JP2794704B2 - Manufacturing method of anisotropic permanent magnet - Google Patents

Manufacturing method of anisotropic permanent magnet

Info

Publication number
JP2794704B2
JP2794704B2 JP62336139A JP33613987A JP2794704B2 JP 2794704 B2 JP2794704 B2 JP 2794704B2 JP 62336139 A JP62336139 A JP 62336139A JP 33613987 A JP33613987 A JP 33613987A JP 2794704 B2 JP2794704 B2 JP 2794704B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
permanent magnet
anisotropic
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62336139A
Other languages
Japanese (ja)
Other versions
JPH01179305A (en
Inventor
誠 斉藤
慎一郎 矢萩
紀夫 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP62336139A priority Critical patent/JP2794704B2/en
Publication of JPH01179305A publication Critical patent/JPH01179305A/en
Application granted granted Critical
Publication of JP2794704B2 publication Critical patent/JP2794704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Nd,Fe,Bを主成分とする異方性永久磁石の
製造方法に関し、更に詳しくは、高密度で磁気特性も優
れている磁気異方性の永久磁石を製造する方法に関す
る。 (従来の技術) 主成分がNd,Fe,Bであり、かつ磁気異方性を有する永
久磁石の製造方法には、大別して、粉末冶金法と組成変
形法の2種類の方法が知られている。 前者の方法は概ね次のような工程から成る。すなわ
ち、まず、Nd,Fe,Bを主成分とする合金組成の融液を調
製してこれを所定の条件下で冷却し、結晶粒の粗大なイ
ンゴットを製造する。ついで、インゴットを粉砕して、
通常は平均粒径3〜5μmの磁性粉にする。この磁性粉
は、これを磁場中に置いたとき、磁場方向の磁気特性と
磁場方向に直交する方向の磁気特性とが等値でない性
質、すなわち磁気異方性を有する粉体である。 その後この磁性粉を金型に充填し、ここに例えば10〜
20kOeの磁界を印加して該磁性粉を配向せしめ、これを
圧縮成形して成形体にする。得られた成形体は、真空ま
たは不活性雰囲気中において、1000℃以上の温度で1時
間程度焼結される。得られた焼結体をただちに室温まで
急冷したのち研磨加工のような所定の加工を施して製品
とするが、更に保磁力(iHc)を高めることを目的とし
て、例えば500〜700℃で1時間程度の熱処理を施すこと
も行われる。 次に後者の塑性変形法は概ね次のようにして行われて
いる。 すなわち、まずNd,Fe,Bを主成分とした所定組成の磁
性合金を溶融する。得られた合金溶融に溶湯急冷法を適
用して該合金の薄帯またはフレークを作製する。得られ
た薄帯またはフレークは一般に非晶質またはそれと結晶
質の混合質である。ついで、これを粒径約200μmの粉
末に粉砕したのち、得られた粉末を金型に充填し500〜1
000℃の温度で熱圧プレスして成形体とする。その後、
この成形体を所定容器内に封入したのち、これに所定の
加工率でアップセット加工のような塑性変形処理を施
し、この塑性変形時の加圧方向とそれに直交する方向と
ではその磁気特性が異なる磁石を得るのである。 (発明が解決しようとする問題点) しかしながら、上記した2つの方法にはそれぞれ次の
ような問題がある。 前者の粉末冶金法の場合、まずインゴットを粉砕して
得られる磁性粉はその平均粒径が3〜5μmと微細でな
ければならないため、それは比表面積が著しく大きくま
た表面も活性な状態になっている。そのため、この粉砕
時に磁性粉が酸化に代表される変質を受け易い。又、焼
結時の温度は1000℃以上の高温であるため、合金の結晶
粒の粗大化が進み易く、その結果磁石の保持力(iHc)
の低下を招き易い。このことを防止するために、焼結温
度を下げると、今度は焼結体の密度が低下して緻密な磁
石、すなわち残留磁束密度(Br)の高い永久磁石が得が
たくなる。更には、この焼結時に成形体は収縮、変形す
るので、製品化するときには最終的に研磨等の加工をし
なければならないという問題がある。 一方、後者の塑性変形法への場合は、例えばアップセ
ット加工時に磁石の割れが頻発し、歩留りが著しく低下
するという問題がある。例えばプラスチック磁石の磁性
原料粉の製造を目的とする場合には、このアップセット
時の割れも問題ではないが、しかし所定形状を維持する
磁石を得る際には、Ndは高価であることからして、上記
歩留りの低下は製品磁石のコストを著しく上昇させるこ
とになり、極めて不都合な事態となる。 本発明は前述した2つの方法における不都合な問題を
解消して、磁気特性が優れているNd−Fe−B系異方性永
久磁石の製造方法の提供を目的とする。 (問題点を解決するための手段) 上記した目的を達成するために、本発明の異方性永久
磁石の製造方法は、その構成を、Nd,Fe,Bを主成分とす
る磁石合金の成形体に塑性変形加工を施したのち粉砕し
て磁気異方性磁性粉にし、更に、前記磁気異方性磁性粉
を磁場中で圧縮成形し、ついで、得られた成形体を、50
0〜1000℃の温度域で熱圧プレスすることを特徴とす
る。 本発明でいう磁気異方性磁性粉とは、それを磁界の中
においたとき、磁界方向とそれに直交する方向との磁気
特性が異なる性質を有する磁性粉をいう。 まず、本発明の磁気異方性磁性粉において、その組成
はNd,Fe,Bを主成分としNd−Fe−B系の永久磁石を構成
し得る組成(主相がR2Fe14Bで表わされる)であれば何
であってもよく格別限定されるものではない。上記主成
分の外に、Al,Ga,Cr,Dy,Tbを含んでいてもよく、またNb
の一部をPr,Ceで置換した組成であってもよい。 本発明の磁気異方性磁性粉は、次のようにして製造す
ることができる。 所定組成のNd−Fe−B系合金をArガス雰囲気のようは
不活性ガス雰囲気下で溶解し、得られた合金融液に溶湯
急冷法を適用して非晶質の合金薄帯またはフレークと
し、これを粉砕して非晶質粉末にし、得られた非晶質粉
末を例えばダイスに充填し、磁場中でアップセット加工
のような塑性変形処理を施して異方性を付与したのち、
得られた成形体を粉砕して平均粒径3〜5μmの粉末に
する方法である。塑性変形処理後の粉砕は、非酸化性雰
囲気中で行われる。 本発明方法においては、原料成分は上記した方法の外
に、遠心噴霧法、ガスアトマイズ法で製造することとも
できる。いずれにせよ磁気異方性磁性粉が出発原料とな
る。 まず、この出発原料を磁界中で圧縮成形して成形体と
する。 印加する磁界の大きさは、原料粉の異方性の程度によ
って変えられるが、通常10〜20kOeの範囲内に設定され
る。また成形時の印加圧力は、磁石の最終的な密度、磁
気特性(とくに残留磁束密度:Br)に影響を与える因子
であり、通常0.5〜3tonf/cm2程度でよい。 ついで、得られた成形体を金型の中に入れてこれを熱
圧プレスする。雰囲気は1×10-3Torr程度の真空雰囲気
または不活性ガス雰囲気とする。温度は500〜1000℃の
範囲内に設定される。500℃よりも低い温度の場合は、
高密度の磁石にすることができず、また1000℃よりも高
い温度にすると、結晶粒の粗大化を招いて磁石のiHcが
低下する。好ましくは、600〜800℃である。 圧は同じく磁石の密度に影響を与える因子であるが、
通常、0.3〜2tonf/cm2程度が好適である。 (発明の実施例) 実施例1 Nd:31重量%、B:0.6重量%、Si:0.1重量%、Al:0.1重
量%、残部がFeから成るNd−Fe−B系合金の溶湯を3000
rpmで回転する銅ロールの周面に噴射して、前記合金の
薄帯を得た。 この薄帯を粉砕して、粒度150メッシュ(JISZ8801で
規定する篩で測定)下の非晶質合金粉末を得た。 ついで、この粉末をダイスに充填し、磁界強度15kOe,
圧2tonf/cm2の条件下でプレス成形して成形体とした。
この成形体は磁気的には等方性であった。 この成形体を1×10-4Torrの真空中で700℃に加熱し
たのち、80%の加工率でアップセット加工して塑性変形
した。 その後、処理物を再び粉砕し150メッシュ下の磁気異
方性の磁性粉を得た。 この磁性粉を所定形状の型の中に充填し、磁界強度20
kOe,成形圧2tonf/cm2条件で圧縮成形した。なお、印加
した磁界の方向は成形体の厚み方向であった。得られた
成形体は、磁界方向の残留磁束密度(Br)がこの磁界と
直交する方向のBrの2.5倍値を示し、充分な異方性を有
していた。 ついで、この成形体を、金型の中に入れ、全体を真空
引きして真空度を1×10-4Torrにした状態で、成形体を
昇温速度500℃/hrで700℃にまで加熱し、圧力2tonf/cm2
で熱圧プレスした。成形体の収縮変位が停止した時点で
処理物を金型から取り出し、これにArガスを吹き付けて
急冷した。 密度7.48g/cm2,残留磁束密度(Br)12060G,保磁力(i
Hc)13800Oe,最大エネルギ積〔(BH)max〕34.7MG・Oe
の永久磁石が得られた。 (発明の効果) 以上の説明で明らかなように、本発明の異方性永久磁
石の製造方法は、Nd,Fe,Bを主成分とする磁石合金の成
形体に塑性変形加工を施したのち粉砕して磁気異方性磁
性粉にし、更に、前記磁気異方性磁性粉を磁場中で圧縮
成形し、ついで、得られた成形体を、500〜1000℃の温
度域で熱圧プレスすることを特徴とする構成にしたの
で、従来の粉末冶金法に比べてより低温で成形するにも
かかわらず高密度な永久磁石を得ることができ、また低
温成形であるがゆえに結晶粒の粗大化を招く虞れもない
のでiHc等の磁気特性を向上せしめることができる。 また、塑性変形法に比べ、成形時の変形量は自己の収
縮変形のみであるためその変形量は少なく、したがっ
て、割れ等の現象も少なく製品の歩留りが高くなって有
効である。
Description: TECHNICAL FIELD The present invention relates to a method for producing an anisotropic permanent magnet containing Nd, Fe, and B as a main component, and more particularly, to a method for producing a high-density and excellent magnetic property. A method for manufacturing a permanent magnet having magnetic anisotropy. (Prior Art) There are two main types of methods for producing permanent magnets whose main components are Nd, Fe, and B and have magnetic anisotropy: powder metallurgy and composition deformation. I have. The former method generally comprises the following steps. That is, first, a melt having an alloy composition mainly composed of Nd, Fe, and B is prepared and cooled under predetermined conditions to produce an ingot having coarse crystal grains. Then, crush the ingot,
Usually, it is a magnetic powder having an average particle size of 3 to 5 μm. When the magnetic powder is placed in a magnetic field, the magnetic powder has a property that the magnetic property in the magnetic field direction and the magnetic property in the direction perpendicular to the magnetic field direction are not equal, that is, a powder having magnetic anisotropy. Thereafter, the magnetic powder is filled in a mold, and for example, 10 to
A magnetic field of 20 kOe is applied to orient the magnetic powder, and the magnetic powder is compression-molded into a compact. The obtained molded body is sintered in a vacuum or inert atmosphere at a temperature of 1000 ° C. or higher for about 1 hour. The obtained sintered body is immediately cooled to room temperature and then subjected to a predetermined process such as polishing to produce a product. In order to further increase the coercive force (iHc), for example, the product is heated at 500 to 700 ° C. for 1 hour A degree of heat treatment is also performed. Next, the latter plastic deformation method is generally performed as follows. That is, first, a magnetic alloy having a predetermined composition mainly composed of Nd, Fe, and B is melted. A melt quenching method is applied to the obtained alloy melt to produce a ribbon or flake of the alloy. The resulting ribbon or flake is generally amorphous or a mixture thereof. Next, this was pulverized into a powder having a particle size of about 200 μm, and the obtained powder was filled in a mold to form a powder of 500 to 1
It is hot-pressed at a temperature of 000 ° C to form a molded body. afterwards,
After enclosing the molded body in a predetermined container, it is subjected to plastic deformation processing such as upset processing at a predetermined processing rate, and its magnetic characteristics are different between a pressing direction at the time of the plastic deformation and a direction orthogonal thereto. You get different magnets. (Problems to be Solved by the Invention) However, the above two methods have the following problems, respectively. In the former powder metallurgy method, the magnetic powder obtained by first crushing the ingot must have a fine average particle size of 3 to 5 μm, so that the specific surface area is extremely large and the surface becomes active. I have. Therefore, at the time of this pulverization, the magnetic powder is susceptible to deterioration represented by oxidation. In addition, since the temperature during sintering is as high as 1000 ° C. or more, the crystal grains of the alloy tend to be coarsened, and as a result, the holding force (iHc) of the magnet
Tends to decrease. If the sintering temperature is lowered in order to prevent this, the density of the sintered body is reduced, and it becomes difficult to obtain a dense magnet, that is, a permanent magnet having a high residual magnetic flux density (Br). Furthermore, since the compact shrinks and deforms at the time of sintering, there is a problem that it is necessary to finally perform processing such as polishing when commercializing the product. On the other hand, in the case of the latter plastic deformation method, for example, there is a problem that magnets frequently crack during upset processing, and the yield is significantly reduced. For example, if the purpose is to produce a magnetic raw material powder for a plastic magnet, cracking during upsetting is not a problem, but when obtaining a magnet that maintains a predetermined shape, Nd is expensive. Thus, the decrease in the yield significantly increases the cost of the product magnet, which is extremely inconvenient. An object of the present invention is to eliminate the disadvantages of the above two methods and to provide a method for producing an Nd-Fe-B-based anisotropic permanent magnet having excellent magnetic properties. (Means for Solving the Problems) In order to achieve the above-mentioned object, a method for producing an anisotropic permanent magnet of the present invention comprises the steps of: forming a magnet alloy containing Nd, Fe, and B as a main component; After subjecting the body to plastic deformation processing, it is pulverized into magnetic anisotropic magnetic powder, and the magnetic anisotropic magnetic powder is compression-molded in a magnetic field.
It is characterized by hot pressing in a temperature range of 0 to 1000 ° C. The term "magnetic anisotropic magnetic powder" as used in the present invention means a magnetic powder having a property that when it is placed in a magnetic field, the magnetic properties differ between the direction of the magnetic field and the direction perpendicular thereto. First, in the magnetic anisotropic magnetic powder of the present invention, the composition is such that the main component is Nd, Fe, B and can constitute an Nd-Fe-B permanent magnet (the main phase is represented by R 2 Fe 14 B). Is not limited to anything. In addition to the above main components, Al, Ga, Cr, Dy, Tb may be included, and Nb
May be replaced with Pr or Ce. The magnetic anisotropic magnetic powder of the present invention can be manufactured as follows. An Nd-Fe-B-based alloy having a predetermined composition is melted under an inert gas atmosphere such as an Ar gas atmosphere, and a molten metal quenching method is applied to the obtained synthetic liquid to form an amorphous alloy ribbon or flake. After crushing this to amorphous powder, filling the obtained amorphous powder into a die, for example, and performing plastic deformation treatment such as upset processing in a magnetic field to impart anisotropy,
This is a method in which the obtained molded body is pulverized into a powder having an average particle size of 3 to 5 μm. The pulverization after the plastic deformation treatment is performed in a non-oxidizing atmosphere. In the method of the present invention, the raw material components can be produced by a centrifugal spraying method or a gas atomizing method in addition to the above-mentioned methods. In any case, the magnetically anisotropic magnetic powder is a starting material. First, this starting material is compression-molded in a magnetic field to obtain a molded body. The magnitude of the applied magnetic field varies depending on the degree of anisotropy of the raw material powder, but is usually set in the range of 10 to 20 kOe. The pressure applied during molding is a factor that affects the final density and magnetic properties (especially residual magnetic flux density: Br) of the magnet, and is usually about 0.5 to 3 tonf / cm 2 . Then, the obtained molded body is placed in a mold and hot-pressed. The atmosphere is a vacuum atmosphere of about 1 × 10 −3 Torr or an inert gas atmosphere. The temperature is set in the range of 500-1000 ° C. For temperatures lower than 500 ° C,
If it is not possible to produce a high-density magnet, and if the temperature is higher than 1000 ° C., the crystal grains become coarse and the iHc of the magnet decreases. Preferably, it is 600 to 800 ° C. Pressure is also a factor that affects magnet density,
Usually, about 0.3 to 2 tonf / cm 2 is preferable. (Examples of the invention) Example 1 Nd: 31% by weight, B: 0.6% by weight, Si: 0.1% by weight, Al: 0.1% by weight, the balance of Fe was Nd-Fe-B-based alloy of 3000
It was sprayed onto the peripheral surface of a copper roll rotating at rpm to obtain a ribbon of the alloy. The ribbon was pulverized to obtain an amorphous alloy powder having a particle size of 150 mesh (measured with a sieve specified in JISZ8801). Next, this powder was filled in a die, and the magnetic field strength was 15 kOe,
Press molding was performed under a pressure of 2 tonf / cm 2 to obtain a molded body.
This compact was magnetically isotropic. The molded body was heated to 700 ° C. in a vacuum of 1 × 10 −4 Torr, and then subjected to upset processing at a processing rate of 80% to be plastically deformed. Thereafter, the treated product was pulverized again to obtain a magnetic powder having a magnetic anisotropy of 150 mesh or less. This magnetic powder is filled into a mold having a predetermined shape, and a magnetic field intensity of 20
Compression molding was performed under the conditions of kOe and a molding pressure of 2 tonf / cm 2 . The direction of the applied magnetic field was the thickness direction of the molded body. The obtained compact had a residual magnetic flux density (Br) in the direction of the magnetic field of 2.5 times the value of Br in the direction perpendicular to the magnetic field, and had sufficient anisotropy. Then, the molded body is placed in a mold, and the whole is evacuated to a degree of vacuum of 1 × 10 -4 Torr, and the molded body is heated to 700 ° C. at a heating rate of 500 ° C./hr. And pressure 2tonf / cm 2
Hot press. When the shrinkage displacement of the molded body stopped, the processed product was taken out of the mold and quenched by blowing Ar gas on the processed product. Density 7.48g / cm 2 , residual magnetic flux density (Br) 12060G, coercive force (i
Hc) 13800Oe, maximum energy product [(BH) max] 34.7MG · Oe
Was obtained. (Effects of the Invention) As is apparent from the above description, the method for producing an anisotropic permanent magnet of the present invention comprises: subjecting a magnet alloy formed mainly of Nd, Fe, and B to plastic deformation processing. Pulverizing to a magnetic anisotropic magnetic powder, further compression-molding the magnetic anisotropic magnetic powder in a magnetic field, and then hot-pressing the obtained molded body in a temperature range of 500 to 1000 ° C. As a result, it is possible to obtain a high-density permanent magnet despite compacting at a lower temperature compared to the conventional powder metallurgy method. Since there is no possibility of inducing, the magnetic properties such as iHc can be improved. Further, compared to the plastic deformation method, the deformation amount during molding is only the self-shrinkage deformation, so the deformation amount is small, and therefore, the phenomenon such as cracking is small and the product yield is high, which is effective.

Claims (1)

(57)【特許請求の範囲】 1.Nd,Fe,Bを主成分とする磁石合金の成形体に塑性変
形加工を施したのち粉砕して磁気異方性磁性粉にし、更
に、前記磁気異方性磁性粉を磁場中で圧縮し、ついで、
得られた成形体を、500〜1000℃の温度域で熱圧プレス
することを特徴とする異方性永久磁石の製造方法。
(57) [Claims] Nd, Fe, and B are subjected to plastic deformation processing on a molded body of a magnet alloy containing as a main component and then pulverized into magnetic anisotropic magnetic powder, and further, the magnetic anisotropic magnetic powder is compressed in a magnetic field, Then
A method for producing an anisotropic permanent magnet, wherein the obtained molded body is hot-pressed in a temperature range of 500 to 1000 ° C.
JP62336139A 1987-12-29 1987-12-29 Manufacturing method of anisotropic permanent magnet Expired - Fee Related JP2794704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336139A JP2794704B2 (en) 1987-12-29 1987-12-29 Manufacturing method of anisotropic permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336139A JP2794704B2 (en) 1987-12-29 1987-12-29 Manufacturing method of anisotropic permanent magnet

Publications (2)

Publication Number Publication Date
JPH01179305A JPH01179305A (en) 1989-07-17
JP2794704B2 true JP2794704B2 (en) 1998-09-10

Family

ID=18296096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336139A Expired - Fee Related JP2794704B2 (en) 1987-12-29 1987-12-29 Manufacturing method of anisotropic permanent magnet

Country Status (1)

Country Link
JP (1) JP2794704B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210879A (en) * 2010-03-29 2011-10-20 Hitachi Metals Ltd Method for manufacturing rare-earth magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2779794B2 (en) * 1986-05-17 1998-07-23 株式会社 トーキン Manufacturing method of rare earth permanent magnet

Also Published As

Publication number Publication date
JPH01179305A (en) 1989-07-17

Similar Documents

Publication Publication Date Title
US4801340A (en) Method for manufacturing permanent magnets
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
US5127970A (en) Method for producing rare earth magnet particles of improved coercivity
US5085716A (en) Hot worked rare earth-iron-carbon magnets
EP0348038B1 (en) Manufacturing method of a permanent magnet
US5201963A (en) Rare earth magnets and method of producing same
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
JPH07105301B2 (en) Manufacturing method of magnetic anisotropy Nd-Fe-B magnet material
JPH0411703A (en) Manufacture of rare earth magnet
JPS5848608A (en) Production of permanent magnet of rare earths
CA2034632C (en) Hot worked rare earth-iron-carbon magnets
JPH02125402A (en) Magnetic powder and manufacture thereof
JP2564868B2 (en) Permanent magnet manufacturing method
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JPS63111155A (en) Production of permanent magnet material
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH08288113A (en) Manufacture of rare-earth magnetic material powder and rare-earth magnet
JPH07110965B2 (en) Method for producing alloy powder for resin-bonded permanent magnet
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JPH05152113A (en) Manufacture of rare-earth anisotropic magnet powder
JPH01175207A (en) Manufacture of permanent magnet
JPH01175211A (en) Manufacture of rare-earth elements-iron-based permanent magnet
JPH03217003A (en) Manufacture of bond-type permanent magnet
JPS6316603A (en) Manufacture of sintered rare-earth magnet
JPS63121603A (en) Production of rare earth-iron plastic magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees