JPH04125955A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH04125955A
JPH04125955A JP2248503A JP24850390A JPH04125955A JP H04125955 A JPH04125955 A JP H04125955A JP 2248503 A JP2248503 A JP 2248503A JP 24850390 A JP24850390 A JP 24850390A JP H04125955 A JPH04125955 A JP H04125955A
Authority
JP
Japan
Prior art keywords
conductive metal
thick film
film conductor
paste
wire bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2248503A
Other languages
Japanese (ja)
Other versions
JPH0760872B2 (en
Inventor
Takashi Nagasaka
崇 長坂
Makoto Koyama
誠 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2248503A priority Critical patent/JPH0760872B2/en
Publication of JPH04125955A publication Critical patent/JPH04125955A/en
Publication of JPH0760872B2 publication Critical patent/JPH0760872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/328Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by welding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To perform the wire bonding step in high reliability at low cost by a method wherein a thick film conductor is arranged on a substrate for hybrid IC so as to be wire-bonded later. CONSTITUTION:A circuit making thick film conductor 4 having glass and conductive metallic particles is arranged on a substrate for hybrid IC. Next, a thick film conductor 5 for wire bonding having larger crystal grain of conductive metal than the particle diameter of the crystal grain of conductive metal of said conductor 4 is arranged on the wire bonding part on said conductor 4 so that the wire bonding step may be performed on the thick film conductor 5 for wire bonding.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置及びその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、ハイブリッドIC用基板上の回路形成用厚膜導体
へワイヤボンディングを行う場合、第14図に示すよう
に、ハイブリッドIC用基板21上に回路形成用厚膜導
体22が配置され、その導体22上にアルミ等の金属バ
ッド23をハンダ24によりハンダ付けし、この上にワ
イヤボンディングを施していた。又は、第15図に示す
ように、回路形成用厚膜導体22上にニッケル等よりな
るメツキ層25を形成し、この上にワイヤボンディング
していた。
Conventionally, when wire bonding is performed to a thick film conductor for circuit formation on a substrate for hybrid IC, as shown in FIG. A metal pad 23 made of aluminum or the like is soldered thereon with solder 24, and wire bonding is performed thereon. Alternatively, as shown in FIG. 15, a plating layer 25 made of nickel or the like is formed on the circuit-forming thick film conductor 22, and wire bonding is performed thereon.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、このような構造においては、アルミパッド形
成、メツキ形成というプロセスが加わり複雑でコストア
ップを招いていた。特に、アルミパッド形成においては
ボンディング箇所が多くなると多大なコストアップを招
いていた。
However, in such a structure, processes such as aluminum pad formation and plating formation are added, making it complicated and increasing costs. In particular, when forming an aluminum pad, an increase in the number of bonding locations results in a significant increase in cost.

この発明の目的は、安価で信頼性の高いワイヤボンディ
ングが施された半導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device to which wire bonding is performed at low cost and with high reliability.

〔課題を解決するための手段〕[Means to solve the problem]

第1の発明は、ハイブリッドIC用基板上に、ガラスと
導電性金属粒子とを有する回路形成用厚膜導体を配置す
るとともに、前記回路形成用厚膜導体上におけるワイヤ
ボンディング部分に、当該回路形成用厚膜導体の導電性
金属の結晶粒よりも粒径が大きな導電性金属の結晶粒を
有するワイヤボンディング用厚膜導体を配置し、このワ
イヤボンディング用厚膜導体上にワイヤボンディングを
施した半導体装置をその要旨とする。
A first aspect of the present invention is to arrange a thick film conductor for circuit formation having glass and conductive metal particles on a substrate for hybrid IC, and to form a circuit at a wire bonding portion on the thick film conductor for circuit formation. A thick film conductor for wire bonding having conductive metal crystal grains having a larger grain size than the crystal grains of the conductive metal of the thick film conductor for wire bonding is arranged, and wire bonding is performed on the thick film conductor for wire bonding. The gist is the device.

第2の発明は、ハイブリッドIC用基板上に、ガラス粉
末と1種もしくは複数種の導電性金属粉末を混合した第
1のペーストを塗布する第1工程と、前記第1のペース
ト上のワイヤボンディング部分に、前記第1のペースト
の導電性金属粉末の1種もしくは合金化時での融点より
も低い融点の1種もしくは複数種の導電性金属粉末を混
合した第2のペーストを塗布する第2工程と、所定温度
で焼成して、ガラスと導電性金属粒子とを有する前記第
1のペーストによる回路形成用厚膜導体と、回路形成用
厚膜導体の導電性金属の結晶粒よりも粒径が大きな導電
性金属の結晶粒を有する前記第2のペーストによるワイ
ヤボンディング用厚膜導体とを形成する第3工程と、前
記ワイヤボンディング用厚膜導体上にワイヤボンディン
グを施す第4工程とを備えた半導体装置の製造方法をそ
の要旨とする。
A second invention includes a first step of applying a first paste containing a mixture of glass powder and one or more types of conductive metal powder onto a hybrid IC substrate, and wire bonding on the first paste. A second paste containing a mixture of one type of conductive metal powder of the first paste or one or more types of conductive metal powder having a melting point lower than the melting point at the time of alloying is applied to the part. step, and firing at a predetermined temperature to produce a thick film conductor for circuit formation using the first paste having glass and conductive metal particles, and a particle size larger than the crystal grains of the conductive metal of the thick film conductor for circuit formation. a third step of forming a thick film conductor for wire bonding using the second paste having large conductive metal crystal grains, and a fourth step of performing wire bonding on the thick film conductor for wire bonding. The gist of this paper is a method for manufacturing a semiconductor device.

第3の発明は、ハイブリッドIC用基板上に、ガラス粉
末と導電性金属粉末とを混合した第1のペーストを塗布
する第1工程と、所定温度で焼成して、ガラスと導電性
金属粒子とを有する前記第1のペーストによる回路形成
用厚膜導体を形成する第2工程と、前記回路形成用厚膜
導体上のワイヤボンディング部分に、導電性金属粉末を
混合した第2のペーストを塗布する第3工程と、前記第
2工程での焼成温度よりも高い温度で焼成して、回路形
成用厚膜導体の導電性金属の結晶粒よりも粒径が大きな
導電性金属の結晶粒を有する前記第2のペーストによる
ワイヤボンディング用厚膜導体を形成する第4工程と、
前記ワイヤボンディング用厚膜導体上にワイヤボンディ
ングを施す第5工程とを備えた半導体装置の製造方法を
その要旨とする。
The third invention includes a first step of applying a first paste containing a mixture of glass powder and conductive metal powder onto a hybrid IC substrate, and baking at a predetermined temperature to form glass and conductive metal particles. a second step of forming a thick film conductor for circuit formation using the first paste having the above, and applying a second paste mixed with conductive metal powder to a wire bonding portion on the thick film conductor for circuit formation; a third step; firing at a temperature higher than the firing temperature in the second step to form conductive metal crystal grains having a larger grain size than the conductive metal crystal grains of the thick film conductor for circuit formation; a fourth step of forming a thick film conductor for wire bonding using the second paste;
The gist of the present invention is a method for manufacturing a semiconductor device, comprising a fifth step of performing wire bonding on the thick film conductor for wire bonding.

第4の発明は、ハイブリッドIC用基板上に、ガラス粉
末と導電性金属粉末とを混合した第1のペーストを塗布
する第1工程と、前記第1のペースト上のワイヤボンデ
ィング部分に、前記第1のペーストの導電性金属粉末よ
りも粒径が大きな導電性金属粉末を混合した第2のペー
ストを塗布する第2工程と、所定温度で焼成して、ガラ
スと導電性金属粒子とを有する前記第1のペーストによ
る回路形成用厚膜導体と、回路形成用厚膜導体の導電性
金属の結晶粒よりも粒径が大きな導電性金属の結晶粒を
有する前記第2のペーストによるワイヤボンディング用
厚膜導体とを形成する第3工程と、前記ワイヤホンディ
ング用厚膜導体上にワイヤボンディングを施す第4工程
とを備えたことを特徴とする半導体装置の製造方法をそ
の要旨とするものである。
A fourth invention includes a first step of applying a first paste containing a mixture of glass powder and conductive metal powder onto a hybrid IC substrate, and a wire bonding portion on the first paste. a second step of applying a second paste containing a mixture of conductive metal powder having a larger particle size than the conductive metal powder of the first paste, and firing at a predetermined temperature to form the glass and conductive metal particles. A thick film conductor for circuit formation made of the first paste, and a thickness for wire bonding made of the second paste, which has conductive metal crystal grains having a larger grain size than the crystal grains of the conductive metal of the thick film conductor for circuit formation. The gist of the present invention is a method for manufacturing a semiconductor device, comprising a third step of forming a film conductor, and a fourth step of performing wire bonding on the thick film conductor for wire bonding. .

〔作用〕[Effect]

第1の発明は、ハイブリッドIC用基板と回路形成用厚
膜導体との界面においては、回路形成用厚膜導体の導電
性金属の結晶粒の粒径が小さいためにガラスによる接合
面積が大きくなり強固なるガラス結合となり、又、ワイ
ヤボンディング用厚膜導体とワイヤとの界面においては
、ワイヤボンディング用厚膜導体の導電性金属の結晶粒
の粒径が大きいために導電性金属の接合面積が大きくな
り強固なる金属−金属間結合となる。
The first invention is that at the interface between the hybrid IC substrate and the circuit-forming thick-film conductor, the glass bonding area becomes large because the crystal grain size of the conductive metal of the circuit-forming thick-film conductor is small. This creates a strong glass bond, and at the interface between the thick film conductor for wire bonding and the wire, the bonding area of the conductive metal is large because the crystal grain size of the conductive metal in the thick film conductor for wire bonding is large. This results in a strong metal-to-metal bond.

第2の発明は、第1工程によりハイブリッドIC用基板
上に、ガラス粉末と1種もしくは複数種の導電性金属粉
末を混合した第1のペーストが塗布され、第2工程によ
り第1のペースト上のワイヤボンディング部分に、第1
のペーストの導電性金属粉末の1種もしくは合金化時で
の融点よりも低い融点の1種もしくは複数種の導電性金
属粉末を混合した第2のペーストが塗布され、第3工程
により所定温度で焼成されて第1のペーストによる回路
形成用厚膜導体と第2のペーストによるワイヤボンディ
ング用厚膜導体とが形成される。このとき、第2のペー
ストの導電性金属粉末の融点は、第1のペーストの導電
性金属粉末の融点より低いので、第1のペーストの導電
性金属粉末の焼結(シンタリング)より第2のペースト
の導電性金属粉末の焼結が進みワイヤボンディング用厚
膜導体の導電性金属の結晶粒の粒径が回路形成用厚膜導
体の導電性金属の結晶粒の粒径より大きくなる。そして
、第4工程によりワイヤボンディング用厚膜導体上にワ
イヤボンディングが施される。
In the second invention, a first paste containing a mixture of glass powder and one or more types of conductive metal powder is applied onto a hybrid IC substrate in a first step, and a second paste is coated on the first paste in a second step. At the wire bonding part of
A second paste containing one type of conductive metal powder in the paste or a mixture of one or more types of conductive metal powder with a melting point lower than the melting point at the time of alloying is applied, and a third paste is applied at a predetermined temperature. By firing, a thick film conductor for circuit formation using the first paste and a thick film conductor for wire bonding using the second paste are formed. At this time, since the melting point of the conductive metal powder of the second paste is lower than that of the conductive metal powder of the first paste, the second paste is lower than the sintering of the conductive metal powder of the first paste. Sintering of the conductive metal powder of the paste progresses, and the grain size of the conductive metal crystal grains of the thick film conductor for wire bonding becomes larger than the grain size of the conductive metal crystal grains of the thick film conductor for circuit formation. Then, in a fourth step, wire bonding is performed on the thick film conductor for wire bonding.

その結果、第1の発明の半導体装置が製造される。As a result, the semiconductor device of the first invention is manufactured.

第3の発明は、第1工程によりハイブリッドIC用基板
上に、ガラス粉末と導電性金属粉末とを混合した第1の
ペーストが塗布され、第2工程により所定温度で焼成さ
れて第1のペーストによる回路形成用厚膜導体が形成さ
れ、第3工程により回路形成用厚膜導体上のワイヤボン
ディング部分に、導電性金属粉末を混合した第2のペー
ストが塗布され、第4工程により第2工程での焼成温度
よりも高い温度で焼成されて第2のペーストによるワイ
ヤボンディング用厚膜導体が形成される。
In the third invention, a first paste containing a mixture of glass powder and conductive metal powder is applied on a hybrid IC substrate in a first step, and baked at a predetermined temperature in a second step to form the first paste. A thick film conductor for circuit formation is formed in the third step, a second paste mixed with conductive metal powder is applied to the wire bonding portion on the thick film conductor for circuit formation in a fourth step, and a second paste mixed with conductive metal powder is applied in a fourth step. A thick film conductor for wire bonding is formed using the second paste.

このとき、第2工程での焼成温度より高い温度で焼成さ
れるので、より焼結(シンタリング)が進行したワイヤ
ボンディング用厚膜導体の導電性金属の結晶粒の方が回
路形成用厚膜導体の導電性金属の結晶粒より粒径が大き
くなる。そして、第5工程によりワイヤボンディング用
厚膜導体上にワイヤボンディングが施される。その結果
、第1の発明の半導体装置が製造される。
At this time, since the firing is performed at a higher temperature than the firing temperature in the second step, the crystal grains of the conductive metal of the thick film conductor for wire bonding, which has undergone more sintering (sintering), are the thick film for circuit formation. The grain size is larger than the crystal grains of the conductive metal of the conductor. Then, in a fifth step, wire bonding is performed on the thick film conductor for wire bonding. As a result, the semiconductor device of the first invention is manufactured.

第4の発明は、第1工程によりハイブリッドIC用基板
上に、ガラス粉末と導電性金属粉末とを混合した第1の
ペーストが塗布され、第2工程により第1のペースト上
のワイヤボンディング部分に、第1のペーストの導電性
金属粉末よりも粒径か大きな導電性金属粉末を混合した
第2のペーストが塗布され、第3工程により所定温度で
焼成されて第1のペーストによる回路形成用厚膜導体と
第2のペーストによるワイヤボンディング用厚膜導体と
が形成される。このとき、第2のペーストの導電性金属
の結晶粒の粒径の方が第1のペーストの導電性金属の結
晶粒の粒径よりも大きいので、ワイヤボンディング用厚
膜導体の導電性金属の結晶粒の方が回路形成用厚膜導体
の導電性金属の結晶粒より粒径が大きくなる。そして、
第4工程によりワイヤボンディング用厚膜導体上にワイ
ヤボンディングが施される。その結果、第1の発明の半
導体装置が製造される。
In the fourth invention, a first paste containing a mixture of glass powder and conductive metal powder is applied onto a hybrid IC substrate in a first step, and a wire bonding portion on the first paste is coated in a second step. , a second paste mixed with conductive metal powder having a larger particle size than the conductive metal powder of the first paste is applied, and is fired at a predetermined temperature in a third step to form a circuit-forming thickness of the first paste. A film conductor and a thick film conductor for wire bonding using the second paste are formed. At this time, since the grain size of the conductive metal crystal grains of the second paste is larger than the grain size of the conductive metal crystal grains of the first paste, the conductive metal of the thick film conductor for wire bonding is The grain size of the crystal grains is larger than that of the conductive metal of the thick film conductor for circuit formation. and,
In the fourth step, wire bonding is performed on the thick film conductor for wire bonding. As a result, the semiconductor device of the first invention is manufactured.

:第1実施例〕 以下、この発明を具体化した一実施例を図面に従って説
明する。
:First Embodiment] An embodiment embodying the present invention will be described below with reference to the drawings.

第1図には半導体装置を示し、第2図、第3図にはその
製造工程を示す。
FIG. 1 shows a semiconductor device, and FIGS. 2 and 3 show its manufacturing process.

第2図に示すように、ハイブリッドIC用基板1を用意
する。このハイブリッドIC用基板1はガラス・セラミ
ックよりなり、その成分はガラス成分を10%以上含み
、焼成を800〜10000Cの低温で行ったものであ
る。そし、て、このハイブリッドIC用基板1上に、回
路形成用厚膜導体となる第1のペースト2.を塗布する
。この第1のペースト2はガラス粉末と金属酸化物粉末
と導電性金属粉末等が混合されており、導電性金属粉末
としてAg(銀)粉末80%とPd(パラジウム)粉末
20%を用いている。又、第1のペースト2中のガラス
及び金属酸化物は、焼成後においてハイブリッドIC用
基板1との物理的・化学的な結合を得るためのものであ
る。さらに、ハイブリッドIC用基板としてのガラス・
セラミック基板1は化学的な結合が得に<<、物理的結
合に依存せざるを得ないため第1のペースト2中にはガ
ラス成分が多く添加されている。
As shown in FIG. 2, a hybrid IC substrate 1 is prepared. This hybrid IC substrate 1 is made of glass-ceramic, contains a glass component of 10% or more, and is fired at a low temperature of 800 to 10,000C. Then, on this hybrid IC substrate 1, a first paste 2. which will become a thick film conductor for circuit formation is applied. Apply. This first paste 2 is a mixture of glass powder, metal oxide powder, conductive metal powder, etc., and uses 80% Ag (silver) powder and 20% Pd (palladium) powder as the conductive metal powder. . Further, the glass and metal oxide in the first paste 2 are used to obtain a physical and chemical bond with the hybrid IC substrate 1 after firing. Furthermore, glass and
Since the ceramic substrate 1 must rely on physical bonding rather than chemical bonding, a large amount of glass component is added to the first paste 2.

次に、第1のペースト2上のワイヤボンディング部分に
、第2のペースト3を塗布する。この第2のペースト3
は、ガラス粉末と金属酸化物粉末と導電性金属粉末等が
混合されており、導電性金属粉末としてAg(銀)粉末
を用いている。つまり、第4図に示すように、第2のペ
ースト3の導電性金属粉末(Ag;100%)の融点は
、第1のペースト2の導電性金属粉末(Ag ; 80
%、Pd、20%)の合金化時での融点よりも低くなっ
ている。
Next, a second paste 3 is applied to the wire bonding portion on the first paste 2. This second paste 3
is a mixture of glass powder, metal oxide powder, conductive metal powder, etc., and uses Ag (silver) powder as the conductive metal powder. That is, as shown in FIG. 4, the melting point of the conductive metal powder (Ag; 100%) of the second paste 3 is the same as that of the conductive metal powder (Ag; 80%) of the first paste 2.
%, Pd, 20%) is lower than the melting point at the time of alloying.

次に、ハイブリッドIC用基板1を850℃で焼成する
Next, the hybrid IC substrate 1 is fired at 850°C.

その結果、第3図に示すように、ハイブリッドIC用基
板l上に、回路形成用厚膜導体4が配置されるとともに
、回路形成用厚膜導体4上におけるワイヤボンディング
部分に、ワイヤボンディング用厚膜導体5が配置される
。この回路形成用厚膜導体4の導電性金属の結晶粒の粒
径は0.5〜7μmとなり、ワイヤボンディング用厚膜
導体5の導電性金属の結晶粒の粒径は10〜30μmと
なる。つまり、第4図に示すように、第2のペースト3
での導電性金属粉末(Ag;100%)の融点が第1の
ペースト2での導電性金属粉末(Ag;80%、Pd 
、 20%)の融点よりも低くなっているので、第1の
ペースト2での導電性金属粉末の焼結(シンタリング)
よりも第2のペースト3の導電性金属粉末の焼結の方が
進み、ワイヤボンディング用縁膜導体5の導電性金属の
結晶粒の粒径が回路形成用厚膜導体4の導電性金属の結
晶粒より大きくなる。
As a result, as shown in FIG. 3, the thick film conductor 4 for circuit formation is placed on the substrate l for hybrid IC, and the thick film conductor 4 for wire bonding is placed on the wire bonding portion on the thick film conductor 4 for circuit formation. A membrane conductor 5 is arranged. The grain size of the conductive metal crystal grains of the thick film conductor 4 for circuit formation is 0.5 to 7 μm, and the grain size of the conductive metal crystal grains of the thick film conductor 5 for wire bonding is 10 to 30 μm. That is, as shown in FIG.
The melting point of the conductive metal powder (Ag; 100%) in the first paste 2 is the same as that of the conductive metal powder (Ag; 80%, Pd
, 20%) is lower than the melting point of the conductive metal powder in the first paste 2 (sintering).
The sintering of the conductive metal powder of the second paste 3 is more advanced than that of the conductive metal powder of the second paste 3, and the grain size of the conductive metal of the edge film conductor 5 for wire bonding is similar to that of the conductive metal of the thick film conductor 4 for circuit formation. It becomes larger than a crystal grain.

引き続き、第1図に示すように、ワイヤホンディング用
厚膜導体5上にアルミワイヤ6による超音波ワイヤボン
ディングを施す。
Subsequently, as shown in FIG. 1, ultrasonic wire bonding is performed using an aluminum wire 6 on the thick film conductor 5 for wire bonding.

第5図には、ヒートサイクル(−30℃と80℃の繰り
返し)に対するワイヤ剥がれ不良発生率を示す。即ち、
粒径が平均2μmの導電性金属粒子(Ag;80%、P
d、20%)を有する回路形成用厚膜導体4上にワイヤ
ボンディングを行った場合(図中、Llで示す)と、粒
径が平均2μmの導電性金属粒子(Ag;80%、Pd
 、 20%)を有する回路形成用厚膜導体4上に平均
20μmの導電性金属粒子(Ag;100%)を有する
ワイヤボンディング用厚膜導体5を積層し、その上にワ
イヤボンディングを行った場合(図中、L2で示す)を
示す。この図から明らかなように、本実施例(特性線L
2)では、不良発生率を極めて小さくできた。
FIG. 5 shows the incidence of wire peeling defects with respect to heat cycles (repetition of -30° C. and 80° C.). That is,
Conductive metal particles (Ag; 80%, P
(d, 20%) on the thick film conductor 4 for circuit formation (indicated by Ll in the figure), and conductive metal particles (Ag; 80%, Pd;
, 20%), a thick film conductor 5 for wire bonding having conductive metal particles (Ag; 100%) with an average size of 20 μm is laminated on a thick film conductor 4 for circuit formation having a conductive metal particle (Ag; 100%), and wire bonding is performed thereon. (indicated by L2 in the figure). As is clear from this figure, this example (characteristic line L
In 2), we were able to reduce the defective rate to an extremely low level.

つまり、第6図に示すように、導体の金属の結晶粒か小
さい場合には、基板1とのガラス接合についてはその接
合面積か大きく接合が強いが、ワイヤ6との金属接合に
ついてはその接合面積が小さく接合が弱くなる。又、第
7図に示すように、導体の金属粒径が大きい場合には、
基板1とのガラス接合についてはその接合面積が小さく
接合が弱くなるが、ワイヤ6との接合についてはその金
属接合面積が大きくなり接合が強くなる。よって、本実
施例のように、基板lとの接合面には導体の金属の結晶
粒が小さな回路形成用厚膜導体4を配置するとともに、
ワイヤ6との接合面には導体の金属の結晶粒が大きなワ
イヤボンディング用厚膜導体5を配置することにより、
基板1との接合及びワイヤ6との接合の両方をともに強
くすることができる。
In other words, as shown in FIG. 6, if the crystal grains of the metal of the conductor are small, the glass bond with the substrate 1 will have a large bond area and the bond will be strong, but the metal bond with the wire 6 will be strong. The area is small and the bond is weak. Also, as shown in Figure 7, when the metal grain size of the conductor is large,
Regarding the glass bonding with the substrate 1, the bonding area is small and the bonding is weak, but with the bonding with the wire 6, the metal bonding area is large and the bonding is strong. Therefore, as in this embodiment, the thick film conductor 4 for circuit formation with small crystal grains of the conductor metal is disposed on the joint surface with the substrate l, and
By arranging the thick film conductor 5 for wire bonding with large crystal grains of the conductor metal on the bonding surface with the wire 6,
Both the bond to the substrate 1 and the bond to the wire 6 can be strengthened.

このように本実施例では、ハイブリッドIC用基板1上
に、ガラス粉末と2種類の導電性金属粉末(Ag粉末:
80%、Pd粉末;20%)を混合した第1のペースト
2を塗布しく第1工程)、第1のペースト2上のワイヤ
ボンディング部分に、第1のペースト2の導電性金属粉
末の合金化時での融点よりも低い融点の導電性金属粉末
(Ag;100%)を混合した第2のペースト3を塗布
しく第2工程)、所定温度で焼成して第1のペースト2
による回路形成用厚膜導体4と第2のペースト3による
ワイヤボンディング用厚膜導体5とを形成しく第3工程
)、ワイヤボンディング用厚膜導体5上にワイヤボンデ
ィングを施した(第4工程)。
In this example, glass powder and two types of conductive metal powders (Ag powder:
80%, Pd powder; 20%) is coated on the wire bonding part on the first paste 2, and the conductive metal powder of the first paste 2 is alloyed. A second paste 3 mixed with a conductive metal powder (Ag; 100%) having a melting point lower than that of the first paste 3 is applied (second step) and baked at a predetermined temperature to form the first paste 2.
A thick film conductor 4 for circuit formation and a thick film conductor 5 for wire bonding were formed using the second paste 3 (third step), and wire bonding was performed on the thick film conductor 5 for wire bonding (fourth step). .

その結果、ハイブリットIC用基板1上に、ガラスと導
電性金属粒子(Ag;80%、Pd、20%)とを有す
る回路形成用厚膜導体4が配置されるとともに、回路形
成用厚膜導体4上におけるワイヤボンディング部分に、
回路形成用厚膜導体4の導電性金属の結晶粒よりも粒径
が大きな導電性金属粒子(Ag;100%)を有するワ
イヤボンデインク用厚膜導体5が配置される。
As a result, a thick film conductor 4 for circuit formation having glass and conductive metal particles (Ag; 80%, Pd, 20%) is disposed on the hybrid IC substrate 1, and a thick film conductor 4 for circuit formation is disposed on the hybrid IC substrate 1. At the wire bonding part on 4,
A thick film conductor 5 for wire bonding ink having conductive metal particles (Ag; 100%) having a larger particle size than the crystal grains of the conductive metal of the thick film conductor 4 for circuit formation is arranged.

つまり、ガラス・セラミック基板を用いた場合には化学
的な結合が得にくく物理的な結合に依存せざるを得ない
ために回路形成用厚膜導体4の導電性金属の結晶粒の粒
径を小さくするとともに、回路形成用厚膜導体4中のガ
ラス成分を多くすることとなり、その結果、回路形成用
厚膜導体4の金属粒子の露出が極めて小さくなりワイヤ
6との金属−金属結合が弱くなる。しかし、ワイヤボン
ディング用厚膜導体5を介在させることによりワイヤボ
ンディング用厚膜導体5とワイヤ6との界面においては
、ワイヤボンディング用厚膜導体5の導電性金属の結晶
粒(Ag;100%)の粒径が大きいために導電性金属
の結晶粒の接合面が大きくなり強固なる金属−金属結合
(ファンデルワールス力)となる。殊に、超音波を用い
たワイヤボンディングにおいて、ワイヤ金属と導体金属
との接合は主にファンデルワールス力よりなるものであ
り、その接合はより強固なものとなる。よって、従来の
ようにアルミバットの形成やメツキ形成といったプロセ
スを用いることなく、通常プロセスである厚膜形成プロ
セスを使用して低コストにて信頼性の高いワイヤボンデ
ィングを施した半導体装置とすることができる。
In other words, when a glass/ceramic substrate is used, it is difficult to obtain chemical bonding and one has to rely on physical bonding, so the grain size of the conductive metal crystal grains of the thick film conductor 4 for circuit formation is In addition to making it smaller, the glass component in the thick film conductor 4 for circuit formation is increased, and as a result, the exposure of the metal particles of the thick film conductor 4 for circuit formation is extremely small, and the metal-to-metal bond with the wire 6 is weak. Become. However, by interposing the thick film conductor 5 for wire bonding, the crystal grains (Ag; 100%) of the conductive metal of the thick film conductor 5 for wire bonding are removed at the interface between the thick film conductor 5 for wire bonding and the wire 6. Since the particle size of the conductive metal is large, the bonding surface of the crystal grains of the conductive metal becomes large, resulting in a strong metal-to-metal bond (van der Waals force). In particular, in wire bonding using ultrasonic waves, the bond between the wire metal and the conductor metal is mainly based on van der Waals force, and the bond becomes stronger. Therefore, it is desirable to create a semiconductor device that uses a thick film forming process, which is a normal process, and performs wire bonding with high reliability at low cost, without using the conventional processes such as forming an aluminum bat or plating. I can do it.

又、第2のペースト3の導電性金属としてAgを用いて
いるので、焼成の時に、第1のペースト2の導電性金属
(Ag、Pd)との間でA 、gが相互拡散して、回路
形成用厚膜導体4とワイヤボンディング用厚膜導体5を
強固に結合できる。
In addition, since Ag is used as the conductive metal of the second paste 3, during firing, A and g are interdiffused with the conductive metals (Ag, Pd) of the first paste 2. The thick film conductor 4 for circuit formation and the thick film conductor 5 for wire bonding can be firmly bonded.

尚、本実施例の応用としては、上記実施例では第1のペ
ーストに複数種(2種類)の導電性金属粉末を混入した
が、1種類であってもよい。同様に、第2のペーストに
ついても上記実施例では1種類であったが、複数種の導
電性金属粉末を混入してもよい。又、複数種の導電性金
属による合金粉末を用いてもよい。要は、各ペーストの
導電性金属は、1種もしくは合金化時での融点に差がつ
いていればよい。又、基板1はセラミック基板を用いて
もよい。
As an application of this embodiment, in the above embodiment, a plurality of types (two types) of conductive metal powders may be mixed into the first paste, but only one type of conductive metal powder may be mixed. Similarly, although only one type of second paste was used in the above embodiment, a plurality of types of conductive metal powders may be mixed. Alternatively, alloy powder made of multiple types of conductive metals may be used. In short, each paste may be made of one type of conductive metal or may have a different melting point when alloyed. Further, the substrate 1 may be a ceramic substrate.

〔第2実施例〕 次に、第2実施例を説明する。[Second example] Next, a second embodiment will be explained.

第8図に示すように、ハイブリッドIC用基板1上に、
ガラス粉末と導電性金属粉末(Ag粉末)とを混合した
第1のペースト7を塗布する(第1工程)。そして、第
9図に示すように、ハイブリットIC用基板1を850
℃で焼成して第1のペースト7による回路形成用厚膜導
体8を形成する(第2工程)。
As shown in FIG. 8, on the hybrid IC substrate 1,
A first paste 7 containing a mixture of glass powder and conductive metal powder (Ag powder) is applied (first step). Then, as shown in FIG. 9, the hybrid IC substrate 1 is
C. to form a thick film conductor 8 for circuit formation using the first paste 7 (second step).

次に、第10図に示すように、回路形成用厚膜導体8上
のワイヤボンディング部分に、導電性金属粉末(Ag粉
末)を混合した第2のペースト9を塗布する(第3工程
)。そして、第11図に示すように、第2工程での焼成
温度よりも高い925℃で焼成して第2のペースト9に
よるワイヤボンディング用厚膜導体10を形成する(第
4工程)。このとき、第2工程での焼成温度より高い温
度で焼成されるので、より焼結(シンタリング)が進行
したワイヤボンディング用厚膜導体10の導電性金属の
結晶粒の方が回路形成用厚膜導体8の導電性金属の結晶
粒より粒径が大きくなる。
Next, as shown in FIG. 10, a second paste 9 mixed with conductive metal powder (Ag powder) is applied to the wire bonding portion on the circuit-forming thick film conductor 8 (third step). Then, as shown in FIG. 11, the thick film conductor 10 for wire bonding is formed using the second paste 9 by firing at 925° C., which is higher than the firing temperature in the second step (fourth step). At this time, since the firing is performed at a higher temperature than the firing temperature in the second step, the crystal grains of the conductive metal of the thick film conductor 10 for wire bonding, which has undergone more sintering (sintering), have a thickness for circuit formation. The grain size is larger than that of the conductive metal crystal grains of the film conductor 8.

さらに、ワイヤボンディング用厚膜導体10上にワイヤ
ボンデインク゛を施す(第5工程)。
Furthermore, wire bonding is applied on the thick film conductor 10 for wire bonding (fifth step).

その結果、第1図で示した半導体装置か製造される。As a result, the semiconductor device shown in FIG. 1 is manufactured.

〔第3実施例〕 次に、第3実施例を説明する。[Third example] Next, a third example will be described.

第12図に示すように、ハイブリッドIC用基板1上に
、ガラス粉末と導電性金属粉末(Ag粉末)とを混合し
た第1のペースト11を塗布する(第1工程)。そして
、第1のペーストll上のワイヤボンディング部分に、
ガラス粉末と第1のペーストllの導電性金属粉末より
も粒径が大きな導電性金属粉末(Ag粉末)を混合した
第2のペースト12を塗布する(第2工程)。
As shown in FIG. 12, a first paste 11 containing a mixture of glass powder and conductive metal powder (Ag powder) is applied onto the hybrid IC substrate 1 (first step). Then, on the wire bonding part on the first paste ll,
A second paste 12, which is a mixture of glass powder and conductive metal powder (Ag powder) having a larger particle size than the conductive metal powder of the first paste 11, is applied (second step).

次に、第13図に示すように、ハイブリッドIC用基板
lを850°Cで焼成して第1のペースト11による回
路形成用厚膜導体13と第2のペースト12によるワイ
ヤボンディング用厚膜導体14とを形成する(第3工程
)。このとき、第2のペースト12の導電性金属粉末の
粒径の方が第1のペースト11の導電性金属粒径の粒子
よりも大きいので、ワイヤボンディング用厚膜導体14
の導電性金属の結晶粒の方が回路形成用厚膜導体13の
導電性金属の結晶粒より粒径が大きくなる。
Next, as shown in FIG. 13, the hybrid IC substrate l is fired at 850°C to form a thick film conductor 13 for circuit formation using the first paste 11 and a thick film conductor for wire bonding using the second paste 12. 14 (third step). At this time, since the particle size of the conductive metal powder of the second paste 12 is larger than the particle size of the conductive metal powder of the first paste 11, the thick film conductor 14 for wire bonding
The crystal grains of the conductive metal have a larger grain size than the crystal grains of the conductive metal of the thick film conductor 13 for circuit formation.

そして、ワイヤボンディング用厚膜導体14上にワイヤ
ボンディングを施す(第4工程)。
Then, wire bonding is performed on the thick film conductor 14 for wire bonding (fourth step).

その結果、第1図で示した半導体装置が製造される。As a result, the semiconductor device shown in FIG. 1 is manufactured.

〔発明の効果〕〔Effect of the invention〕

以上詳述したようにこの発明によれば、厚膜形成プロセ
スを用いて安価で信頼性の高いワイヤボンディングが施
された半導体装置を提供できる優れた効果を発揮する。
As detailed above, according to the present invention, it is possible to provide an excellent effect of providing a semiconductor device to which inexpensive and highly reliable wire bonding is performed using a thick film formation process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1実施例の半導体装置を示す図、第2図及び
第3図は第1実施例の半導体装置の製造工程を示す図、
第4図はAg−Pd系の融点を示す図、第5図はワイヤ
の剥がれ不良発生率を示す図、第6図は接合状態を説明
するための図、第7図は接合状態を説明するための図、
第8図〜第11図は第2実施例の半導体装置の製造工程
を示す図、第12図及び第13図は第3実施例の半導体
装置の製造工程を示す図、第14図及び第15図は従来
技術を説明するための図である。 1はハイブリッドIC用基板、2は第1のペースト、3
は第2のペースト、4は回路形成用厚膜導体、5はワイ
ヤボンディング用厚膜導体、7は第1のペースト、8は
回路形成用厚膜導体、9は第2のペースト、10はワイ
ヤボンディング用厚膜導体、11は第1のペースト、1
2は第2のペースト、13は回路形成用厚膜導体、14
はワイヤボンディング用厚膜導体。 特許出願人  日本電装  株式会社 代 理 人  弁理士 恩1)連室(ほか1名)815
図 第5図 第8図 第910 第1θ図 第tiIa
FIG. 1 is a diagram showing the semiconductor device of the first embodiment, FIGS. 2 and 3 are diagrams showing the manufacturing process of the semiconductor device of the first embodiment,
Fig. 4 is a diagram showing the melting point of Ag-Pd system, Fig. 5 is a diagram showing the incidence of defective wire peeling, Fig. 6 is a diagram to explain the bonding state, and Fig. 7 is a diagram to explain the bonding state. diagram for,
8 to 11 are diagrams showing the manufacturing process of the semiconductor device of the second embodiment, FIGS. 12 and 13 are diagrams showing the manufacturing process of the semiconductor device of the third embodiment, and FIG. 14 and 15 are diagrams showing the manufacturing process of the semiconductor device of the third embodiment. The figure is a diagram for explaining the prior art. 1 is a hybrid IC substrate, 2 is a first paste, 3
is a second paste, 4 is a thick film conductor for circuit formation, 5 is a thick film conductor for wire bonding, 7 is a first paste, 8 is a thick film conductor for circuit formation, 9 is a second paste, 10 is a wire Thick film conductor for bonding, 11 is a first paste, 1
2 is a second paste, 13 is a thick film conductor for circuit formation, 14
is a thick film conductor for wire bonding. Patent applicant Nippondenso Co., Ltd. Agent Patent attorney On 1) Joint office (1 other person) 815
Figure 5 Figure 8 Figure 910 Figure 1θ Figure tiIa

Claims (4)

【特許請求の範囲】[Claims] 1.ハイブリッドIC用基板上に、ガラスと導電性金属
粒子とを有する回路形成用厚膜導体を配置するとともに
、前記回路形成用厚膜導体上におけるワイヤボンディン
グ部分に、当該回路形成用厚膜導体の導電性金属の結晶
粒よりも粒径が大きな導電性金属の結晶粒を有するワイ
ヤボンディング用厚膜導体を配置し、このワイヤボンデ
ィング用厚膜導体上にワイヤボンディングを施したこと
を特徴とする半導体装置。
1. A thick film conductor for circuit formation having glass and conductive metal particles is arranged on a substrate for hybrid IC, and a conductive layer of the thick film conductor for circuit formation is placed on a wire bonding portion on the thick film conductor for circuit formation. A semiconductor device characterized in that a thick film conductor for wire bonding having crystal grains of a conductive metal whose grain size is larger than crystal grains of a conductive metal is arranged, and wire bonding is performed on the thick film conductor for wire bonding. .
2.ハイブリッドIC用基板上に、ガラス粉末と1種も
しくは複数種の導電性金属粉末を混合した第1のペース
トを塗布する第1工程と、 前記第1のペースト上のワイヤボンディング部分に、前
記第1のペーストの導電性金属粉末の1種もしくは合金
化時での融点よりも低い融点の1種もしくは複数種の導
電性金属粉末を混合した第2のペーストを塗布する第2
工程と、 所定温度で焼成して、ガラスと導電性金属粒子とを有す
る前記第1のペーストによる回路形成用厚膜導体と、回
路形成用厚膜導体の導電性金属の結晶粒よりも粒径が大
きな導電性金属粒子を有する前記第2のペーストによる
ワイヤボンディング用厚膜導体とを形成する第3工程と
、 前記ワイヤボンディング用厚膜導体上にワイヤボンディ
ングを施す第4工程と を備えたことを特徴とする半導体装置の製造方法。
2. A first step of applying a first paste containing a mixture of glass powder and one or more types of conductive metal powder onto a hybrid IC substrate; and applying the first paste onto a wire bonding portion on the first paste. A second paste is applied, which is a mixture of one type of conductive metal powder of the paste or one or more types of conductive metal powder having a melting point lower than the melting point at the time of alloying.
a thick film conductor for circuit formation made of the first paste having glass and conductive metal particles by firing at a predetermined temperature; a third step of forming a thick film conductor for wire bonding using the second paste having large conductive metal particles; and a fourth step of performing wire bonding on the thick film conductor for wire bonding. A method for manufacturing a semiconductor device, characterized by:
3.ハイブリッドIC用基板上に、ガラス粉末と導電性
金属粉末とを混合した第1のペーストを塗布する第1工
程と、 所定温度で焼成して、ガラスと導電性金属粒子とを有す
る前記第1のペーストによる回路形成用厚膜導体を形成
する第2工程と、 前記回路形成用厚膜導体上のワイヤボンディング部分に
、導電性金属粉末を混合した第2のペーストを塗布する
第3工程と、 前記第2工程での焼成温度よりも高い温度で焼成して、
回路形成用厚膜導体の導電性金属の結晶粒よりも粒径が
大きな導電性金属粒子を有する前記第2のペーストによ
るワイヤボンディング用厚膜導体を形成する第4工程と
、 前記ワイヤボンディング用厚膜導体上にワイヤボンディ
ングを施す第5工程と を備えたことを特徴とする半導体装置の製造方法。
3. A first step of applying a first paste containing a mixture of glass powder and conductive metal powder onto a hybrid IC substrate; and baking at a predetermined temperature to form the first paste containing glass and conductive metal particles. a second step of forming a thick film conductor for circuit formation using paste; a third step of applying a second paste mixed with conductive metal powder to a wire bonding portion on the thick film conductor for circuit formation; Baking at a higher temperature than the firing temperature in the second step,
a fourth step of forming a thick film conductor for wire bonding using the second paste having conductive metal particles having a grain size larger than the crystal grains of the conductive metal of the thick film conductor for circuit formation; A method for manufacturing a semiconductor device, comprising a fifth step of performing wire bonding on the film conductor.
4.ハイブリッドIC用基板上に、ガラス粉末と導電性
金属粉末とを混合した第1のペーストを塗布する第1工
程と、 前記第1のペースト上のワイヤボンディング部分に、前
記第1のペーストの導電性金属粉末よりも粒径が大きな
導電性金属粉末を混入した第2のペーストを塗布する第
2工程と、所定温度で焼成して、ガラスと導電性金属粒
子とを有する前記第1のペーストによる回路形成用厚膜
導体と、回路形成用厚膜導体の導電性金属の結晶粒より
も粒径が大きな導電性金属粒子を有する前記第2のペー
ストによるワイヤボンディング用厚膜導体とを形成する
第3工程と、 前記ワイヤボンディング用厚膜導体上にワイヤボンディ
ングを施す第4工程と を備えたことを特徴とする半導体装置の製造方法。
4. A first step of applying a first paste containing a mixture of glass powder and conductive metal powder onto a hybrid IC substrate; a second step of applying a second paste mixed with conductive metal powder having a larger particle size than the metal powder; and a circuit made of the first paste, which is baked at a predetermined temperature and has glass and conductive metal particles. A third method for forming a thick film conductor for forming a thick film conductor and a thick film conductor for wire bonding using the second paste having conductive metal particles having a grain size larger than the crystal grains of the conductive metal of the thick film conductor for circuit formation. and a fourth step of performing wire bonding on the thick film conductor for wire bonding.
JP2248503A 1990-09-17 1990-09-17 Semiconductor device and manufacturing method thereof Expired - Lifetime JPH0760872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248503A JPH0760872B2 (en) 1990-09-17 1990-09-17 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248503A JPH0760872B2 (en) 1990-09-17 1990-09-17 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04125955A true JPH04125955A (en) 1992-04-27
JPH0760872B2 JPH0760872B2 (en) 1995-06-28

Family

ID=17179147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248503A Expired - Lifetime JPH0760872B2 (en) 1990-09-17 1990-09-17 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0760872B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897553A (en) * 1994-09-21 1996-04-12 Toyo Commun Equip Co Ltd Structure for conductive pattern
JP2007150366A (en) * 2002-03-01 2007-06-14 Hitachi Chem Co Ltd Printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897553A (en) * 1994-09-21 1996-04-12 Toyo Commun Equip Co Ltd Structure for conductive pattern
JP2007150366A (en) * 2002-03-01 2007-06-14 Hitachi Chem Co Ltd Printed wiring board
JP4555998B2 (en) * 2002-03-01 2010-10-06 日立化成工業株式会社 Printed wiring board

Also Published As

Publication number Publication date
JPH0760872B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
JPS63107087A (en) Hybrid integrated circuit board
WO1997018584A1 (en) Method for forming bump of semiconductor device
JPS60500837A (en) thick film resistor circuit
JPH0925167A (en) Aluminum nitride sinter having concentration gradient
JPH05235497A (en) Copper conductive paste
US4546283A (en) Conductor structure for thick film electrical device
JPH04125955A (en) Semiconductor device and manufacture thereof
JPH04259205A (en) Chip type ceramic capacitor
JP2000173346A (en) Conductive paste and ceramic multilayer board
JP3470789B2 (en) Wiring board and method of manufacturing the same
US4765528A (en) Plating process for an electronic part
JP3495773B2 (en) Circuit board
JP3935026B2 (en) Wiring board
JPS58130590A (en) Ceramic circuit board and thick film hybrid ic using same board
JPH07207452A (en) Metal powder composition and production of metallized substrate using the same
JP3252743B2 (en) Ceramic circuit board
JP2000252611A (en) Wiring board and its manufacture
JPH07153866A (en) Ceramic circuit substrate
JP3409062B2 (en) Joining method of ceramics and metal
JPS60107845A (en) Circuit substrate for semiconductor
JPS60176215A (en) Method of forming terminal electrode of laminated ceramic condenser
JPH04349690A (en) Circuit board
JPS6086840A (en) Manufacture of semiconductor device
JPS5916961A (en) Formation of plating film
JPH07212010A (en) Hybrid integrated circuit substrate and its manufacture