br=1.415Tであり、永久磁石全体におけるBrは、高iHc成形体要素Aと高Br成形体要素Bの平均値で1.3875Tとなり、高い残留磁束密度を有する。よって、図13を用いて前述したと同様に、永久磁石全体として磁気特性が劣化しにくく、磁気特性の優れた永久磁石として長寿命で使用することができる。
しかも、表8に示されるように、永久磁石全体におけるDyの使用量は、高iHc成形体要素Aと高Br成形体要素Bの平均値で2.7質量%となり、高価なDyを少ない使用量で上記のような高保磁力を発揮できる永久磁石を得ることが可能となる特長がある。
As shown in Table 8 and FIG. 23, the high iHc molded body element A side of the permanent magnet has an extremely high coercive force (1.85 MA / m) because the Dy content is 3.6 mass%. Further, Br = 1.415T on the high Br molded body element B side of the permanent magnet, and Br in the permanent magnet as a whole is 1.3875T as an average value of the high iHc molded body element A and the high Br molded body element B, which is high. It has a residual magnetic flux density. Therefore, as described above with reference to FIG. 13, the magnetic properties of the permanent magnet as a whole are not easily deteriorated, and the permanent magnet can be used with a long life as an excellent permanent magnet.
Moreover, as shown in Table 8, the amount of Dy used in the entire permanent magnet is 2.7% by mass in terms of the average value of the high iHc molded body element A and the high Br molded body element B, and the expensive Dy is used in a small amount. There is a feature that it is possible to obtain a permanent magnet capable of exhibiting a high coercive force as described above.

次に、図13(c2)の合成成形体Eとは、高iHc成形体要素Aと高Br成形体要素Bとの間に1つの中間成形体要素Cが介在する状態で寄せ合わせて一体化して合成成形体Eを形成する点において異なる例を示す図24について説明する。図24は、(a)〜(d)に順次表われるように、個別に高iHc成形体要素Aと、高Br成形体要素Bと、中間高密度要素Cを形成し、それらを寄せ合わせ、一体化して合成成形体E(3種(複数種)合成成形体52)を形成し、さらに合成成形体Eに塑性加工を施して永久磁石素材F(3種永久磁石素材62)を作る例を示す。
永久磁石素材Fの製造方法は、図24に表れているように、高iHc成形体要素Aと、高Br成形体要素Bと、中間用の磁性粉末Mcで形成される中間成形体要素Cとを、上記高iHc成形体要素Aと上記高Br成形体要素Bとの間に上記中間成形体要素Cが介在する状態で、寄せ合わせ、一体化して合成成形体Eを形成し、上記中間成形体要素Cの磁性粉末Mcの材質の設定は、上記寄せ合わせ一体化した合成成形体Eの状態で、保磁力が上記高iHc成形体要素A から上記高Br成形体要素Bに向けて順次低くなる材質であって、しかも、残留磁束密度が上記高Br成形体要素B から上記 高iHc成形体要素Aに向けて順次低くなる材質(本件では、このような材質の磁性粉末を「磁性粉末Mc」又は「中間用の磁性粉末Mc」とも称する)に設定してあり、さらに、上記合成成形体Eに塑性加工を施すことによって磁気異方性を備えさせる。
Next, the synthetic molded body E in FIG. 13 (c2) is brought together and integrated with one intermediate molded body element C interposed between the high iHc molded body element A and the high Br molded body element B. 24 that shows a different example in that the synthetic molded body E is formed will be described. FIG. 24 shows a high iHc molded body element A, a high Br molded body element B, and an intermediate high density element C individually as shown in the order (a) to (d). An example in which a synthetic molded body E (three types (plural types) synthetic molded body 52) is integrally formed, and the synthetic molded body E is further subjected to plastic working to produce a permanent magnet material F (three types of permanent magnet material 62). Show.
As shown in FIG. 24, the manufacturing method of the permanent magnet material F includes a high iHc molded body element A, a high Br molded body element B, and an intermediate molded body element C formed of intermediate magnetic powder Mc. In a state where the intermediate molded body element C is interposed between the high iHc molded body element A and the high Br molded body element B to form a synthetic molded body E, The setting of the material of the magnetic powder Mc of the body element C is such that the coercive force is gradually decreased from the high iHc molded body element A to the high Br molded body element B in the state of the synthetic molded body E integrated together. In addition, a material whose residual magnetic flux density is gradually decreased from the high Br molded body element B to the high iHc molded body element A (in this case, the magnetic powder of such a material is referred to as “magnetic powder Mc Or “intermediate magnetic powder Mc”), and the above synthesis The molded body E is provided with magnetic anisotropy by plastic processing.

この点を図24を用いてさらに詳しく説明する。
図24の1層目の高iHc成形体要素Aにおける高iHc高密度要素8及び3層目の高Br成形体要素Bにおける高Br高密度要素13は、図13を用いて説明したと同様の考えで形成するとよい。
次に、上記高iHc成形体要素A及び高Br成形体要素Bに用いられる磁性粉末Ma, Mbの例としては、例えば表9に示される配合割合、比率を用いればよい。
This point will be described in more detail with reference to FIG.
The high iHc high density element 8 in the first layer high iHc molded body element A and the high Br high density element 13 in the third layer high Br molded body element B in FIG. 24 are the same as described with reference to FIG. It is good to form with thought.
Next, as examples of the magnetic powders Ma and Mb used for the high iHc molded body element A and the high Br molded body element B, for example, the blending ratios and ratios shown in Table 9 may be used.

Figure 2008258585
Figure 2008258585

次に、図24(a)、(b)、(c)夫々の2層目の中間成形体要素Cにおいて、16は冷間プレスにおけるダイのキャビティ(図示省略)中に、磁性粉末Mcを充填して形成された中間粉末状要素を示す。なお、この磁性粉末Mcは、図1を用いて前述した磁性粉末Mと同様に、周知の手段で製造すればよい。この磁性粉末Mcの材質の設定は、図24(c2)の合成成形体Eの状態で、保磁力が高iHc成形体要素Aから高Br成形体要素Bに向けて順次低くなる材質であって、しかも、残留磁束密度が高Br成形体要素Bから高iHc成形体要素Aに向けて順次低くなる条件を備える材質に設定すればよい。なお、磁性粉末Mcは、磁性粉末Maと磁性粉末Mbとを適当な割合で混合して(表9、11、13、15、17から容易に想定できる量を混合して)用いてもよいし、又は磁性粉末Ma又は磁性粉末Mbに対して夫々適当な磁性合金の組成を増減させて用いてもよい。その場合、磁性粉末Mcは、合成成形体Eの状態で、保磁力が高iHc成形体要素Aから高Br成形体要素Bに向けて順次低くなる材質であって、しかも、残留磁束密度が高Br成形体要素Bから高iHc成形体要素Aに向けて順次低くなるような条件を満たせばよい。例えば、上記表9に示される磁性粉末Mcを用いてもよい。図24(b)の17は中間粉末状要素16を冷間プレス手段によって成形される中間固形状要素、図24(c)の18は中間固形状要素17を熱間または温間プレス手段によって製造される高Br高密度要素を示す。なお、冷間プレス手段、熱間または温間プレス手段としては、周知の手段を用いればよく、例えば、図1を用いて前述したと同様に冷間プレス手段、熱間または温間プレスを行なえばよい。
上記説明において、「成形体要素」という用語は、磁性粉末から合成成形体に至る、形を造る過程の粉末状要素、固形状要素又は高密度要素の総称的用語である。さらに、成形体要素において、高iHc、高Br、中間等の字句は、他のものと相対的な材質を区別する為に付された字句である。
Next, in FIGS. 24A, 24B, and 24C, in the second-layer intermediate formed body element C, 16 is filled with magnetic powder Mc in the die cavity (not shown) in the cold press. The intermediate powder-like element formed in this way is shown. The magnetic powder Mc may be manufactured by a known means, like the magnetic powder M described above with reference to FIG. The setting of the material of the magnetic powder Mc is a material in which the coercive force gradually decreases from the high iHc molded body element A toward the high Br molded body element B in the state of the synthetic molded body E in FIG. In addition, a material having a condition that the residual magnetic flux density gradually decreases from the high Br molded body element B toward the high iHc molded body element A may be set. The magnetic powder Mc may be used by mixing the magnetic powder Ma and the magnetic powder Mb in an appropriate ratio (mixing amounts that can be easily assumed from Tables 9, 11, 13, 15, and 17). Alternatively, the composition of an appropriate magnetic alloy may be increased or decreased with respect to the magnetic powder Ma or the magnetic powder Mb. In that case, the magnetic powder Mc is a material in which the coercive force gradually decreases from the high iHc molded body element A to the high Br molded body element B in the state of the synthetic molded body E, and the residual magnetic flux density is high. It is only necessary to satisfy the conditions such that the Br molded body element B gradually decreases toward the high iHc molded body element A. For example, the magnetic powder Mc shown in Table 9 above may be used. In FIG. 24 (b), 17 is an intermediate solid element in which the intermediate powder element 16 is formed by cold pressing means, and 18 in FIG. 24 (c) is the intermediate solid element 17 produced by hot or warm pressing means. Shows a high Br high density element. As the cold pressing means, the hot or warm pressing means, a known means may be used. For example, the cold pressing means, the hot or warm pressing may be performed in the same manner as described above with reference to FIG. That's fine.
In the above description, the term “molded body element” is a generic term for a powdered element, a solid element or a high density element in the process of forming a shape from magnetic powder to a synthetic molded body. Further, in the molded body element, words such as high iHc, high Br, and intermediate are words used to distinguish materials relative to others.

なお、高iHc高密度要素8と高Br高密度要素13と中間高密度要素18の夫々の外形寸法は、全者を寄せ合わせ一体化したときに、所定の外形寸法の合成成形体Eになるような寸法に形成すればよい。例えば、高iHc高密度要素8と高Br高密度要素13と中間高密度要素18夫々を厚みT2=12mm、幅W2=19mm、長さL2=25mmとすればよい。 このようにすると、合成成形体Eは厚みT=36mm、幅W=19mm、長さL=25mmとなる。   The external dimensions of the high iHc high-density element 8, the high Br high-density element 13 and the intermediate high-density element 18 become a composite molded body E having a predetermined external dimension when all persons are brought together. What is necessary is just to form in such a dimension. For example, the high iHc high density element 8, the high Br high density element 13 and the intermediate high density element 18 may each have a thickness T2 = 12 mm, a width W2 = 19 mm, and a length L2 = 25 mm. In this way, the synthetic molded body E has a thickness T = 36 mm, a width W = 19 mm, and a length L = 25 mm.

次に、夫々個別に製造した高iHc高密度要素8(高iHc成形体要素A)と、高Br高密度要素13(高Br成形体要素B)と、中間高密度要素18(中間成形体要素C)とを、図24(c2)に表われているように、寄せ合わせ、一体化して合成成形体E(3種合成成形体52)を製造する。この寄せ合わせは、図13を用いて説明したと同様の考えですればよい。
なお、本件においては、上記のように複数の成形体要素(符号A及びB、又は、符号A、B及びCが付された成形体要素)を寄せ合わせ一体化したものを合成成形体Eと称する。
Next, the high iHc high density element 8 (high iHc molded body element A), the high Br high density element 13 (high Br molded body element B), and the intermediate high density element 18 (intermediate molded body element), which were manufactured individually, respectively. As shown in FIG. 24 (c2), C) is brought together and integrated to produce a synthetic molded body E (three-type synthetic molded body 52). This assembling may be the same idea as described with reference to FIG.
In the present case, as described above, a plurality of molded body elements (symbol A and B, or molded body elements denoted by symbols A, B, and C) are combined and integrated with a synthetic molded body E. Called.

次に、図24(c2)の合成成形体Eに塑性加工を施して、図24(d)の永久磁石素材F(3種永久磁石素材62)を成形する。塑性加工としては、前述した種々の塑性加工を用いればよい。
なお、永久磁石素材Fの外形寸法は、合成成形体Eに施す塑性加工により相違するが、例えば、上記実験例1における比較例1と同様の押出し加工を施した場合、合成成形体E:厚みT=36mm、幅W=19mm、長さL=25mmの場合、永久磁石素材F:厚みT1=8mm、幅W1=40mm、長さL1=53.4mmとなる。
Next, the synthetic molded body E of FIG. 24 (c2) is subjected to plastic working to form the permanent magnet material F (three-type permanent magnet material 62) of FIG. 24 (d). As the plastic processing, the various plastic processing described above may be used.
In addition, although the external dimension of the permanent magnet raw material F changes with the plastic processing given to the synthetic molded object E, for example, when the extrusion process similar to the comparative example 1 in the said experimental example 1 is given, the synthetic molded object E: thickness When T = 36 mm, width W = 19 mm, and length L = 25 mm, the permanent magnet material F: thickness T1 = 8 mm, width W1 = 40 mm, and length L1 = 53.4 mm.

以上のように製造された3層の永久磁石素材Fに着磁した永久磁石における残留磁束密度(Br)、保磁力(iHc)及びDy含有率を表10に示す。さらに、この永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフを図25に示す。   Table 10 shows the residual magnetic flux density (Br), coercive force (iHc), and Dy content of the permanent magnets magnetized on the three-layer permanent magnet material F manufactured as described above. Furthermore, a graph showing the relationship between the residual magnetic flux density (Br) and the coercive force (iHc) in this permanent magnet is shown in FIG.

Figure 2008258585
Figure 2008258585

上記表10、図25に示されるように、永久磁石の高iHc成形体要素A側は、Dy含有率は3.6質量%だから保磁力は極めて高い(1.85MA/m)。また、永久磁石の高Br成形体要素B側は、Br=1.433Tであり、永久磁石全体におけるBrは、各層の平均値で1.397Tとなり、高い残留磁束密度を有する。よって、図13を用いて前述したと同様に、永久磁石全体として磁気特性が劣化しにくく、磁気特性の優れた永久磁石として長寿命で使用することができる。
しかも、表10に示されるように、永久磁石全体におけるDyの使用量は、高iHc成形体要素Aと高Br成形体要素Bとの間に、中間成形体要素Cを介在させることにより、それら三者の平均値で2.4質量%となり、高価なDyを少ない使用量で上記のような高保磁力を発揮できる永久磁石を得ることが可能となる特長がある。
As shown in Table 10 and FIG. 25, since the Dy content is 3.6% by mass, the coercive force is extremely high (1.85 MA / m) on the high iHc molded body element A side of the permanent magnet. Further, Br = 1.433T on the high Br molded body element B side of the permanent magnet, and Br in the entire permanent magnet is 1.397T as an average value of each layer, and has a high residual magnetic flux density. Therefore, as described above with reference to FIG. 13, the magnetic properties of the permanent magnet as a whole are not easily deteriorated, and the permanent magnet can be used with a long life as an excellent permanent magnet.
Moreover, as shown in Table 10, the amount of Dy used in the entire permanent magnet can be obtained by interposing the intermediate molded body element C between the high iHc molded body element A and the high Br molded body element B. The average value of the three is 2.4% by mass, and there is a feature that a permanent magnet capable of exhibiting the above high coercive force can be obtained with a small amount of expensive Dy used.

次に、図13(c2)の合成成形体Eとは、高iHc成形体要素Aと高Br成形体要素Bとの間に複数の中間成形体要素Cが介在する状態で寄せ合わせて一体化して合成成形体Eを形成する点において異なる例を示す図26〜図32について説明する。
図26は個別に高iHc成形体要素Aと、高Br成形体要素Bと、複数(2種)の中間高密度要素Cを夫々形成し、それらを寄せ合わせ、一体化して合成成形体E(4種(複数種)合成成形体53)を形成し、さらに合成成形体Eに前述した塑性加工を施して永久磁石素材Fを作る例を示す。
図28は、個別に高iHc成形体要素Aと、高Br成形体要素Bと、複数(3種)の中間高密度要素Cを夫々形成し、それらを寄せ合わせ一体化して合成成形体E(5種(複数種)合成成形体54)を形成し、さらに合成成形体Eに前述した塑性加工を施して永久磁石素材F(5種永久磁石素材64)を作る例を示す。
図30は、個別に高iHc成形体要素Aと、高Br成形体要素Bと、複数(8種)の中間高密度要素Cを夫々形成し、それらを寄せ合わせ、一体化して合成成形体E(10種(複数種)合成成形体55)を形成し、さらに合成成形体Eに前述した塑性加工を施して永久磁石素材F(10種永久磁石素材65)を作る例を示す。
さらに、図32は、上記図30において、中間成形体要素Cの数を18種に増加させる場合には、Dy含有率が少なくなること、永久磁石全体のBrが増加することを説明する為の図である。
Next, the synthetic molded body E shown in FIG. 13 (c2) is integrated by bringing together a plurality of intermediate molded body elements C between the high iHc molded body element A and the high Br molded body element B. 26 to 32 showing different examples in that the synthetic molded body E is formed.
In FIG. 26, a high iHc molded body element A, a high Br molded body element B, and a plurality of (two types) intermediate high density elements C are formed individually, brought together and integrated to form a synthetic molded body E ( An example of forming a permanent magnet material F by forming four types (plural types) of synthetic molded bodies 53) and further applying the above-described plastic working to the synthetic molded body E will be described.
In FIG. 28, a high iHc molded body element A, a high Br molded body element B, and a plurality of (three kinds) intermediate high density elements C are formed individually, and they are assembled and integrated to form a synthetic molded body E ( An example of forming a permanent magnet material F (5 types of permanent magnet materials 64) by forming the 5 types (plural types) of synthetic molded bodies 54) and further subjecting the synthetic molded body E to the plastic processing described above will be described.
FIG. 30 shows that a high iHc molded body element A, a high Br molded body element B, and a plurality (eight kinds) of intermediate high density elements C are formed individually, brought together and integrated to form a synthetic molded body E. An example is shown in which the (10 types (plural types) synthetic molded body 55) is formed, and the synthetic molded body E is subjected to the plastic processing described above to produce the permanent magnet material F (10 types of permanent magnet material 65).
Further, FIG. 32 is a diagram for explaining that when the number of intermediate molded body elements C is increased to 18 in FIG. 30, the Dy content decreases and Br of the entire permanent magnet increases. FIG.

永久磁石素材Fの製造方法は、図26に表れているように、高iHc成形体要素Aと、高Br成形体要素Bと、夫々は相互に材質の異なる複数の中間用の磁性粉末Mcで形成される複数の中間成形体要素とを、上記高iHc成形体要素Aと上記高Br成形体要素Bとの間に上記複数の中間成形体要素が介在する状態で、寄せ合わせ、一体化して合成成形体Eを形成し、上記複数の中間成形体要素Cの各磁性粉末Mcの夫々の材質の設定は、上記寄せ合わせ一体化した合成成形体Eの状態で、保磁力が上記高iHc成形体要素Aから上記高Br成形体要素B に向けて夫々順次低くなる材質であって、しかも、残留磁束密度が上記高Br成形体要素Bから上記高iHc成形体要素A に向けて夫々順次低くなる材質(本件では、このような材質の磁性粉末を「磁性粉末Mc」又は「中間用の磁性粉末Mc」とも称する)に夫々設定してある。さらに、上記合成成形体Eに塑性加工を施すことによって磁気異方性を備えさせてある 。   As shown in FIG. 26, the manufacturing method of the permanent magnet material F includes a high iHc molded body element A and a high Br molded body element B, each of which includes a plurality of intermediate magnetic powders Mc of different materials. A plurality of intermediate molded body elements to be formed are brought together and integrated in a state where the plurality of intermediate molded body elements are interposed between the high iHc molded body element A and the high Br molded body element B. The composite molded body E is formed, and the material of each of the magnetic powders Mc of the plurality of intermediate molded body elements C is set in the state of the combined molded body E, and the coercive force is the high iHc molded body. The body element A is a material that sequentially decreases from the high Br molded body element B to the high Br molded body element B 1, and the residual magnetic flux density decreases from the high Br molded body element B to the high iHc molded body element A 1, respectively. Material (in this case, magnetic powder of such material is referred to as “magnetic powder Mc” or “intermediate Also called “magnetic powder Mc”. Furthermore, the synthetic molded body E is provided with magnetic anisotropy by plastic processing.

この点を図26を用いてさらに詳しく説明する。
図26の1層目の高iHc成形体要素Aにおける高iHc高密度要素8及び4層目の高Br成形体要素Bにおける高Br高密度要素13は、図13を用いて説明したと同様の考えで形成するとよい。
次に、上記高iHc成形体要素A及び高Br成形体要素Bに用いられる磁性粉末Mの例としては、例えば表11に示される配合割合、比率を用いればよい。
This point will be described in more detail with reference to FIG.
The high iHc high density element 8 in the first layer high iHc molded body element A and the high Br high density element 13 in the fourth layer high Br molded body element B in FIG. 26 are the same as described with reference to FIG. It is good to form with thought.
Next, as examples of the magnetic powder M used in the high iHc molded body element A and the high Br molded body element B, for example, the blending ratios and ratios shown in Table 11 may be used.

Figure 2008258585
Figure 2008258585

次に、図26の2層目と3層目における複数の中間成形体要素C(中間成形体要素20a、中間成形体要素20b)夫々における中間高密度要素23a、23bは、図24を用いて説明した中間高密度要素18と同様の考えで形成するとよい。上記複数の中間成形体要素Cに用いられる相互に材質の異なる複数の中間用の磁性粉末Mcの夫々の材質は、上記寄せ合わせ一体化した合成成形体Eの状態で、保磁力が上記高iHc成形体要素Aから上記高Br成形体要素B に向けて順次低くなる材質であって、しかも、残留磁束密度が上記高Br成形体要素Bから上記高iHc成形体要素A に向けて順次低くなる材質になるように設定すればよい。なお、上記複数の磁性粉末Mcは、磁性粉末Maと磁性粉末Mbとを適当な割合で混合して(表11、13、15、17から容易に想定できる量を混合して)用いてもよいし、磁性粉末Ma又は磁性粉末Mbに対して夫々適当な磁性合金の組成を増減させて用いてもよい。その場合、磁性粉末Mcは、合成成形体Eの状態で、保磁力が上記高iHc成形体要素Aから上記高Br成形体要素B に向けて夫々順次低くなる材質であって、しかも、残留磁束密度が上記高Br成形体要素Bから上記高iHc成形体要素A に向けて夫々順次低くなるような条件を満たせばよい。 例えば、上記複数の磁性粉末Mcの夫々の材質の例としては、1層から4層を含めて、例えば、表11に示される配合割合、比率のものを用いればよい。   Next, intermediate high density elements 23a and 23b in the plurality of intermediate molded body elements C (intermediate molded body element 20a and intermediate molded body element 20b) in the second and third layers in FIG. It may be formed by the same idea as the intermediate high-density element 18 described. Each of the plurality of intermediate magnetic powders Mc used in the plurality of intermediate molded body elements C is made of the composite molded body E which is brought together and integrated and has a coercive force of the high iHc. The material gradually decreases from the molded body element A toward the high Br molded body element B 1, and the residual magnetic flux density gradually decreases from the high Br molded body element B toward the high iHc molded body element A 1. What is necessary is just to set so that it may become a material. The plurality of magnetic powders Mc may be used by mixing magnetic powder Ma and magnetic powder Mb at an appropriate ratio (mixing amounts that can be easily assumed from Tables 11, 13, 15, and 17). However, the composition of an appropriate magnetic alloy may be increased or decreased with respect to the magnetic powder Ma or the magnetic powder Mb. In that case, the magnetic powder Mc is a material in which the coercive force in the state of the synthetic molded body E decreases sequentially from the high iHc molded body element A to the high Br molded body element B 1, and the residual magnetic flux. It is only necessary to satisfy the conditions such that the density sequentially decreases from the high Br molded body element B to the high iHc molded body element A 1. For example, as an example of the material of each of the plurality of magnetic powders Mc, a material having a blending ratio and a ratio shown in Table 11 including one to four layers may be used.

なお、図26(c)の高iHc高密度要素8、高Br高密度要素13、2層目及び3層目の中間高密度要素23a、23bの夫々の外形寸法は、これらを寄せ合わせ一体化したときに、所定の外形寸法の合成成形体Eになるような寸法に形成すればよい。例えば、高iHc高密度要素8、高Br高密度要素13、2層目及び3層目の中間高密度要素23a、23bの夫々を厚みT2=9mm、幅W2=19mm、長さL2=25mmとすればよい。すると、合成成形体Eは、厚みT=36mm、幅W=19mm、長さL=25mmとなる。   Note that the external dimensions of the high iHc high density element 8, the high Br high density element 13, the second layer and the third layer high density elements 23a and 23b in FIG. Then, it may be formed in such a size as to become a synthetic molded body E having a predetermined outer dimension. For example, each of the high iHc high density element 8, the high Br high density element 13, the second and third intermediate high density elements 23a and 23b has a thickness T2 = 9 mm, a width W2 = 19 mm, and a length L2 = 25 mm. do it. Then, the synthetic molded body E has a thickness T = 36 mm, a width W = 19 mm, and a length L = 25 mm.

次に、夫々個別に製造した高iHc高密度要素8(高iHc成形体要素A)と、高Br高密度要素13(高Br成形体要素B)と、2層目及び3層目の中間高密度要素23a、23b(複数の中間成形体要素C)とを、図24(c2)に表われているように、寄せ合わせ一体化して合成成形体E(4種合成成形体53)を製造する。この寄せ合わせは、図13を用いて説明したと同様の考えですればよい。   Next, the high iHc high-density element 8 (high iHc molded body element A), the high Br high-density element 13 (high Br molded body element B), and the intermediate heights of the second layer and the third layer, which were manufactured individually, respectively. As shown in FIG. 24 (c2), the density elements 23a and 23b (a plurality of intermediate molded body elements C) are brought together to produce a synthetic molded body E (four-type synthetic molded body 53). . This gathering may be the same idea as described with reference to FIG.

次に、図26(c2)の合成成形体Eに塑性加工を施して、図26(d)の永久磁石素材F(4種永久磁石素材63)を成形する。塑性加工としては、前述した種々の塑性加工を用いればよい。
なお、永久磁石素材Fの外形寸法は、合成成形体Eに施す塑性加工により相違するが、例えば、上記実験例1における比較例1と同様の押出し加工を施した場合、合成成形体E:厚みT=36mm、幅W=19mm、長さL=25mmの場合、永久磁石素材F:厚みT1=8mm、幅W1=40mm、長さL1=53.4mmとなる。
Next, the synthetic molded body E of FIG. 26 (c2) is subjected to plastic working to form the permanent magnet material F (fourth kind permanent magnet material 63) of FIG. 26 (d). As the plastic processing, the various plastic processing described above may be used.
In addition, although the external dimension of the permanent magnet raw material F changes with the plastic processing given to the synthetic molded object E, for example, when the extrusion process similar to the comparative example 1 in the said experimental example 1 is given, the synthetic molded object E: thickness When T = 36 mm, width W = 19 mm, and length L = 25 mm, the permanent magnet material F: thickness T1 = 8 mm, width W1 = 40 mm, and length L1 = 53.4 mm.

以上のように製造された4層の永久磁石素材Fに着磁した永久磁石における残留磁束密度(Br)、保磁力(iHc)及びDy含有率を表12に示す。さらに、この永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフを図27に示す。   Table 12 shows the residual magnetic flux density (Br), coercive force (iHc), and Dy content of the permanent magnets magnetized on the four-layer permanent magnet material F manufactured as described above. Furthermore, a graph showing the relationship between the residual magnetic flux density (Br) and the coercive force (iHc) in this permanent magnet is shown in FIG.

Figure 2008258585
Figure 2008258585

上記表12、図27に示されるように、永久磁石の高iHc成形体要素A側は、Dy含有率は3.6質量%だから保磁力は極めて高い(1.85MA/m)。また、永久磁石の高Br成形体要素B側は、Br=1.4425Tであり、永久磁石全体におけるBrは、各層の平均値で1.40125Tとなり、高い残留磁束密度を有する。よって、図13を用いて前述したと同様に、永久磁石全体として磁気特性が劣化しにくく、磁気特性の優れた永久磁石として長寿命で使用することができる。
しかも、表12に示されるように、永久磁石全体におけるDyの使用量は、高iHc成形体要素Aと高Br成形体要素Bとの間に複数(2層)の中間成形体要素Cを介在させることにより、それら四者のとの平均値で2.25質量%となり、高価なDyを少ない使用量で上記のような高保磁力を発揮できる永久磁石を得ることが可能となる特長がある。
As shown in Table 12 and FIG. 27, the high iHc molded body element A side of the permanent magnet has an extremely high coercive force (1.85 MA / m) because the Dy content is 3.6 mass%. Further, Br = 1.4425T on the high-Br molded body element B side of the permanent magnet, and Br in the entire permanent magnet is 1.40125T as an average value of each layer, and has a high residual magnetic flux density. Therefore, as described above with reference to FIG. 13, the magnetic properties of the permanent magnet as a whole are not easily deteriorated, and the permanent magnet can be used with a long life as an excellent permanent magnet.
Moreover, as shown in Table 12, the amount of Dy used in the entire permanent magnet is such that a plurality (two layers) of intermediate molded body elements C are interposed between the high iHc molded body element A and the high Br molded body element B. By doing so, the average value of these four is 2.25% by mass, and there is a feature that it is possible to obtain a permanent magnet that can exhibit the high coercive force as described above with a small amount of expensive Dy used.

次に、図28について説明する。
図28の1層目の高iHc成形体要素Aにおける高iHc高密度要素8及び5層目の高Br成形体要素Bにおける高Br高密度要素13は、図13を用いて説明したと同様の考えで形成するとよい。さらに、2層目〜4層目の中間成形体要素C(中間成形体要素30a〜30c)における複数の中間高密度要素33a〜33c夫々は、図26を用いて説明したと同様の考えで形成するとよい。例えば、上記高iHc成形体要素A、高Br成形体要素B及び複数の中間成形体要素Cに用いられる磁性粉末Mの例として、表13に示される配合割合のものを用いてもよい。合成成形体Eにおける高iHc成形体要素A、高Br成形体要素B及び複数の中間成形体要素Cの厚さの比率は、例えば、表13に示されるようにすればよい。
Next, FIG. 28 will be described.
The high iHc high density element 8 in the first layer high iHc molded body element A and the high Br high density element 13 in the fifth layer high Br molded body element B in FIG. 28 are the same as described with reference to FIG. It is good to form with thought. Further, each of the plurality of intermediate high-density elements 33a to 33c in the second to fourth layer intermediate molded body element C (intermediate molded body elements 30a to 30c) is formed based on the same idea as described with reference to FIG. Good. For example, as an example of the magnetic powder M used in the high iHc molded body element A, the high Br molded body element B, and the plurality of intermediate molded body elements C, those having a blending ratio shown in Table 13 may be used. The ratio of the thicknesses of the high iHc molded body element A, the high Br molded body element B, and the plurality of intermediate molded body elements C in the synthetic molded body E may be as shown in Table 13, for example.

Figure 2008258585
Figure 2008258585

なお、図26(c)の高iHc高密度要素8、高Br高密度要素13、2層目〜4層目の中間高密度要素33a〜33cの夫々の外形寸法は、これらを寄せ合わせ一体化したときに、所定の外形寸法の合成成形体E(5種(複数種)合成成形体54)になるような寸法に形成すればよく、例えば、高iHc高密度要素8、高Br高密度要素13、中間高密度要素33a、33bの夫々を厚みT2=7.2 mm、幅W2=19mm、長さL2=25mmとすればよい。すると、合成成形体Eは、厚みT=36mm、幅W=19mm、長さL=25mmとなる。   Note that the external dimensions of the high iHc high density element 8, the high Br high density element 13, and the second to fourth intermediate high density elements 33a to 33c in FIG. The size may be formed so as to be a composite molded body E (five (plural types) composite molded body 54) having a predetermined outer dimension, for example, a high iHc high-density element 8, a high Br high-density element. 13. Each of the intermediate high density elements 33a and 33b may have a thickness T2 = 7.2 mm, a width W2 = 19 mm, and a length L2 = 25 mm. Then, the synthetic molded body E has a thickness T = 36 mm, a width W = 19 mm, and a length L = 25 mm.

次に、夫々個別に製造した高iHc高密度要素8(高iHc成形体要素A)と、高Br高密度要素13(高Br成形体要素B)と、2層目〜4層目の中間高密度要素33a〜33c(複数の中間成形体要素C)とを、図28(c2)のように、寄せ合わせ一体化して合成成形体E(5種合成成形体54)を製造する。この寄せ合わせは、図13を用いて説明したと同様の考えですればよい。   Next, the high iHc high-density element 8 (high iHc molded body element A), the high Br high-density element 13 (high Br molded body element B), and the intermediate heights of the second to fourth layers, which were manufactured individually, The density elements 33a to 33c (a plurality of intermediate molded body elements C) are brought together and integrated as shown in FIG. 28 (c2) to produce a synthetic molded body E (5-type synthetic molded body 54). This gathering may be the same idea as described with reference to FIG.

次に、合成成形体Eに塑性加工を施して、図28(d)の永久磁石素材F(5種永久磁石素材64)を成形する。塑性加工としては、前述した種々の塑性加工を用いればよい。
なお、永久磁石素材Fの外形寸法は、合成成形体Eに施す塑性加工により相違するが、例えば、上記実験例1における比較例1と同様の押出し加工を施した場合、合成成形体E:厚みT=36mm、幅W=19mm、長さL=25mmの場合、永久磁石素材F:厚みT1=8mm、幅W1=40mm、長さL1=53.4mmとなる。
Next, the synthetic molded body E is subjected to plastic working to mold the permanent magnet material F (5 type permanent magnet material 64) of FIG. As the plastic processing, the various plastic processing described above may be used.
In addition, although the external dimension of the permanent magnet raw material F changes with the plastic processing given to the synthetic molded object E, for example, when the extrusion process similar to the comparative example 1 in the said experimental example 1 is given, the synthetic molded object E: thickness When T = 36 mm, width W = 19 mm, and length L = 25 mm, the permanent magnet material F: thickness T1 = 8 mm, width W1 = 40 mm, and length L1 = 53.4 mm.

以上のように製造された5層の永久磁石素材Fに着磁された永久磁石における、残留磁束密度(Br)、保磁力(iHc)及びDy含有率を表14に示す。さらに、この永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフを図29に示す。   Table 14 shows the residual magnetic flux density (Br), coercive force (iHc), and Dy content of the permanent magnets magnetized on the five-layer permanent magnet material F manufactured as described above. Further, FIG. 29 is a graph showing the relationship between the residual magnetic flux density (Br) and the coercive force (iHc) in this permanent magnet.

Figure 2008258585
Figure 2008258585

上記表14、図29に示されるように、永久磁石の高iHc成形体要素A側は、Dy含有率は3.6質量%だから保磁力は極めて高い(1.85MA/m)。また、永久磁石の高Br成形体要素B側は、Br=1.448Tであり、永久磁石全体におけるBrは、各層の平均値で1.404Tとなり、高い残留磁束密度を有する。よって、図13を用いて説明したと同様に、永久磁石全体として磁気特性が劣化しにくく、磁気特性の優れた永久磁石として長寿命で使用することができる。
しかも、表14に示されるように、永久磁石全体におけるDyの使用量は、高iHc成形体要素Aと高Br成形体要素Bとの間に複数(3層)の中間成形体要素Cを介在させることにより、それら五者の平均値で2.16質量%となり、高価なDyを少ない使用量で上記のような高保磁力を発揮できる永久磁石を得ることが可能となる特長がある。
As shown in Table 14 and FIG. 29 described above, the high iHc molded body element A side of the permanent magnet has a very high coercive force (1.85 MA / m) because the Dy content is 3.6 mass%. Further, Br = 1.448T on the high Br molded body element B side of the permanent magnet, and Br in the entire permanent magnet is 1.404T on average in each layer, and has a high residual magnetic flux density. Therefore, as described with reference to FIG. 13, the magnetic properties of the permanent magnet as a whole are not easily deteriorated, and the permanent magnet can be used with a long life as an excellent permanent magnet.
Moreover, as shown in Table 14, the amount of Dy used in the entire permanent magnet is such that a plurality of (three layers) intermediate molded body elements C are interposed between the high iHc molded body element A and the high Br molded body element B. Thus, the average value of these five members is 2.16% by mass, and there is a feature that it is possible to obtain a permanent magnet that can exhibit the high coercive force as described above with a small amount of expensive Dy used.

次に、図30について説明する。なお、図30の説明にあっては、1層目〜10層目の高iHc成形体要素A、高Br成形体要素B及び中間成形体要素Cについて夫々の外観図を正しく記載すべきであるが、3層目〜8層目の図は、2層目の外観と同様に表われるので図示は省略した。
図30の1層目の高iHc成形体要素Aにおける高iHc高密度要素8及び10層目の高Br成形体要素Bにおける高Br高密度要素13は、図13を用いて説明したと同様の考えで形成するとよい。さらに、2層目〜9層目の中間成形体要素Cにおける図30(c)の複数の中間高密度要素夫々は、図26を用いて説明したと同様の考えで形成するとよい。
例えば、上記高iHc成形体要素A、複数の中間成形体要素C及び高Br成形体要素Bに用いられる磁性粉末Mの例としては、表15に示される配合割合を参考にして用いれば、本発明における複数の中間成形体Cを備える永久磁石素材Fの実施は可能になる。合成成形体Eにおける高iHc成形体要素A、複数の中間成形体要素C及び高Br成形体要素Bの比率は表15に示されるようにすればよい。
Next, FIG. 30 will be described. In the description of FIG. 30, the external views of the first layer to the tenth layer of the high iHc molded body element A, the high Br molded body element B, and the intermediate molded body element C should be correctly described. However, illustrations of the third to eighth layers are omitted since they appear in the same manner as the appearance of the second layer.
The high iHc high density element 8 in the first layer high iHc molded body element A and the high Br high density element 13 in the 10th layer high Br molded body element B are the same as described with reference to FIG. It is good to form with thought. Furthermore, each of the plurality of intermediate high-density elements in FIG. 30C in the second to ninth intermediate molded body elements C may be formed based on the same idea as described with reference to FIG.
For example, as an example of the magnetic powder M used in the high iHc molded body element A, the plurality of intermediate molded body elements C, and the high Br molded body element B, the blending ratio shown in Table 15 can be used as a reference. Implementation of the permanent magnet material F including a plurality of intermediate molded bodies C in the invention becomes possible. The ratio of the high iHc molded body element A, the plurality of intermediate molded body elements C, and the high Br molded body element B in the synthetic molded body E may be as shown in Table 15.

Figure 2008258585
Figure 2008258585

なお、図30(c)の高iHc高密度要素8(1層目)、高Br高密度要素13(10層目)、中間高密度要素(2層目〜9層目)の夫々の外形寸法は、これらを寄せ合わせ一体化したときに、所定の外形寸法の合成成形体E(10種(複数種)合成成形体55)になるような寸法に形成すればよく、例えば、高iHc高密度要素8、高Br高密度要素13、複数の中間高密度要素(2層目〜9層目)の夫々を厚みT2=3.6mm、幅W2=19mm、長さL2=25mmとすればよい。すると、合成成形体Eは、厚みT=36mm、幅W=19mm、長さL=25mmとなる。   The external dimensions of the high iHc high-density element 8 (first layer), the high Br high-density element 13 (10th layer), and the intermediate high-density element (second to ninth layers) shown in FIG. May be formed in such a dimension that the composite molded body E (10 types (plural types) of the composite molded body 55) having a predetermined external dimension when these are brought together and integrated, for example, high iHc high density Each of the element 8, the high Br high density element 13, and the plurality of intermediate high density elements (second to ninth layers) may have a thickness T2 = 3.6 mm, a width W2 = 19 mm, and a length L2 = 25 mm. Then, the synthetic molded body E has a thickness T = 36 mm, a width W = 19 mm, and a length L = 25 mm.

次に、夫々個別に製造した高iHc高密度要素8(高iHc成形体要素A)と、高Br高密度要素13(高Br成形体要素B)と、2層目〜9層目の複数の中間高密度要素(複数の中間成形体要素C)とを、図30(c2)に表われているように、寄せ合わせ一体化して合成成形体E(10種合成成形体55)を製造する。
上記寄せ合わせる配列順は1層〜10層の順になるようにするとよい。
Next, a high iHc high-density element 8 (high iHc molded body element A), a high Br high-density element 13 (high Br molded body element B), and a plurality of second to ninth layers respectively manufactured separately. As shown in FIG. 30 (c2), the intermediate high-density element (a plurality of intermediate molded body elements C) is brought together to produce a synthetic molded body E (10 types of synthetic molded body 55).
The order of arrangement is preferably 1 to 10 layers.

次に、図30(c2)合成成形体Eに塑性加工を施して、図30(d)の永久磁石素材F(10種永久磁石素材65)を成形する。塑性加工としては、前述した種々の塑性加工を用いればよい。   Next, the composite molded body E in FIG. 30 (c2) is subjected to plastic working to form the permanent magnet material F (10-type permanent magnet material 65) in FIG. 30 (d). As the plastic processing, the various plastic processing described above may be used.

以上のように製造された10層の永久磁石素材Fに着磁された永久磁石における、残留磁束密度(Br)、保磁力(iHc)及びDy含有率を表16に示す。さらに、この永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフを図31に示す。   Table 16 shows the residual magnetic flux density (Br), the coercive force (iHc), and the Dy content in the permanent magnets magnetized on the 10-layer permanent magnet material F manufactured as described above. Further, FIG. 31 shows a graph showing the relationship between the residual magnetic flux density (Br) and the coercive force (iHc) in this permanent magnet.

Figure 2008258585
Figure 2008258585

上記表16、図31に示されるように、永久磁石の高iHc成形体要素A側は、Dy含有率は3.6質量%だから保磁力は極めて高い(1.85MA/m)。また、永久磁石の高Br成形体要素B側は、Br=1.459Tであり、永久磁石全体におけるBrは、各層の平均値で1.4095Tとなり、高い残留磁束密度を有する。よって、図13を用いて説明したと同様に、永久磁石全体として磁気特性が劣化しにくく、磁気特性の優れた永久磁石として長寿命で使用することができる。
しかも、表16に示されるように、永久磁石全体におけるDyの使用量は、高iHc成形体要素Aと高Br成形体要素Bとの間に複数の中間成形体要素Cを介在させることにより、それら10者の平均値で1.98質量%となり、高価なDyを少ない使用量で上記のような高保磁力を発揮できる永久磁石を得ることが可能となる特長がある。
As shown in Table 16 and FIG. 31, the high iHc molded element A side of the permanent magnet has an extremely high coercive force (1.85 MA / m) because the Dy content is 3.6 mass%. Further, the Br = 1.459T on the high-Br molded body element B side of the permanent magnet, and Br in the entire permanent magnet is 1.4095T on average in each layer, and has a high residual magnetic flux density. Therefore, as described with reference to FIG. 13, the magnetic properties of the permanent magnet as a whole are not easily deteriorated, and the permanent magnet can be used with a long life as an excellent permanent magnet.
Moreover, as shown in Table 16, the amount of Dy used in the entire permanent magnet is obtained by interposing a plurality of intermediate molded body elements C between the high iHc molded body element A and the high Br molded body element B. The average value of these 10 members is 1.98% by mass, and there is a feature that it is possible to obtain a permanent magnet capable of exhibiting the above high coercive force with a small amount of expensive Dy used.

次に、図33について説明する。前述の図13と図16においては、2種合成成形体Eを形成するに当り、図13(a)のように、相互に個別状態にある高iHc粉末状要素6と高Br粉末状要素11、又は図16(a)に示されるように一つのキャビティ内に並列状態に収っている高iHc粉末状要素6と高Br粉末状要素11を、選択的に利用する例について説明した。
図33の場合は、複数種合成成形体Eを形成するに当たって、図13及び図16の例に習って粉末状要素を、選択的に利用して形成する例を説明するものである。即ち、保磁力が高Br粉末状要素11に比較して高く、かつ、残留磁束密度が高Br粉末状要素11に比較して低い材質の磁性粉末Maで形成される高iHc粉末状要素6と、残留磁束密度が高iHc粉末状要素6に比較して高く、かつ、保磁力が高iHc粉末状要素6に比較して低い材質の磁性粉末Mbで形成される高Br粉末状要素11と、夫々は相互に材質の異なる複数の中間用の磁性粉末Mcで形成される複数の中間粉末状要素41とを、キャビティ5内において、相互に並列する状態で、上記高iHc粉末状要素6と上記高Br粉末状要素11との間に上記複数の中間粉末状要素が介在する状態で、寄せ合わせ、それらをプレス手段によって、一体化して合成成形体Eを形成し、上記複数の中間粉末状要素41の各磁性粉末Mcの夫々の材質の設定は、上記寄せ合わせ一体化した合成成形体Eの状態で、保磁力が上記高iHc成形体要素Aから上記高Br成形体要素B に向けて夫々順次低くなる材質であって、しかも、残留磁束密度が上記高Br成形体要素Bから上記高iHc成形体要素A に向けて夫々順次低くなる材質に夫々設定してある永久磁石用合成成形体Eを製造するものである。
Next, FIG. 33 will be described. In FIG. 13 and FIG. 16 described above, when forming the two-type composite molded body E, as shown in FIG. 13A, the high iHc powder-like element 6 and the high Br powder-like element 11 are in an individual state. Alternatively, as shown in FIG. 16 (a), an example in which the high iHc powdery element 6 and the high Br powdery element 11 that are arranged in parallel in one cavity are selectively used has been described.
In the case of FIG. 33, an example in which the powdery element is selectively used according to the examples of FIG. 13 and FIG. That is, the high iHc powder-like element 6 formed of the magnetic powder Ma having a higher coercive force than the high Br powder-like element 11 and a residual magnetic flux density lower than that of the high Br powder-like element 11; A high Br powder-like element 11 formed of magnetic powder Mb having a high residual magnetic flux density compared to the high iHc powder-like element 6 and a coercive force lower than that of the high iHc powder-like element 6; Each of the high iHc powder-like elements 6 and the above-mentioned elements is formed in a state in which a plurality of intermediate powder-like elements 41 made of a plurality of intermediate magnetic powders Mc of different materials are juxtaposed in the cavity 5. In the state where the plurality of intermediate powder elements are interposed between the high Br powder elements 11, they are brought together by a pressing means to form a composite molded body E, and the plurality of intermediate powder elements The setting of each material of each magnetic powder Mc of 41 In the state of the formed synthetic molded body E, the coercive force is sequentially reduced from the high iHc molded body element A to the high Br molded body element B 1, and the residual magnetic flux density is the high Br molded body. A permanent magnet composite molded body E, which is set to a material that sequentially decreases from the body element B toward the high iHc molded body element A 1, is manufactured.

これらの点をさらに説明すれば、先に図30(c2)において、永久磁石用複数種合成成形体として例示した10種合成成形体Eを、図30(a)列の粉末状要素を利用して形成すればよいと説明した。しかし、図13及び図16の説明から自明なように、合成成形体Eを形成するに当たっては、図16の考え方に習って、図33(a)のように、磁性粉末Maと磁性粉末Mbとの間に、2層目〜9層目の異質の磁石粉末Mcをキャビティ中に並列状態で充填して形成される合成粉末状要素9を選択利用すればよい。なお、図において、9は高iHc粉末状要素6と、高Br粉末状要素11と、夫々は相互に材質の異なる複数の中間用の磁性粉末Mcで形成される複数の中間粉末状要素41とを、キャビティ5内において、相互に並列する状態で、上記高iHc粉末状要素6と上記高Br粉末状要素11との間に上記複数の中間粉末状要素が介在する状態で、寄せ合わせて構成された合成粉末状要素を示す。この合成粉末状要素9には、周知のプレス手段を施し、一体化して合成成形体Eを形成する。10は、高iHc成形体要素Aと高Br成形体要素Bと複数の中間成形体要素Cとを、上記高iHc成形体要素Aと上記高Br成形体要素Bとの間に上記複数の中間成形体要素Cが介在する状態で、寄せ合わせ一体化して形成された合成固形状要素である。   To further explain these points, the 10-type composite molded body E previously exemplified as the plural-type composite molded body for permanent magnets in FIG. 30 (c2) is used by using the powdery elements in the row of FIG. 30 (a). Explained that it should be formed. However, as is obvious from the description of FIG. 13 and FIG. 16, in forming the synthetic molded body E, the magnetic powder Ma and the magnetic powder Mb as shown in FIG. In the meantime, the synthetic powder element 9 formed by filling the cavities with the second to ninth layers of heterogeneous magnet powders Mc in parallel may be selectively used. In the figure, reference numeral 9 denotes a high iHc powder-like element 6, a high Br powder-like element 11, and a plurality of intermediate powder-like elements 41 each formed of a plurality of intermediate magnetic powders Mc of different materials. In the cavity 5 in parallel with each other, with the plurality of intermediate powder elements interposed between the high iHc powder element 6 and the high Br powder element 11 Figure 2 shows a synthetic powdered element. This synthetic powder-like element 9 is subjected to a known pressing means and integrated to form a synthetic molded body E. 10 includes a high iHc molded body element A, a high Br molded body element B, and a plurality of intermediate molded body elements C, and a plurality of intermediate portions between the high iHc molded body element A and the high Br molded body element B. It is a synthetic solid element formed by bringing together and forming the molded body element C.

上記図33(a)列の粉末状要素の時点で寄せ合わせ一体化する製法によれば、図30に比較して低コストで永久磁石素材Fを提供することができる。すなわち、図30の場合のように各粉末状要素を個別に形成する例では、多数(例えば21回)プレス作業が必要になるのに比べ、図33のようにキャビティ内に多種の粉末状要素を並べた例では、小数(例えば3回)のプレス作業で済む。なお、図33と図30の永久磁石素材Fを着磁した永久磁石の磁気特性は同一であった。
さらに、前述した図24〜図28に表われる中間粉末状要素16、21、31を用いて夫々の他の複数種合成成形体Eを形成する場合においても、図33(a)(b)(c)における中間粉末状要素41及び中間固形状要素42等の数を要望に応じて対応減少させることによって、前述と同様の考えで、対応層数の合成成形体Eを形成すればよい。
なお、前述の図13〜図33においては、合成成形体Eを構成する高iHc成形体要素A、高Br成形体要素B、中間成形体要素Cは、等寸法の例で説明した。しかし、不可逆減磁に対する要望、サイズの大小やコストに係る要望等に応じて、夫々の合わせ方向のサイズ(厚さ方向又は幅方向のサイズ)は適宜増減すればよい。
According to the manufacturing method in which the powdery elements in the row of FIG. 33 (a) are brought together and integrated, the permanent magnet material F can be provided at a lower cost than in FIG. That is, in the example in which each powdery element is individually formed as in the case of FIG. 30, a large number of (for example, 21 times) press operations are required, compared to various powdery elements in the cavity as shown in FIG. In the example in which the numbers are arranged, a small number (for example, three times) of press work is sufficient. Note that the permanent magnets magnetized with the permanent magnet material F shown in FIGS. 33 and 30 have the same magnetic characteristics.
Furthermore, also in the case where each of the other plural-type composite molded bodies E is formed using the intermediate powder-like elements 16, 21, and 31 appearing in FIGS. 24 to 28 described above, FIG. 33 (a) (b) ( By reducing the number of intermediate powder-like elements 41, intermediate solid-like elements 42, etc. in c) as required, a composite molded body E having a corresponding number of layers may be formed based on the same idea as described above.
In FIGS. 13 to 33 described above, the high iHc molded body element A, the high Br molded body element B, and the intermediate molded body element C constituting the synthetic molded body E have been described with examples of equal dimensions. However, according to the demand for irreversible demagnetization, the size, the demand for cost, etc., the size in the respective alignment direction (thickness direction or width direction size) may be appropriately increased or decreased.

次に図32について説明する。図32は前述したように、図30における中間成形体要素Cの層の数を、10層増加させて18層にした場合の保磁力(iHc)と残留磁束密度(Br)の関係を説明する為のものである。なお、本実施例15における図面、即ち実施例14の図30に対応する図面は、図30において、中間成形体要素Cを10層増加させた図になる。よって、自明なので図示は省略する。   Next, FIG. 32 will be described. FIG. 32 explains the relationship between the coercive force (iHc) and the residual magnetic flux density (Br) when the number of layers of the intermediate formed body element C in FIG. 30 is increased by 10 to 18 as described above. Is for the purpose. In addition, the drawing in the present Example 15, that is, the drawing corresponding to FIG. 30 in Example 14, is a diagram in which the intermediate molded body element C is increased by 10 layers in FIG. Therefore, since it is self-explanatory, illustration is abbreviate | omitted.

1層目の高iHc成形体要素Aにおける高iHc高密度要素及び20層目の高Br成形体要素Bにおける高Br高密度要素は、図13を用いて説明したと同様の考えで形成するとよい。さらに、2層目〜19層目の中間成形体要素Cの複数の中間高密度要素夫々は、図26を用いて説明したと同様の考えで形成するとよい。例えば、本実施例15における高iHc成形体要素A、18層の中間成形体要素C及び高Br成形体要素Bに用いられる磁性粉末M夫々の例としては、例えば表17に示される配合割合のものを用いてもよい。さらに合成成形体Eにおける高iHc成形体要素A、複数の中間成形体要素C及び高Br成形体要素Bの比率は、表17に示されるようにすればよい。   The high iHc high-density element in the first layer of high iHc molded body element A and the high Br high-density element in the 20th layer of high Br molded body element B may be formed based on the same idea as described with reference to FIG. . Further, each of the plurality of intermediate high-density elements C in the second to 19th intermediate formed body elements C may be formed based on the same idea as described with reference to FIG. For example, as examples of the magnetic powder M used in the high iHc molded body element A, the 18-layer intermediate molded body element C, and the high Br molded body element B in Example 15, for example, A thing may be used. Furthermore, the ratio of the high iHc molded body element A, the plurality of intermediate molded body elements C, and the high Br molded body element B in the synthetic molded body E may be as shown in Table 17.

Figure 2008258585

次に、高iHc成形体要素A、18層の中間成形体要素C及び高Br成形体要素Bを用いて永久磁石素材Fを製造する方法は、表17に示されるような材質の磁性粉末Mから形成される、高iHc成形体要素A、18種の中間成形体要素C及び高Br成形体要素Bから、20層の合成成形体E、永久磁石素材Fを形成する。その過程については、図30を用いて前述したと同様の考えで行なえばよい。
以上のように製造された永久磁石素材F(20種永久磁石素材)の残留磁束密度(Br)、保磁力(iHc)及びDy含有率を表18に示す。
Figure 2008258585

Next, a method of manufacturing the permanent magnet material F using the high iHc molded body element A, the 18-layer intermediate molded body element C, and the high Br molded body element B is as follows. A 20-layer composite molded body E and a permanent magnet material F are formed from the high iHc molded body element A, 18 kinds of intermediate molded body elements C and the high Br molded body element B. The process may be performed based on the same idea as described above with reference to FIG.
Table 18 shows the residual magnetic flux density (Br), coercive force (iHc), and Dy content of the permanent magnet material F (20-type permanent magnet material) manufactured as described above.

Figure 2008258585
Figure 2008258585

本例にあっては、表18、図32から理解できるように、永久磁石素材Fの一面側67(高iHc成形体要素側)は保磁力が高い(1.85MA/m)。また、永久磁石の高Br成形体要素B側は、Br=1.4645Tであり、永久磁石全体におけるBrは、各層の平均値で1.41225Tとなり、高い残留磁束密度を有する。よって、図13を用いて説明したと同様に、永久磁石全体として磁気特性が劣化しにくく、磁気特性の優れた永久磁石として長寿命で使用することができる。
しかも、表18に示されるように、永久磁石全体におけるDyの使用量は、高iHc成形体要素Aと高Br成形体要素Bとの間に複数の中間成形体要素Cを介在させることにより、それら20層の平均値で1.89質量%となり、高価なDyを少ない使用量で上記のような高保磁力を発揮できる永久磁石を得ることが可能となる特長がある。
In this example, as can be understood from Table 18 and FIG. 32, one surface side 67 (high iHc molded body element side) of the permanent magnet material F has a high coercive force (1.85 MA / m). Further, Br = 1.4645T on the high Br molded body element B side of the permanent magnet, and Br in the entire permanent magnet is 1.41225T in average value of each layer, and has a high residual magnetic flux density. Therefore, as described with reference to FIG. 13, the magnetic properties of the permanent magnet as a whole are not easily deteriorated, and the permanent magnet can be used with a long life as an excellent permanent magnet.
Moreover, as shown in Table 18, the amount of Dy used in the entire permanent magnet is obtained by interposing a plurality of intermediate molded body elements C between the high iHc molded body element A and the high Br molded body element B. The average value of these 20 layers is 1.89% by mass, and there is a feature that it is possible to obtain a permanent magnet capable of exhibiting the above high coercive force with a small amount of expensive Dy used.

なお、図24〜図33を用いて前述した実施例10〜実施例15においては、高iHc成形体要素A、中間成形体要素C、高Br成形体要素Bを、X方向に寄せ合わせ一体化して、合成成形体Eを形成する例を説明した。しかし、高iHc成形体要素A、中間成形体要素C、高Br成形体要素Bを寄せ合わせ一体化して合成成形体Eを形成する場合、図17(c)に示されると同様の考えで、Y方向に寄せ合わせて合成成形体Eを形成してもよい。   In Examples 10 to 15 described above with reference to FIGS. 24 to 33, the high iHc molded body element A, the intermediate molded body element C, and the high Br molded body element B are brought together in the X direction and integrated. Thus, an example of forming the synthetic molded body E has been described. However, when the high iHc molded body element A, the intermediate molded body element C, and the high Br molded body element B are assembled together to form a synthetic molded body E, the same idea as shown in FIG. The synthetic molded body E may be formed by bringing them together in the Y direction.

次に、上記図13、23、24、26、28、30、32、33に表われている永久磁石素材Fの磁気特性の具体的な測定は次の通り。
前述した実験例1と同様に、永久磁石素材Fの幅中央部でかつ長さ中央部から、幅×長さ×厚みが8mm×8mm×8mmとなる切片を採取し、さらに各要素部分単層になるまで厚み方向を削り込み、それを実験例1と同じ厚み(8mm)になるよう複数枚を重ね合わせ、各要素毎の磁気測定試料とした。そして該試料を3.2MA/mの磁界中で着磁したものを使用して、残留磁束密度、保磁力を測定した。
さらに、上記図17〜19に表われている永久磁石素材Fの磁気特性の具体的な測定は次の通りである。永久磁石素材Fの各要素の幅中央部でかつ長さ中央部から、幅×長さ×厚みが8mm×8mm×8mmとなる切片を採取し、各要素毎の磁気測定試料とした。そして該試料を3.2MA/mの磁界中で着磁したものを使用して、残留磁束密度、保磁力を測定した。
Next, specific measurements of the magnetic properties of the permanent magnet material F shown in FIGS. 13, 23, 24, 26, 28, 30, 32, and 33 are as follows.
Similarly to Experimental Example 1 described above, a section having a width × length × thickness of 8 mm × 8 mm × 8 mm was sampled from the width central portion and the length central portion of the permanent magnet material F, and each element partial single layer was further collected. The thickness direction was shaved until the thickness of the sample was measured, and a plurality of sheets were stacked so as to have the same thickness (8 mm) as in Experimental Example 1 to obtain a magnetic measurement sample for each element. The sample was magnetized in a magnetic field of 3.2 MA / m and the residual magnetic flux density and coercive force were measured.
Further, specific measurements of the magnetic properties of the permanent magnet material F shown in FIGS. 17 to 19 are as follows. A section having a width × length × thickness of 8 mm × 8 mm × 8 mm was collected from the width central portion and length central portion of each element of the permanent magnet material F, and used as a magnetic measurement sample for each element. The sample was magnetized in a magnetic field of 3.2 MA / m and the residual magnetic flux density and coercive force were measured.

次に、高iHc成形体要素A、高Br成形体要素B、中間成形体要素Cを形成する磁性粉末Mの材質を選定する例について、図34〜図41を用いて説明する。
図34〜図41は、永久磁石素材Fに対して、図34に示すような所定の保磁力が要求される場合に、その要求に対応して、不可逆減磁が生じないように磁性粉末Mの材質を選定する設計例を説明する為のものである。なお、永久磁石素材Fに着磁した永久磁石を使用する場合にあっては、永久磁石の一面が高熱に晒される等の環境下、もう一面がそうではない環境下に置かれた場合、永久磁石内部には、その永久磁石に要求される保磁力に分布が生じる。例えば、要求される保磁力の分布として、図34の条件の場合について説明する。すなわち、tは永久磁石の厚み方向の距離を表すこととし、t=0で1.85MA/m、t=T1で1.22MA/m、t=0〜T1の間は直線的に変化するような保磁力が要求されるような条件を想定する。なお、温度や外部減磁界強度から、永久磁石に要求される保磁力を求める手段は公知の方法によればよい。また、安全率をある程度見込んで保磁力を多少大きく取ることも、この時点で行なっておいてもよい。ここで、図34中の斜め線より上の領域(斜線部分)の保磁力を永久磁石の厚さ方向の各部位に付与すれば不可逆減磁は生じない。
Next, an example of selecting the material of the magnetic powder M forming the high iHc molded body element A, the high Br molded body element B, and the intermediate molded body element C will be described with reference to FIGS.
34 to 41 show that when a predetermined coercive force as shown in FIG. 34 is required for the permanent magnet material F, the magnetic powder M is used so that irreversible demagnetization does not occur in response to the request. This is for explaining a design example for selecting the material. When using a permanent magnet magnetized on the permanent magnet material F, if one surface of the permanent magnet is exposed to high heat and the other surface is placed in an environment that is not, permanent Within the magnet, a distribution occurs in the coercive force required for the permanent magnet. For example, the case of the condition of FIG. 34 will be described as the required coercivity distribution. In other words, t represents the distance in the thickness direction of the permanent magnet, and is 1.85 MA / m at t = 0, 1.22 MA / m at t = T1, and linearly changes between t = 0 and T1. A condition that requires a high coercive force is assumed. The means for obtaining the coercive force required for the permanent magnet from the temperature and the external demagnetizing field strength may be a known method. It is also possible to take a slightly larger coercive force with a certain safety factor in mind at this point. Here, irreversible demagnetization does not occur if the coercive force in the region above the oblique line (shaded part) in FIG. 34 is applied to each part in the thickness direction of the permanent magnet.

次に、実施例10に例示したような2層の永久磁石素材Fの場合について、図35を用いて説明する。本例の磁性粉末Mの材質は、2層で厚み方向に均等分割を考えた場合、図35のように1層目は1.85MA/m、2層目は1.535MA/mとなるよう材料を選定すれば不可逆減磁は生じない。
よって、実験例2で用いた磁性粉末Mと実験例1で用いた磁性粉末Mの2種類を使って、この保磁力を実現するためには、例えば、前述の表7に示すように、1層目には実験例2で用いた磁性粉末を100%、2層目には実験例2で用いた磁性粉末を50%と実験例1で用いた磁性粉末を50%の割合で配合すると良い。
このときの2層目の磁気特性は図23に示すように実験例2で用いた磁性粉末と実験例1で用いた磁性粉末の磁気特性の配合率の比と同じ50%:50%の位置となる。まとめとして1層目、2層目の磁気特性(Br、iHc)及びDy含有率は、前述の表8のようになる。また、2層目には2種類の粉末を配合して使用したが、当然ながら直接iHc=1.535MA/m、Br=1.415Tの特性をもつ1種類の磁性粉末を準備して使用しても良い。この時の成分組成は、実験例2で用いた磁性粉末と実験例1で用いた磁性粉末の全成分を足して2で割った値となる。
Next, the case of the two-layer permanent magnet material F as exemplified in Example 10 will be described with reference to FIG. When the material of the magnetic powder M of this example is divided equally in the thickness direction with two layers, the first layer is 1.85 MA / m and the second layer is 1.535 MA / m as shown in FIG. If the material is selected, irreversible demagnetization does not occur.
Therefore, in order to realize this coercive force using the magnetic powder M used in Experimental Example 2 and the magnetic powder M used in Experimental Example 1, for example, as shown in Table 7 above, 1 For the layer, the magnetic powder used in Experimental Example 2 is 100%. For the second layer, the magnetic powder used in Experimental Example 2 is 50%, and the magnetic powder used in Experimental Example 1 is preferably blended at a ratio of 50%. .
The magnetic characteristics of the second layer at this time are the same as the ratio of the mixing ratio of the magnetic characteristics of the magnetic powder used in Experimental Example 2 and the magnetic powder used in Experimental Example 1 as shown in FIG. It becomes. As a summary, the magnetic properties (Br, iHc) and Dy content of the first and second layers are as shown in Table 8 above. In the second layer, two kinds of powders were blended and used. Of course, one kind of magnetic powder having the characteristics of iHc = 1.535 MA / m and Br = 1.415T was prepared and used. May be. The component composition at this time is a value obtained by adding all the components of the magnetic powder used in Experimental Example 2 and the magnetic powder used in Experimental Example 1 and dividing by two.

次に、実施例10に例示したような2層の永久磁石素材Fの場合について、図35とは異なる例を図36を用いて説明する。本例の磁性粉末Mの材質は、図36のように、保磁力の高い1層目を拡張し、不均等ピッチで分割(0.75T1の位置)して2層化を考えた場合、1層目は1.85MA/m、2層目は1.3775MA/mとなるよう材料を選定すれば不可逆減磁は生じない。
なお、上記1層目及び2層目に用いられる磁性粉末Mの例として表19に示す配合割合のものを用いるとよい。本例による1層目、2層目の磁気特性(Br、iHc)及びDy含有率を表20に示す。
Next, in the case of the two-layer permanent magnet material F as exemplified in Example 10, an example different from FIG. 35 will be described with reference to FIG. As shown in FIG. 36, the material of the magnetic powder M in this example is as follows. When the first layer having a high coercive force is expanded and divided at an uneven pitch (position of 0.75T1), two layers are considered. If the material is selected so that the layer is 1.85 MA / m and the second layer is 1.3775 MA / m, irreversible demagnetization does not occur.
In addition, it is good to use the thing of the mixture ratio shown in Table 19 as an example of the magnetic powder M used for the said 1st layer and the 2nd layer. Table 20 shows the magnetic properties (Br, iHc) and Dy content of the first and second layers according to this example.

Figure 2008258585
Figure 2008258585

Figure 2008258585

ただし、図35と図36の例では、同じ効果が得られるかというとそうではない。図36の方が、上に凸の三角形の面積の総和(塗り潰されたの三角形の面積)が大きい。すなわち、これは過剰に保磁力を付与している部分が大きいということを表している。最適な設計は、下に凸の三角形が生じないで、かつ上に凸の三角形の面積の総和が最も小さくなるようにすると、過剰に保磁力を付与している部分が最も小さいということになる。図34のように、保磁力分布が直線的に変化する場合は、各層は均等ピッチで分割し、材料の選定も必要な保磁力を下回らないようにかつ過剰な保磁力を付与しないように選定するのが最適だといえる。従って、この場合は図35の設計が最適だと言える。ただ、材料の入手性の違いなどで最適な保磁力が選定できないなどの制約がある場合は、不均等ピッチでの分割でも過剰な保磁力の削減効果が望めるので、適用する価値はあるといえる。
Figure 2008258585

However, in the example of FIG. 35 and FIG. 36, it is not so that the same effect can be obtained. In FIG. 36, the sum total of the areas of the upwardly protruding triangles (the area of the filled triangles) is larger. In other words, this indicates that the portion to which the coercive force is excessively applied is large. The optimum design is that the portion with excessive coercive force is the smallest when the convex triangle is not formed downward and the total area of the convex triangle is minimized. . When the coercive force distribution changes linearly as shown in FIG. 34, each layer is divided at an equal pitch, and the material is selected so that it does not fall below the required coercive force and does not give excessive coercive force. It is best to do this. Therefore, in this case, it can be said that the design of FIG. 35 is optimal. However, if there is a restriction that the optimum coercive force cannot be selected due to differences in material availability, etc., it can be said that it is worth applying because it can be expected to reduce excessive coercive force even with division at an uneven pitch. .

次に、実施例11に例示したような3層の永久磁石素材Fの場合について、図37を用いて説明する。本例の磁性粉末Mの材質は、3層で厚み方向に均等分割を考えた場合、図37のように1層目は1.85MA/m、2層目は1.64MA/m、3層目は1.43MA/mとなるよう材料を選定すれば不可逆減磁は生じない。
なお、上記1層目〜3層目に用いられる磁性粉末Mの例としては、例えば表9に示される配合割合のものを用いるとよい。本例による1層目〜3層目の磁気特性(Br、iHc)及びDy含有率は表10のようになる。
Next, the case of the three-layer permanent magnet material F as exemplified in Example 11 will be described with reference to FIG. If the material of the magnetic powder M in this example is divided into three layers in the thickness direction, as shown in FIG. 37, the first layer is 1.85 MA / m, the second layer is 1.64 MA / m, and the third layer is If the material is selected to be 1.43 MA / m, irreversible demagnetization will not occur.
In addition, as an example of the magnetic powder M used for the first to third layers, for example, a blending ratio shown in Table 9 may be used. Table 10 shows the magnetic characteristics (Br, iHc) and Dy content of the first to third layers according to this example.

次に、実施例12に例示したような4層の永久磁石素材Fの場合について、図38を用いて説明する。本例の磁性粉末Mの材質は、4層で厚み方向に均等分割を考えた場合、図38のように1層目は1.85MA/m、2層目は1.6925MA/m、3層目は1.535MA/m、4層目は1.3775MA/mとなるよう材料を選定すれば不可逆減磁は生じない。
なお、上記1層目〜4層目に用いられる磁性粉末Mの例としては、例えば表11に示される配合割合のものを用いるとよい。本例による1層目〜4層目の磁気特性(Br、iHc)及びDy含有率は表12のようになる。
Next, the case of the four-layer permanent magnet material F as exemplified in Example 12 will be described with reference to FIG. When the material of the magnetic powder M in this example is divided into four layers in the thickness direction, as shown in FIG. 38, the first layer is 1.85 MA / m, the second layer is 1.6925 MA / m, and the third layer is If the material is selected to be 1.535MA / m and the fourth layer to be 1.3775MA / m, irreversible demagnetization will not occur.
In addition, as an example of the magnetic powder M used for the first layer to the fourth layer, for example, those having a blending ratio shown in Table 11 may be used. Table 12 shows the magnetic characteristics (Br, iHc) and Dy content of the first to fourth layers according to this example.

次に、実施例13に例示したような5層の永久磁石素材Fの場合について、図39を用いて説明する。本例の磁性粉末Mの材質は、5層で厚み方向に均等分割を考えた場合、図39のように1層目は1.85MA/m、2層目は1.724MA/m、3層目は1.598MA/m、4層目は1.472MA/m、5層目は1.346MA/mとなるよう材料を選定すれば不可逆減磁は生じない。
なお、上記1層目〜5層目に用いられる磁性粉末Mの例としては、例えば表13に示される配合割合のものを用いるとよい。本例による1層目〜5層目の磁気特性(Br、iHc)及びDy含有率は表14のようになる。
Next, the case of the five-layer permanent magnet material F as exemplified in Example 13 will be described with reference to FIG. If the material of the magnetic powder M in this example is divided into five layers in the thickness direction, as shown in FIG. 39, the first layer is 1.85 MA / m, the second layer is 1.724 MA / m, and the third layer is If the material is selected to be 1.598 MA / m, the fourth layer is 1.472 MA / m, and the fifth layer is 1.346 MA / m, irreversible demagnetization will not occur.
In addition, as an example of the magnetic powder M used in the first to fifth layers, for example, those having a blending ratio shown in Table 13 may be used. Table 14 shows the magnetic properties (Br, iHc) and Dy content of the first to fifth layers according to this example.

次に、実施例14に例示したような10層の永久磁石素材Fの場合について、図40を用いて説明する。本例の磁性粉末Mの材質は、10層で厚み方向に均等分割を考えた場合、1層目〜10層目を図40、前述の表16のような保磁力となるよう材料を選定すれば不可逆減磁は生じない。
なお、上記1層目〜10層目に用いられる磁性粉末Mの例としては、例えば、前述の表15に示される配合割合のものを用いるとよい。本例による1層目〜10層目の磁気特性(Br、iHc)及びDy含有率は表16のようになる。
Next, the case of the 10-layer permanent magnet material F illustrated in Example 14 will be described with reference to FIG. The material of the magnetic powder M in this example is selected so that the first layer to the tenth layer have a coercive force as shown in FIG. Therefore, irreversible demagnetization does not occur.
In addition, as an example of the magnetic powder M used for the first layer to the tenth layer, for example, a blending ratio shown in Table 15 may be used. Table 16 shows the magnetic characteristics (Br, iHc) and Dy content of the first to tenth layers according to this example.

次に、実施例15に例示したような20層の永久磁石素材Fの場合について、図41を用いて説明する。本例の磁性粉末Mの材質は、20層で厚み方向に均等分割を考えた場合、1層目〜20層目を図41、前述の表18のような保磁力となるよう材料を選定すれば不可逆減磁は生じない。
なお、上記1層目〜20層目に用いられる磁性粉末Mの例としては、例えば、前述の表17に示される配合割合のものを用いるとよい。本例による1層目〜20層目の磁気特性(Br、iHc)及びDy含有率は、表18のようになる。
Next, the case of the 20-layer permanent magnet material F as exemplified in Example 15 will be described with reference to FIG. The material of the magnetic powder M in this example is selected so that the first layer to the 20th layer have a coercive force as shown in FIG. Therefore, irreversible demagnetization does not occur.
In addition, as an example of the magnetic powder M used in the first to twentieth layers, for example, a blending ratio shown in Table 17 may be used. Table 18 shows the magnetic characteristics (Br, iHc) and Dy content of the first to twentieth layers according to this example.

[実験例5]
次に、次に比較例1(実験例1で用いた磁性粉末Mが100%の単層の永久磁石素材F)、比較例2(実験例2で用いた磁性粉末Mが100%の単層の永久磁石素材F)と実施例10、実施例16(2層の永久磁石素材F)、実施例11(3層の永久磁石素材F)、実施例12(4層の永久磁石素材F)、実施例13(5層の永久磁石素材F)、実施例14(10層の永久磁石素材F)、実施例15(20層の永久磁石素材F)を用いて、室温で同一の磁気性能となるよう永久磁石を製作し、同一の高熱環境下に置いた場合の作用、効果のまとめを表21に示す。
すなわち、例示したように厚みT1=8mm、幅W1=40mm、長さL1=53.5mmの永久磁石素材Fを得るが、これをこのまま着磁したのでは、例えば比較例1は残留磁束密度Brが高く、比較例2は低いため磁石全体の磁束量(フラックス値:単位はウェーバ(Wb))は異なり同一の磁気性能とはいえない。これを揃える為には、一般的には磁石重量(長さ)を調整して行う。そこで、Brが最も小さい比較例2を基準に、着磁した各永久磁石のフラックス値が同じになるよう、それぞれを長さ方向に研削した。この時の長さ及び重量を表21に示す。またDy含有率は前述の通りであるため、永久磁石1個当りのDy使用量は表21の通りとなる。
フラックス値の測定には、フラックスメータを使用した。すなわちコイルの中に永久磁石を置いて、永久磁石を一定速度でコイル中から取り除いた時の電位差から求めた磁束量をフラックス値とした。研削に際しては、内部組織を壊さないよう冷却しながら少しずつ研削した。脱磁、研削、再着磁、フラックス値測定を繰り返し比較例2のフラックス値と一致するまで実施した。
また、ここでは高熱下に晒された永久磁石の熱による不可逆減磁状況を調べた。すなわち、温度調整できる冷却水を流せる構造と電熱ヒータで加熱する構造を併せ持ち、室温〜300℃程度まで一定の温度を保持できる研磨面を持った銅ブロックを2セット準備し、この研磨面同士を対向させて配置した。この研磨面間に、厚み方向(すなわち幅W1=40mm×研磨後の永久磁石の長さの面に研磨面が接触するよう)に永久磁石を挟み込み1時間保持した。銅ブロックは永久磁石に比べ十分大きな体積を持っており、局部的な温度分布ができ難いようにした。更には接触部の銅ブロック側の直下に熱電対を埋め込み、設定した表面温度が保持されるよう冷却水とヒータをコントロールした。また研磨面には熱伝導グリスを使用して永久磁石との伝熱促進を図った。
低温側の銅ブロックの温度は65℃、高温側の温度は155℃とした。永久磁石内部にも熱電対を挿入し、厚み方向の温度分布を調べたが、高温側から低温側に直線的に変化していることを確認した。また接触面で温度ギャップが生じるため、永久磁石の表面温度は低温側接触面で70℃、高温側接触面で150℃となっていた。
以上の方法で永久磁石内に温度分布を持たせた高熱環境試験を行い、永久磁石を銅ブロック間から取り除いたのち室温までゆっくり冷却した。そして、そのまま再度フラックスメータでフラックス値を測定し、比較例2の高熱環境試験前のフラックス値で除した数値を表21に示す。従って、不可逆減磁が生じるとフラックス値は低下してしまうため、この値を不可逆減磁の度合いを表す指標として用いた。表21中の数値が1.0に近いほど不可逆減磁は起こっておらず、数値が小さいほど不可逆減磁の度合いが大きいことを示す。
[Experimental Example 5]
Next, Comparative Example 1 (single layer permanent magnet material F with 100% magnetic powder M used in Experimental Example 1) and Comparative Example 2 (single layer with 100% magnetic powder M used in Experimental Example 2) Permanent magnet material F) and Example 10, Example 16 (two-layer permanent magnet material F), Example 11 (three-layer permanent magnet material F), Example 12 (four-layer permanent magnet material F), Using Example 13 (5 layers of permanent magnet material F), Example 14 (10 layers of permanent magnet material F), and Example 15 (20 layers of permanent magnet material F), the same magnetic performance is obtained at room temperature. Table 21 shows a summary of the actions and effects when a permanent magnet is manufactured and placed in the same high-temperature environment.
That is, as illustrated, a permanent magnet material F having a thickness T1 = 8 mm, a width W1 = 40 mm, and a length L1 = 53.5 mm is obtained. If this is magnetized as it is, for example, the comparative example 1 has a residual magnetic flux density Br. However, since the comparative example 2 is low, the magnetic flux amount of the whole magnet (flux value: unit is Weber (Wb)) is different and it cannot be said that the magnetic performance is the same. In order to make this uniform, the magnet weight (length) is generally adjusted. Therefore, each of the magnetized permanent magnets was ground in the length direction so that the flux values of the magnetized permanent magnets were the same with reference to Comparative Example 2 having the smallest Br. Table 21 shows the length and weight at this time. Since the Dy content is as described above, the amount of Dy used per permanent magnet is as shown in Table 21.
A flux meter was used to measure the flux value. That is, the amount of magnetic flux obtained from the potential difference when the permanent magnet was placed in the coil and the permanent magnet was removed from the coil at a constant speed was defined as the flux value. Grinding was performed little by little while cooling so as not to break the internal structure. Demagnetization, grinding, re-magnetization, and flux value measurement were repeated until the flux value of Comparative Example 2 was matched.
Moreover, the irreversible demagnetization state by the heat | fever of the permanent magnet exposed to the high heat here was investigated. That is, two sets of copper blocks having a polished surface that can maintain a constant temperature from room temperature to about 300 ° C. are prepared with both a structure capable of flowing cooling water that can be adjusted in temperature and a structure heated by an electric heater. They were placed facing each other. A permanent magnet was sandwiched between the polished surfaces in the thickness direction (that is, the polished surface was in contact with the width W1 = 40 mm × the length of the polished permanent magnet) and held for 1 hour. The copper block has a sufficiently large volume compared to the permanent magnet, so that local temperature distribution is difficult. Further, a thermocouple was embedded immediately below the copper block side of the contact portion, and the cooling water and the heater were controlled so that the set surface temperature was maintained. Also, heat conduction grease was used on the polished surface to promote heat transfer with the permanent magnet.
The temperature of the copper block on the low temperature side was 65 ° C., and the temperature on the high temperature side was 155 ° C. A thermocouple was also inserted inside the permanent magnet, and the temperature distribution in the thickness direction was examined, but it was confirmed that the temperature changed linearly from the high temperature side to the low temperature side. Further, since a temperature gap occurs at the contact surface, the surface temperature of the permanent magnet is 70 ° C. at the low temperature side contact surface and 150 ° C. at the high temperature side contact surface.
A high thermal environment test was performed in which the temperature distribution was given to the permanent magnet by the above method, and the permanent magnet was removed from between the copper blocks, and then slowly cooled to room temperature. Table 21 shows numerical values obtained by measuring the flux value again with a flux meter as it is and dividing by the flux value before the high thermal environment test of Comparative Example 2. Therefore, since the flux value decreases when irreversible demagnetization occurs, this value was used as an index representing the degree of irreversible demagnetization. The closer the value in Table 21 is to 1.0, the less irreversible demagnetization occurs, and the smaller the value, the greater the degree of irreversible demagnetization.

結果として、比較例1はBrが高く磁石重量も少なくて済み、更にはDy使用量はゼロとなるが、高熱環境に晒されると大幅に不可逆減磁してしまい初期の性能を維持できなくなってしまう。比較例2は不可逆減磁は起こらないがBrが低く磁石重量、Dy使用量共に大きくコスト的に最も高くなってしまった。実施例10〜実施例16は、いずれも温度分布を持った高熱環境下に晒されても不可逆減磁は起こらない。また層数が多くなるほどBrは高く、磁石重量、Dy使用量は少なくなった。ただし、層数が多いほど合成成形体を作る手間が増えるためコスト上昇要因となってしまう。層数をどのくらいにするかは、要求されるコストと磁石の性能から決定すれば良い。いずれにせよ、実施例10〜実施例16は、磁気特性の優れた永久磁石として、高熱環境下でも長寿命で使用することができるという効果を持つ。
また、実施例10〜実施例16は比較例2に比べ、永久磁石長さも短くできるため、永久磁石が組み込まれる機器の容積もその分小さくできるメリットを持つことも付記しておく。
上記は、測定の容易さ、永久磁石への負荷の印加のしやすさから高熱に晒される環境下に置かれた永久磁石の不可逆減磁状況を調査したが、外部からの減磁界を永久磁石に印加して、磁界強度分布を持たせた場合や、高熱と外部からの減磁界の両方の環境に同時に晒される場合でも同様な作用・効果が得られる。温度分布や磁界強度分布から、磁石に要求される保磁力分布を求めて、これに合わせて設計を行えば良い。
As a result, Comparative Example 1 has a high Br and a small magnet weight, and the amount of Dy used is zero. However, when exposed to a high heat environment, it is greatly irreversibly demagnetized and the initial performance cannot be maintained. End up. In Comparative Example 2, irreversible demagnetization did not occur, but Br was low and both the magnet weight and the amount of Dy used were large and the highest in cost. In any of Examples 10 to 16, irreversible demagnetization does not occur even when exposed to a high heat environment having a temperature distribution. Further, as the number of layers increased, Br was higher, and the magnet weight and the amount of Dy used were decreased. However, the greater the number of layers, the more time is required to make a synthetic molded body, which increases the cost. The number of layers may be determined from the required cost and magnet performance. In any case, Examples 10 to 16 have the effect that they can be used as a permanent magnet with excellent magnetic properties and can have a long life even in a high heat environment.
In addition, since the permanent magnet length can be shortened as compared with the comparative example 2, the examples 10 to 16 have the merit that the volume of the device in which the permanent magnet is incorporated can be reduced accordingly.
The above investigated the irreversible demagnetization situation of permanent magnets placed in an environment exposed to high heat due to the ease of measurement and the ease of applying a load to the permanent magnets. The same action and effect can be obtained even when the magnetic field strength distribution is applied to the case, or when the magnetic field intensity distribution is simultaneously exposed to both high heat and an external demagnetizing field environment. A coercive force distribution required for the magnet may be obtained from the temperature distribution and the magnetic field strength distribution, and the design may be performed accordingly.

Figure 2008258585
Figure 2008258585

次に、図42に表れる合成成形体Eは、図13(c2)の合成成形体Eとは、高iHc成形体要素A又は高Br成形体要素Bが1枚付加されている点で異なる例を示す。
図42において、高iHc成形体要素Aと高Br成形体要素Bは、図17を用いて前述したと同様の手段を用いて形成し、それらと同様の機能、性質又は特徴等が得られるように構成される。
次に、図42(a)のA2は、図示の如く高iHc成形体要素Aと対照的に備えさせる高iHc成形体要素を示す。なお、高iHc成形体要素A2の組成は、高iHc成形体要素Aと同様にすればよい。
次に、図42(a)の高iHc成形体要素Aと高Br成形体要素Bと高iHc成形体要素A2とから形成される合成成形体Eを形成する手段は、図24を用いて説明したように、3層を寄せ合わせ一体化させて合成成形体Eを形成する手段と同様の考え方でその手段を用いればよい。さらに、合成成形体Eに塑性加工を施して、永久磁石素材Fを成形する。塑性加工としては、前述した種々の塑性加工を用いればよい。
Next, the synthetic molded body E shown in FIG. 42 is different from the synthetic molded body E of FIG. 13 (c2) in that one high iHc molded body element A or one high Br molded body element B is added. Indicates.
In FIG. 42, the high iHc molded body element A and the high Br molded body element B are formed using the same means as described above with reference to FIG. 17 so that the same functions, properties, characteristics, etc. can be obtained. Configured.
Next, A2 in FIG. 42 (a) shows a high iHc molded body element provided in contrast to the high iHc molded body element A as shown. The composition of the high iHc molded body element A2 may be the same as that of the high iHc molded body element A.
Next, means for forming the synthetic molded body E formed of the high iHc molded body element A, the high Br molded body element B, and the high iHc molded body element A2 in FIG. 42A will be described with reference to FIG. As described above, the means may be used in the same way as the means for forming the synthetic molded body E by bringing the three layers together. Furthermore, the synthetic molded body E is plastically processed to form the permanent magnet material F. As the plastic processing, the various plastic processing described above may be used.

次に、図42(b)のB2は、図示の如く高Br成形体要素Bと対照的に備えさせる高Br成形体要素を示す。高Br成形体要素B2の組成は、高Br成形体要素Bと同様にすればよい。
図42(b)の高Br成形体要素Bと高iHc成形体要素Aと高Br成形体要素B2とから形成される合成成形体Eを形成する手段は、図24を用いて説明したように、3層を寄せ合わせ一体化させて合成成形体Eを形成する手段と同様の考え方でその手段を用いればよい。さらに、合成成形体Eに塑性加工を施して、永久磁石素材Fを成形する。塑性加工としては、前述した種々の塑性加工を用いればよい。
Next, B2 in FIG. 42 (b) shows a high Br molded body element provided in contrast to the high Br molded body element B as shown. The composition of the high Br molded body element B2 may be the same as that of the high Br molded body element B.
The means for forming the synthetic molded body E formed from the high Br molded body element B, the high iHc molded body element A, and the high Br molded body element B2 in FIG. 42B is as described with reference to FIG. The means may be used in the same way as the means for forming the synthetic molded body E by bringing the three layers together. Furthermore, the synthetic molded body E is plastically processed to form the permanent magnet material F. As the plastic processing, the various plastic processing described above may be used.

次に、図42に示されるような、複数層からなる永久磁石素材F等の種々なタイプの必要性は、次の通りである。
実際に磁気回路に組み込まれて使われる永久磁石を考えた場合、永久磁石内部の保磁力分布は、単純に一方が高くて、他方が低い場合のみではなく、より複雑な保磁力分布を有するのが一般的である。例えば、電動機では正逆転両方向で使用されるため、これに対応するためには、両端部が高保磁力、中央部が低保磁力となるパターンが考えられる(図42(a)参照)。また他の磁気回路では、逆に両端部が低保磁力、中央部が高保磁力のような場合も有り得る(図42(b)参照)。
このような場合でも、本例の方法によれば、製造が困難でコストが高くなおかつ高価なDy等を大量に使用した高保磁力でかつ高残留磁束密度の永久磁石を用いることなく、製造が容易でコストが安くなおかつDy等の使用量が少ない永久磁石を提供できる。すなわち高保磁力−低残留磁束密度の部材(例えば上記実験例2で用いた磁性粉末Mをで形成される部材)と低保磁力−高残留磁束密度の部材(例えば実験例1で用いた磁性粉末Mをで形成される部材)を、保磁力分布に合わせて適切に配置してやることにより、実現できる。
部材の配置のパターンや層数は、コストと効果のバランスで決定すればよい。
図42(a)は電動機に使われる永久磁石内部の保磁力分布に合わせて、Y方向に高保磁力−低保磁力−高保磁力の3層構造とした例である。低保磁力部位に高残留磁束密度の材質を使用できるため、この永久磁石全体としては、高保磁力の単一部材のみでできた永久磁石よりも、残留磁束密度を高めることができる。またこの例ではX方向は1層であるが、この方向の保磁力の分布も大きいようならば、図42(c)のように、更にX方向にも2層、3層と増やしてやれば、必要な保磁力分布に合わせた無駄に保磁力が高い部位が少なく、残留磁束密度が高い永久磁石とすることが出来る。同時にDy等の使用量も、高保磁力の単一部材のみでできた永久磁石に比べ、少なくて済む。
図42(c)において、例えば手前が奥に比べて高い保磁力が要求されるのであれば、A>A’、B>B’、B2>B2’となるように保磁力を選定する。選定方法は図34の考え方を拡張して、保磁力−厚さ−幅の三次元系のグラフで要求される保磁力を三次元プロットし、過剰な保磁力部分(三次元なので体積)を最小にするよう材料を選定すれば、不可逆減磁が発生することなしに残留磁束密度Brが高く、磁石使用量、Dy等の使用量の減少が実現できる。
Next, the necessity of various types such as a permanent magnet material F composed of a plurality of layers as shown in FIG. 42 is as follows.
When considering a permanent magnet that is actually incorporated in a magnetic circuit, the coercive force distribution inside the permanent magnet is not only when one is high and the other is low, but it has a more complicated coercive force distribution. Is common. For example, since the motor is used in both forward and reverse directions, a pattern in which both end portions have a high coercive force and the central portion has a low coercive force is conceivable (see FIG. 42A). In other magnetic circuits, conversely, both end portions may have a low coercive force and the central portion may have a high coercive force (see FIG. 42B).
Even in such a case, according to the method of this example, it is easy to manufacture without using a permanent magnet having a high coercive force and a high residual magnetic flux density that uses a large amount of Dy or the like that is difficult, expensive, and expensive. Thus, it is possible to provide a permanent magnet that is low in cost and uses a small amount of Dy or the like. That is, a member having a high coercive force and a low residual magnetic flux density (for example, a member formed of the magnetic powder M used in Experimental Example 2) and a member having a low coercive force and a high residual magnetic flux density (for example, the magnetic powder used in Experimental Example 1). This can be realized by appropriately arranging the member formed by M in accordance with the coercive force distribution.
What is necessary is just to determine the pattern of arrangement | positioning of a member, and the number of layers by the balance of cost and an effect.
FIG. 42 (a) shows an example of a three-layer structure of high coercive force-low coercive force-high coercive force in the Y direction according to the coercive force distribution inside the permanent magnet used in the electric motor. Since a material having a high residual magnetic flux density can be used for the low coercive force portion, the entire permanent magnet can have a higher residual magnetic flux density than a permanent magnet made of only a single member having a high coercive force. In this example, the X direction is one layer, but if the distribution of coercive force in this direction seems to be large, as shown in FIG. Therefore, it is possible to obtain a permanent magnet having a high residual magnetic flux density with a small number of parts having a high coercive force in accordance with a necessary coercive force distribution. At the same time, the amount of Dy or the like used can be smaller than that of a permanent magnet made of only a single member having a high coercive force.
In FIG. 42 (c), for example, if a higher coercive force is required than the back, the coercive force is selected so that A> A ′, B> B ′, B2> B2 ′. The selection method extends the concept of FIG. 34, plots the coercive force required in the coercive force-thickness-width three-dimensional system graph, and minimizes the excess coercive force portion (three-dimensional volume). If the material is selected so that the irreversible demagnetization does not occur, the residual magnetic flux density Br is high, and the amount of magnet used, the amount of use of Dy, etc. can be reduced.

永久磁石素材の製法を説明する為の概略図。Schematic for demonstrating the manufacturing method of a permanent magnet raw material. (a)は塑性加工としての押出し加工に用いる押出し金型を説明する為の縦断正面図、(b)は押出し金型を説明する為の縦断側面図。(A) is a longitudinal front view for explaining an extrusion die used for extrusion as plastic working, and (b) is a longitudinal side view for explaining an extrusion die. 押出し金型における成形ダイスを説明する為の図で、拡大縦断正面図。It is a figure for demonstrating the shaping | molding die in an extrusion die, and an enlarged vertical front view. 押出し金型における成形ダイスを説明する為の図で、拡大縦断側面図。It is a figure for demonstrating the shaping | molding die in an extrusion die, and is an expanded vertical side view. 押出し金型における成形ダイスを説明する為の平面図Plan view for explaining a forming die in an extrusion die 押出し金型における成形ダイスを説明する為の底面図。The bottom view for demonstrating the shaping | molding die in an extrusion die. 押出し加工の際、押出し金型により高密度要素から永久磁石素材が押出し成形される塑性加工状態を説明する為の概略斜視図。The schematic perspective view for demonstrating the plastic processing state in which a permanent-magnet raw material is extrusion-molded from a high-density element with an extrusion die in the case of an extrusion process. 図1(c)(d)における塑性加工を説明する為の図で、(a)は高密度要素の概略斜視図、(b)は高密度要素に押出し加工を施して製造された永久磁石素材の概略斜視図。FIGS. 1C and 1D are diagrams for explaining plastic working, wherein FIG. 1A is a schematic perspective view of a high-density element, and FIG. 1B is a permanent magnet material manufactured by extruding the high-density element. FIG. 図1〜図8の高密度要素、永久磁石素材Fとは異なる例を説明する為の概略斜視図。The schematic perspective view for demonstrating the example different from the high-density element of FIGS. 1-8, and the permanent magnet raw material F. FIG. 図2〜図6の押出金型における成形ダイスとは異なる例を説明する為の概略平面図。The schematic plan view for demonstrating the example different from the shaping | molding die in the extrusion die of FIGS. 図1〜図8の高密度要素、永久磁石素材Fとは異なる例を説明する為の概略斜視図。The schematic perspective view for demonstrating the example different from the high-density element of FIGS. 1-8, and the permanent magnet raw material F. FIG. 図1〜図8の高密度要素、永久磁石素材Fとは異なる例を説明する為の概略斜視図。The schematic perspective view for demonstrating the example different from the high-density element of FIGS. 1-8, and the permanent magnet raw material F. FIG. 永久磁石素材(2種永久磁石素材)の製法を説明する為の概略図。Schematic for demonstrating the manufacturing method of a permanent magnet raw material (2 type permanent magnet raw material). 実施例1の永久磁石素材に着磁を施した永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフ。The graph which shows the relationship of the residual magnetic flux density (Br) and the coercive force (iHc) in the permanent magnet which magnetized the permanent magnet raw material of Example 1. FIG. 図13(a)〜(c2)の合成成形体Eに至る過程とは異なる例を説明する為の概略図。Schematic for demonstrating the example different from the process to the synthetic molded object E of Fig.13 (a)-(c2). 図13(a)〜(c2)の合成成形体Eに至る過程とは異なる例を説明する為の概略図。Schematic for demonstrating the example different from the process to the synthetic molded object E of Fig.13 (a)-(c2). 図13(c2)の合成成形体Eとは、高iHc成形体要素と高Br成形体要素を寄せ合わせる方向、塑性加工における潰す方向において異なる例を説明する為の概略図。FIG. 14 is a schematic diagram for explaining an example different from the synthetic molded body E of FIG. 13 (c2) in the direction in which the high iHc molded body element and the high Br molded body element are brought together and in the crushing direction in plastic working. 図17(a)〜(c2)の合成成形体Eに至る過程とは、異なる例を説明する為の概略図。Schematic for demonstrating an example different from the process to the synthetic molded object E of Fig.17 (a)-(c2). 図17(a)〜(c2)の合成成形体Eに至る過程とは、異なる例を説明する為の概略図。Schematic for demonstrating an example different from the process to the synthetic molded object E of Fig.17 (a)-(c2). 図13の合成成形体E、永久磁石素材Fとは、形状の点において異なる例を説明する為の概略斜視図。The schematic perspective view for demonstrating the example from which the synthetic molded object E of FIG. 13 and the permanent magnet raw material F differ in the point of a shape. 図13の合成成形体E、永久磁石素材Fとは、形状の点において異なる例を説明する為の概略斜視図。The schematic perspective view for demonstrating the example from which the synthetic molded object E of FIG. 13 and the permanent magnet raw material F differ in the point of a shape. 図13の合成成形体E、永久磁石素材Fとは、形状の点において異なる例を説明する為の概略斜視図。The schematic perspective view for demonstrating the example from which the synthetic molded object E of FIG. 13 and the permanent magnet raw material F differ in the point of a shape. 実施例10の永久磁石素材に着磁を施した永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフ。The graph which shows the relationship of the residual magnetic flux density (Br) and the coercive force (iHc) in the permanent magnet which magnetized the permanent magnet raw material of Example 10. FIG. 永久磁石素材(3種永久磁石素材)の製法を説明する為の概略図。Schematic for demonstrating the manufacturing method of a permanent magnet material (3 type permanent magnet material). 実施例11の永久磁石素材に着磁を施した永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフ。The graph which shows the relationship of the residual magnetic flux density (Br) and the coercive force (iHc) in the permanent magnet which magnetized the permanent magnet raw material of Example 11. FIG. 永久磁石素材(4種永久磁石素材)の製法を説明する為の概略図。Schematic for demonstrating the manufacturing method of a permanent magnet raw material (4 type permanent magnet raw material). 実施例12の永久磁石素材に着磁を施した永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフ。The graph which shows the relationship of the residual magnetic flux density (Br) and the coercive force (iHc) in the permanent magnet which magnetized the permanent magnet raw material of Example 12. FIG. 永久磁石素材(5種永久磁石素材)の製法を説明する為の概略図。Schematic for demonstrating the manufacturing method of a permanent magnet material (5 types permanent magnet material). 実施例13の永久磁石素材に着磁を施した永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフ。The graph which shows the relationship of the residual magnetic flux density (Br) and the coercive force (iHc) in the permanent magnet which magnetized the permanent magnet raw material of Example 13. FIG. 永久磁石素材(10種永久磁石素材)の製法を説明する為の概略図。Schematic for demonstrating the manufacturing method of a permanent magnet raw material (10 types permanent magnet raw material). 実施例14の永久磁石素材に着磁を施した永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフ。The graph which shows the relationship of the residual magnetic flux density (Br) and the coercive force (iHc) in the permanent magnet which magnetized the permanent magnet raw material of Example 14. FIG. 実施例15の永久磁石素材(11種永久磁石素材)に着磁を施した永久磁石における残留磁束密度(Br)、保磁力(iHc)の関係を示すグラフ。The graph which shows the relationship of the residual magnetic flux density (Br) and the coercive force (iHc) in the permanent magnet which magnetized the permanent magnet material (11 type | mold permanent magnet material) of Example 15. FIG. 粉末状要素の時点で、高iHc成形体要素と、複数の中間成形体要素と、高Br成形体要素とを寄せ合わせ一体化する例を説明する為の図。(A)は、材質が相互に異なる粉末状要素複数を寄せ合わせ、永久磁石素材を形成する方法を説明する為の図面、(B)は(A)における(a)のS−S線端面図。The figure for demonstrating the example which brings together the high iHc molded object element, the some intermediate molded object element, and the high Br molded object element at the time of a powdery element. (A) is a drawing for explaining a method for forming a permanent magnet material by bringing together a plurality of powdery elements having different materials, and (B) is an end view taken along the line S-S of (a) in (A). . 磁性粉末Mの材質を選定する一例について説明する為のグラフで、要求される厚さ方向の保磁力分布を示す。It is a graph for demonstrating an example which selects the material of the magnetic powder M, and shows coercive force distribution of the thickness direction requested | required. 磁性粉末Mの材質を選定する一例(2層)について説明する為のグラフ。The graph for demonstrating an example (2 layer) which selects the material of the magnetic powder M. FIG. 磁性粉末Mの材質を選定する一例(2層)について説明する為のグラフ。The graph for demonstrating an example (2 layer) which selects the material of the magnetic powder M. FIG. 磁性粉末Mの材質を選定する一例(3層)について説明する為のグラフ。The graph for demonstrating an example (3 layer) which selects the material of the magnetic powder M. FIG. 磁性粉末Mの材質を選定する一例(4層)について説明する為のグラフ。The graph for demonstrating an example (4 layers) which selects the material of the magnetic powder M. FIG. 磁性粉末Mの材質を選定する一例(5層)について説明する為のグラフ。The graph for demonstrating an example (5 layers) which selects the material of the magnetic powder M. FIG. 磁性粉末Mの材質を選定する一例(10層)について説明する為のグラフ。The graph for demonstrating an example (10 layers) which selects the material of the magnetic powder M. FIG. 磁性粉末Mの材質を選定する一例(20層)について説明する為のグラフ。The graph for demonstrating an example (20 layers) which selects the material of the magnetic powder M. FIG. 図13(c2)の合成成形体Eとは異なる例を説明する為の概略図。Schematic for demonstrating an example different from the synthetic molded object E of FIG.13 (c2).

符号の説明Explanation of symbols

A・・・高iHc成形体要素、
B・・・高Br成形体要素、
C・・・中間成形体要素、
E・・・永久磁石用合成成形体、
F・・・永久磁石素材、
M・・・磁性粉末、
2・・・粉末状要素、
3・・・固形状要素、
4・・・高密度要素、
5・・・キャビティ、
6・・・高iHc粉末状要素、
7・・・高iHc固形状要素、
8・・・高iHc高密度要素、
11・・・高Br粉末状要素、
12・・・高Br固形状要素、
13・・・高Br高密度要素、
16・・・中間粉末状要素、
17・・・中間固形状要素、
18・・・中間高密度要素、
20a、20b・・・中間成形体要素、
21(21a、21b)・・・中間粉末状要素、
22(22a、22b)・・・中間固形状要素、
23(23a、23b)・・・中間高密度要素、
30a〜30c・・・中間成形体要素、
31(31a〜31c)・・・中間粉末状要素、
32(32a〜32c)・・・中間固形状要素、
33(33a〜33c)・・・中間高密度要素、
40a〜40h・・・中間成形体要素、
41(41a〜41h)・・・中間粉末状要素、
42(42a〜42h)・・・中間固形状要素、
43(43a〜43h)・・・中間高密度要素、
51・・・2種(複数種)合成成形体、
52・・・3種(複数種)合成成形体、
53・・・4種(複数種)合成成形体、
54・・・5種(複数種)合成成形体、
55・・・10種(複数種)合成成形体、
57・・・合せ面、
60・・・永久磁石素材、
61・・・2種永久磁石素材、
62・・・3種永久磁石素材、
63・・・4種永久磁石素材、
64・・・5種永久磁石素材、
65・・・10種永久磁石素材、
67・・・高iHc成形体要素A側、
68・・・高Br成形体要素B側、
69・・・磁化容易軸、
70・・・ダイスホルダ、
71・・・押出金型、
72・・・入側金型、
73・・・貫通孔、
74・・・成形ダイス、
74a・・・入口、
74b・・・出側、
75・・・テーパ孔、
76・・・等形通孔、
79・・・押出し方向、
X・・・方向、
Y・・・方向、
Z・・・方向、
T・・・厚み、
W・・・幅、
L・・・長さ
A: High iHc molded body element,
B: High Br molded body element,
C: Intermediate molded body element,
E: Synthetic molded body for permanent magnet,
F ... Permanent magnet material,
M: Magnetic powder,
2 ... Powdered element,
3 ... solid element,
4 ... high density element,
5 ... cavity,
6 ... High iHc powder element,
7 ... High iHc solid element,
8 ... High iHc high density element,
11 ... High Br powder element,
12 ... High Br solid element,
13 ... High Br high density element,
16 ... Intermediate powder element,
17 ... intermediate solid element,
18: Intermediate high density element,
20a, 20b ... intermediate molded body element,
21 (21a, 21b) ... intermediate powder element,
22 (22a, 22b) ... intermediate solid element,
23 (23a, 23b) ... intermediate high density element,
30a-30c ... intermediate molded body element,
31 (31a-31c) ... intermediate powder element,
32 (32a-32c) ... intermediate solid element,
33 (33a-33c) ... intermediate high density element,
40a-40h: Intermediate molded body element,
41 (41a-41h) ... intermediate powder element,
42 (42a-42h) ... intermediate solid element,
43 (43a to 43h) ... intermediate high density element,
51 ... 2 types (plural types) of synthetic molded bodies,
52 ... 3 types (plural types) of synthetic molded bodies,
53 ... 4 types (plural types) of synthetic molded bodies,
54 ... 5 types (plural types) of synthetic molded bodies,
55 ... 10 types (plural types) synthetic molded bodies,
57 ... mating surface,
60 ... Permanent magnet material,
61 ... 2 kinds of permanent magnet material,
62 ... 3 kinds of permanent magnet material,
63 ... 4 kinds of permanent magnet material,
64 ... 5 kinds of permanent magnet material,
65 ... 10 kinds of permanent magnet material,
67... High iHc molded body element A side,
68 ... high Br molded body element B side,
69 ... easy magnetization axis,
70 ... Die holder,
71 ... extrusion mold,
72 ... Incoming mold,
73 ... through-hole,
74: Molding dies,
74a ... Entrance,
74b ... exit side,
75: Tapered hole,
76 ... isomorphic through holes,
79 ... direction of extrusion,
X ... direction,
Y direction,
Z ... direction,
T ... thickness,
W ... width,
L ... Length

Claims (6)

保磁力が高Br成形体要素に比較して高く、かつ、残留磁束密度が高Br成形体要素に比較して低い材質の磁性粉末で形成される高iHc成形体要素と、
残留磁束密度が高iHc成形体要素に比較して高く、かつ、保磁力が高iHc成形体要素に比較して低い材質の磁性粉末で形成される高Br成形体要素とを、
寄せ合わせ、一体化したことを特徴とする永久磁石用合成成形体の製造方法。
A high iHc molded body element having a coercive force higher than that of the high Br molded body element and a residual magnetic flux density made of a magnetic powder of a material lower than that of the high Br molded body element;
A high Br molded body element formed by magnetic powder of a material having a high residual magnetic flux density compared to a high iHc molded body element and a low coercive force compared to a high iHc molded body element,
A method for producing a synthetic molded body for a permanent magnet, characterized by being assembled and integrated.
保磁力が高Br成形体要素に比較して高く、かつ、残留磁束密度が高Br成形体要素に比較して低い材質の磁性粉末で形成される高iHc成形体要素と、
残留磁束密度が高iHc成形体要素に比較して高く、かつ、保磁力が高iHc成形体要素に比較して低い材質の磁性粉末で形成される高Br成形体要素と、
中間用の磁性粉末で形成される中間成形体要素とを、
上記高iHc成形体要素と上記高Br成形体要素との間に上記中間成形体要素が介在する状態で、寄せ合わせ、一体化して合成成形体を形成し、
上記中間成形体要素の磁性粉末の材質の設定は、上記寄せ合わせ一体化した合成成形体の状態で、
保磁力が上記高iHc成形体要素から上記高Br成形体要素に向けて順次低くなる材質であって、しかも、
残留磁束密度が上記高Br成形体要素から上記高iHc成形体要素に向けて順次低くなる材質に設定したことを特徴とする永久磁石用合成成形体の製造方法。
A high iHc molded body element having a coercive force higher than that of the high Br molded body element and a residual magnetic flux density made of a magnetic powder of a material lower than that of the high Br molded body element;
A high Br molded body element formed of magnetic powder having a high residual magnetic flux density compared to a high iHc molded body element and a low coercive force compared to a high iHc molded body element;
An intermediate molded body element formed of an intermediate magnetic powder,
In a state where the intermediate molded body element is interposed between the high iHc molded body element and the high Br molded body element, they are brought together and integrated to form a synthetic molded body,
The setting of the material of the magnetic powder of the intermediate molded body element is in the state of the synthetic molded body integrated with the above,
A material whose coercive force decreases sequentially from the high iHc molded body element toward the high Br molded body element,
A method for producing a synthetic molded body for a permanent magnet, characterized in that the residual magnetic flux density is set to a material that gradually decreases from the high Br molded body element toward the high iHc molded body element.
保磁力が高Br成形体要素に比較して高く、かつ、残留磁束密度が高Br成形体要素に比較して低い材質の磁性粉末で形成される高iHc成形体要素と、
残留磁束密度が高iHc成形体要素に比較して高く、かつ、保磁力が高iHc成形体要素に比較して低い材質の磁性粉末で形成される高Br成形体要素と、
夫々は相互に材質の異なる複数の中間用の磁性粉末で形成される複数の中間成形体要素とを、
上記高iHc成形体要素と上記高Br成形体要素との間に上記複数の中間成形体要素が介在する状態で、寄せ合わせ、一体化して合成成形体を形成し、
上記複数の中間成形体要素の各磁性粉末の夫々の材質の設定は、上記寄せ合わせ一体化した合成成形体の状態で、
保磁力が上記高iHc成形体要素から上記高Br成形体要素に向けて夫々順次低くなる材質であって、しかも、
残留磁束密度が上記高Br成形体要素から上記高iHc成形体要素に向けて夫々順次低くなる材質に夫々設定したことを特徴とする永久磁石用合成成形体の製造方法。
A high iHc molded body element having a coercive force higher than that of the high Br molded body element and a residual magnetic flux density made of a magnetic powder of a material lower than that of the high Br molded body element;
A high Br molded body element formed of magnetic powder having a high residual magnetic flux density compared to a high iHc molded body element and a low coercive force compared to a high iHc molded body element;
Each of the plurality of intermediate molded body elements formed of a plurality of intermediate magnetic powders of different materials,
In the state where the plurality of intermediate molded body elements are interposed between the high iHc molded body element and the high Br molded body element, they are brought together and integrated to form a synthetic molded body,
The setting of the material of each of the magnetic powders of the plurality of intermediate molded body elements is in the state of the synthetic molded body integrated with the above,
The coercive force is a material that sequentially decreases from the high iHc molded body element toward the high Br molded body element,
A method for producing a synthetic molded body for a permanent magnet, wherein the residual magnetic flux density is set to a material that sequentially decreases from the high Br molded body element toward the high iHc molded body element.
保磁力が高Br粉末状要素に比較して高く、かつ、残留磁束密度が高Br粉末状要素に比較して低い材質の磁性粉末で形成される高iHc粉末状要素と、
残留磁束密度が高iHc粉末状要素に比較して高く、かつ、保磁力が高iHc粉末状要素に比較して低い材質の磁性粉末で形成される高Br粉末状要素と、
夫々は相互に材質の異なる複数の中間用の磁性粉末で形成される複数の中間粉末状要素とを、
キャビティ内において、相互に並列する状態で、
上記高iHc粉末状要素と上記高Br粉末状要素との間に上記複数の中間粉末状要素が介在する状態で、寄せ合わせ、
それらをプレス手段によって一体化して合成成形体を形成し、
上記複数の中間粉末状要素の各磁性粉末の夫々の材質の設定は、上記寄せ合わせ一体化した合成成形体の状態で、
保磁力が上記高iHc成形体要素から上記高Br成形体要素に向けて夫々順次低くなる材質であって、しかも、
残留磁束密度が上記高Br成形体要素から上記高iHc成形体要素に向けて夫々順次低くなる材質に夫々設定してあることを特徴とする永久磁石用合成成形体の製造方法。
A high iHc powdered element formed of magnetic powder having a high coercive force compared to the high Br powdered element and a low residual magnetic flux density compared to the high Br powdered element;
A high Br powder-like element formed of magnetic powder having a high residual magnetic flux density compared to a high iHc powder-like element and a low coercive force compared to a high iHc powder-like element;
Each of the plurality of intermediate powder-like elements formed of a plurality of intermediate magnetic powders of different materials,
In the cavity, in parallel with each other,
In the state where the plurality of intermediate powder elements are interposed between the high iHc powder element and the high Br powder element,
They are integrated by pressing means to form a synthetic molded body,
The setting of the material of each magnetic powder of the plurality of intermediate powder-like elements is in the state of the composite molded body integrated with the above,
The coercive force is a material that sequentially decreases from the high iHc molded body element toward the high Br molded body element,
A method for producing a synthetic molded body for a permanent magnet, wherein the residual magnetic flux density is set to a material that sequentially decreases from the high Br molded body element toward the high iHc molded body element.
保磁力が高Br成形体要素に比較して高く、かつ、残留磁束密度が高Br成形体要素に比較して低い材質の磁性粉末で形成される高iHc成形体要素と、
残留磁束密度が高iHc成形体要素に比較して高く、かつ、保磁力が高iHc成形体要素に比較して低い材質の磁性粉末で形成される高Br成形体要素とを、
寄せ合わせ一体化して合成成形体を形成し、
上記合成成形体に塑性加工を施すことによって磁気異方性を備えさせ、
上記塑性加工は、合成成形体を押出して所定形状の永久磁石素材に成形する押出し加工であって、
上記押出し加工に際しての押出し方向は、上記合成成形体における高Br成形体要素と高iHc成形体要素との合せ面に平行する方向へ押出し、
上記合成成形体を潰す方向は、上記合せ面に直交する方向へ潰して、
永久磁石素材における磁化容易軸を上記合せ面に直交する方向に向くようにしたことを特徴とする永久磁石素材の製造方法。
A high iHc molded body element having a coercive force higher than that of the high Br molded body element and a residual magnetic flux density made of a magnetic powder of a material lower than that of the high Br molded body element;
A high Br molded body element formed by magnetic powder of a material having a high residual magnetic flux density compared to a high iHc molded body element and a low coercive force compared to a high iHc molded body element,
Combined and integrated to form a synthetic molded body,
By applying plastic working to the synthetic molded body, it is provided with magnetic anisotropy,
The plastic working is an extrusion process for extruding a synthetic molded body to form a permanent magnet material of a predetermined shape,
The extrusion direction during the extrusion process is extruded in a direction parallel to the mating surface of the high Br molded body element and the high iHc molded body element in the synthetic molded body,
The direction in which the synthetic molded body is crushed is crushed in a direction perpendicular to the mating surface,
A method for producing a permanent magnet material, characterized in that an easy axis of magnetization in the permanent magnet material is oriented in a direction perpendicular to the mating surface.
保磁力が高Br成形体要素に比較して高く、かつ、残留磁束密度が高Br成形体要素に比較して低い材質の磁性粉末で形成される高iHc成形体要素と、
残留磁束密度が高iHc成形体要素に比較して高く、かつ、保磁力が高iHc成形体要素に比較して低い材質の磁性粉末で形成される高Br成形体要素とを、
寄せ合わせ一体化して合成成形体を形成し、
上記合成成形体に塑性加工を施すことによって磁気異方性を備えさせ、
上記塑性加工は、合成成形体を押出して所定形状の永久磁石素材に成形する押出し加工であって、
上記押出し加工に際しての押出し方向は、上記合成成形体における高Br成形体要素と高iHc成形体要素との合せ面に平行する方向へ押出し、
上記合成成形体を潰す方向は、上記合せ面に平行する方向で、かつ、上記押出し方向に直交する方向へ潰して、
永久磁石素材における磁化容易軸を、上記合せ面に平行する方向で、かつ、上記押出し方向に直交する方向に向くようにしたことを特徴とする永久磁石素材の製造方法。
A high iHc molded body element having a coercive force higher than that of the high Br molded body element and a residual magnetic flux density made of a magnetic powder of a material lower than that of the high Br molded body element;
A high Br molded body element formed by magnetic powder of a material having a high residual magnetic flux density compared to a high iHc molded body element and a low coercive force compared to a high iHc molded body element,
Combined and integrated to form a synthetic molded body,
By applying plastic working to the synthetic molded body, it is provided with magnetic anisotropy,
The plastic working is an extrusion process for extruding a synthetic molded body to form a permanent magnet material of a predetermined shape,
The extrusion direction during the extrusion process is extruded in a direction parallel to the mating surface of the high Br molded body element and the high iHc molded body element in the synthetic molded body,
The direction in which the synthetic molded body is crushed is a direction parallel to the mating surface and crushed in a direction perpendicular to the extrusion direction,
A method of manufacturing a permanent magnet material, characterized in that an easy axis of magnetization in the permanent magnet material is oriented in a direction parallel to the mating surface and in a direction perpendicular to the extrusion direction.
JP2008032476A 2007-03-13 2008-02-13 Method for manufacturing permanent magnet material Active JP5130941B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008032476A JP5130941B2 (en) 2007-03-13 2008-02-13 Method for manufacturing permanent magnet material
CN200810083586.7A CN101299363B (en) 2007-03-13 2008-03-12 Composite compact for permanent magnet and method of producing permanent magnet blank
SG200802057-0A SG146561A1 (en) 2007-03-13 2008-03-13 Methods of producing composite compact for permanent magnet and producing permanent magnet blank

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007064175 2007-03-13
JP2007064175 2007-03-13
JP2008032476A JP5130941B2 (en) 2007-03-13 2008-02-13 Method for manufacturing permanent magnet material

Publications (2)

Publication Number Publication Date
JP2008258585A true JP2008258585A (en) 2008-10-23
JP5130941B2 JP5130941B2 (en) 2013-01-30

Family

ID=39981814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032476A Active JP5130941B2 (en) 2007-03-13 2008-02-13 Method for manufacturing permanent magnet material

Country Status (2)

Country Link
JP (1) JP5130941B2 (en)
CN (1) CN101299363B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367797B1 (en) * 2013-04-10 2014-02-28 세아씰텍(주) Magnetic alignment apparatus for manufacturing permanent magnet
JP2015090888A (en) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 Method of manufacturing rare-earth magnet
JP2017050396A (en) * 2015-09-01 2017-03-09 大同特殊鋼株式会社 Rare-earth magnet and manufacturing method therefor
JP7342706B2 (en) 2020-01-10 2023-09-12 大同特殊鋼株式会社 Permanent magnet and its manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847487B (en) * 2010-06-30 2012-05-30 烟台正海磁性材料股份有限公司 Gradient coercive-force neodymium-ferrum-boron magnet and production method thereof
WO2020041375A1 (en) 2018-08-21 2020-02-27 Richard Theodore Wurden Batteries for electric marine propulsion systems, and associated systems and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180484U (en) * 1981-05-11 1982-11-16
JPS5899251A (en) * 1981-12-05 1983-06-13 Hitachi Metals Ltd Permanent magnet for rotary electric machinery
JPS5976157A (en) * 1982-10-22 1984-05-01 Hitachi Metals Ltd Segment magnet
JPS59156143A (en) * 1983-02-25 1984-09-05 Hitachi Ltd Field pole of permanent magnet
JPH04148508A (en) * 1990-10-11 1992-05-21 Sanyo Special Steel Co Ltd Method of producing uniaxially anisotropic rare-earth magnet
JPH08340651A (en) * 1995-06-12 1996-12-24 Toshiba Corp Permanent magnet, and permanent magnet rotating machine
JP2000012359A (en) * 1998-06-18 2000-01-14 Mitsubishi Materials Corp Magnet and its manufacture
JP2006261433A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Compound magnet, method for manufacturing the same and motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2112578B (en) * 1981-07-14 1986-03-05 Hitachi Metals Ltd Field composite permanent magnet and method of producing the same
US5647886A (en) * 1993-11-11 1997-07-15 Seiko Epson Corporation Magnetic powder, permanent magnet produced therefrom and process for producing them
US5872501A (en) * 1996-07-07 1999-02-16 Toda Kogyo Corporation Rare earth bonded magnet and rare earth-iron-boron type magnet alloy
TWI417906B (en) * 2005-03-23 2013-12-01 Shinetsu Chemical Co Functionally graded rare earth permanent magnet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180484U (en) * 1981-05-11 1982-11-16
JPS5899251A (en) * 1981-12-05 1983-06-13 Hitachi Metals Ltd Permanent magnet for rotary electric machinery
JPS5976157A (en) * 1982-10-22 1984-05-01 Hitachi Metals Ltd Segment magnet
JPS59156143A (en) * 1983-02-25 1984-09-05 Hitachi Ltd Field pole of permanent magnet
JPH04148508A (en) * 1990-10-11 1992-05-21 Sanyo Special Steel Co Ltd Method of producing uniaxially anisotropic rare-earth magnet
JPH08340651A (en) * 1995-06-12 1996-12-24 Toshiba Corp Permanent magnet, and permanent magnet rotating machine
JP2000012359A (en) * 1998-06-18 2000-01-14 Mitsubishi Materials Corp Magnet and its manufacture
JP2006261433A (en) * 2005-03-17 2006-09-28 Toyota Motor Corp Compound magnet, method for manufacturing the same and motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367797B1 (en) * 2013-04-10 2014-02-28 세아씰텍(주) Magnetic alignment apparatus for manufacturing permanent magnet
JP2015090888A (en) * 2013-11-05 2015-05-11 トヨタ自動車株式会社 Method of manufacturing rare-earth magnet
JP2017050396A (en) * 2015-09-01 2017-03-09 大同特殊鋼株式会社 Rare-earth magnet and manufacturing method therefor
JP7342706B2 (en) 2020-01-10 2023-09-12 大同特殊鋼株式会社 Permanent magnet and its manufacturing method

Also Published As

Publication number Publication date
JP5130941B2 (en) 2013-01-30
CN101299363A (en) 2008-11-05
CN101299363B (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5130941B2 (en) Method for manufacturing permanent magnet material
US8039998B2 (en) Rotor for motor and method for producing the same
CN102844826B (en) The one-piece type binding magnet of shell and manufacture method thereof
JP7262926B2 (en) Radial gap type rotary electric machine
JP4957415B2 (en) Method for manufacturing permanent magnet and permanent magnet
US20150179320A1 (en) Production method for permanent magnet, production device for permanent magnet, permanent magnet and rotating electrical device
WO2013014813A1 (en) Compressed powder compact
JP6447380B2 (en) SmFeN-based metal bond magnet compact with high specific resistance
WO2007102373A1 (en) Yoke-integrated bonded magnet and magnet rotator for motor using the same
US20150147217A1 (en) Nanocomposite permanent magnets and method of making
JP2009027846A (en) Permanent magnet and surface magnet type motor employing the same
JP6613730B2 (en) Rare earth magnet manufacturing method
EP0452581B1 (en) Dies for extrusion moulding
US20100321139A1 (en) Permanent magnet and method of producing permanent magnet
US8511367B2 (en) Method and apparatus for fabricating a rotor for an induction motor
JP6035024B2 (en) Method for producing non-cylindrical permanent magnet
JP2015093312A (en) Forward extrusion forging device and forward extrusion forging method
CN111742379B (en) Multi-component magnet assembly for an electric machine
CN107533906B (en) Soft magnetic composite material and corresponding method for producing soft magnetic composite material
CN101779364A (en) Method of producing rare earth anisotropic bond magnet, method of orienting compacted magnet body and apparatus for compacting in magnetic field
JP2018073873A (en) Rare earth magnet and method for manufacturing the same
JP7342706B2 (en) Permanent magnet and its manufacturing method
JP2005171264A (en) Method of manufacturing isotropic magnet and the magnet
JP5845022B2 (en) Magnetic circuit parts
CN110073452B (en) Sintered magnet, motor, use of sintered magnet for motor, and method for producing sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150