JPH04259205A - Chip type ceramic capacitor - Google Patents

Chip type ceramic capacitor

Info

Publication number
JPH04259205A
JPH04259205A JP3042569A JP4256991A JPH04259205A JP H04259205 A JPH04259205 A JP H04259205A JP 3042569 A JP3042569 A JP 3042569A JP 4256991 A JP4256991 A JP 4256991A JP H04259205 A JPH04259205 A JP H04259205A
Authority
JP
Japan
Prior art keywords
solder
metal plate
external electrode
capacitor
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3042569A
Other languages
Japanese (ja)
Inventor
Kiyoji Handa
半田 喜代二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP3042569A priority Critical patent/JPH04259205A/en
Publication of JPH04259205A publication Critical patent/JPH04259205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid the generation of cracks in a capacitor element by forming an external electrode to a ceramic element and soldering a metal plate to said external electrode by using solder having a specific lead component. CONSTITUTION:A metallic cap-shaped metal plate 4, on the inside of which is coated with cream solder 5, is inserted to the external electrode 3 of a chip type laminated ceramic capacitor element manufactured by alternately arranging internal electrodes 2 in a ceramic dielectric 1. The lead component of solder 5 is brought to a value from 80% to 98% at that time. The external electrode 3 and the metal plate 4 are soldered 5 and joined by heating the external electrode and the metal plate up to the melting temperature of solder, thus manufacturing a capacitor. An iron nickel alloy having 0.1mm thickness is employed as the quality of material of the metal plate 4, and a substance acquired by forming the solder of 90% tin and 10% lead having 3mum thickness through electroplating is used. Accordingly, even when deflection stress is applied repeatedly to the metal plate 4, no crack is generated in the capacitor element.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、誘電体がセラミックか
らなり、両端に外部電極を備えた基板に面実装されるチ
ップ形セラミックコンデンサの外部電極構造に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an external electrode structure of a chip-type ceramic capacitor whose dielectric is made of ceramic and is surface-mounted on a substrate having external electrodes at both ends.

【0002】0002

【従来の技術】チップ形積層セラミックコンデンサは、
2層以上の内部電極層がセラミック内部に交互に端部に
露出するよう埋め込まれ、内部電極の端部が露出した面
に銀又は銀/パラジウムの粉体とガラスフリット及び有
機質のビヒクルからなるペ−ストインクを塗布し、通常
600℃以上の高温で焼成することにより、銀又は銀/
パラジウムからなる外部電極層を設けることにより形成
されている。
[Prior art] Chip type multilayer ceramic capacitors are
Two or more internal electrode layers are embedded inside the ceramic so that the ends are exposed alternately, and a plate made of silver or silver/palladium powder, glass frit, and an organic vehicle is placed on the surface where the ends of the internal electrodes are exposed. - Silver or silver/
It is formed by providing an external electrode layer made of palladium.

【0003】このようなコンデンサは、プリント配線基
板にクリ−ムハンダを用いるリフロ−法で直接はんだ付
けされるが、基板に実装されたコンデンサはその両端が
はんだで基板に固定されているため、基板を強くたわま
せたり、温度変化により基板が膨脹・収縮を繰り返すと
、その応力が直接セラミック素体部にかかり、セラミッ
ク部分にクラックが発生したり、極端な場合はコンデン
サが割れ、基板から外れることがあるという欠点があっ
た。
[0003] Such capacitors are soldered directly to printed wiring boards by the reflow method using cream solder, but since the capacitors mounted on the board are fixed to the board with solder at both ends, If the capacitor is strongly bent or the board repeatedly expands and contracts due to temperature changes, the stress will be applied directly to the ceramic body, causing cracks in the ceramic part, and in extreme cases, the capacitor will break and come off the board. There were some drawbacks.

【0004】このような欠点を回避するため、前記外部
電極に金属製のキャップを導電性接着剤で接合する方法
も提案されている。この場合は、導電性接着剤は樹脂成
分に細かい銀粒子が分散されているため、外部からの応
力を緩和・吸収する作用によって前記不具合は改善され
る効果がある。
In order to avoid such drawbacks, a method has also been proposed in which a metal cap is bonded to the external electrode using a conductive adhesive. In this case, since fine silver particles are dispersed in the resin component of the conductive adhesive, the above-mentioned problems can be alleviated by relaxing and absorbing stress from the outside.

【0005】しかし、導電性接着剤は硬化時の応力が大
きく、使用中にその残留応力が徐々に解除される結果、
変形を生じ、外部電極との接合力が失われる。また、特
に高温,高湿度条件では変形が大きく、基板に両端をは
んだで固定されているため、その変形応力によってコン
デンサにクラックを生じさせるという欠点がある。
[0005] However, conductive adhesives have a large stress during curing, and as a result of the residual stress being gradually released during use,
Deformation occurs and the bonding force with the external electrode is lost. In addition, the deformation is large especially under high temperature and high humidity conditions, and since both ends are fixed to the substrate with solder, the deformation stress causes cracks in the capacitor.

【0006】また、銀又は銀/パラジウムからなる外部
電極を基板にはんだ付けする場合、前記リフロ−法より
短時間で設備も簡単な溶融した噴流はんだを用いるフロ
−法を行うと、外部電極中の銀が溶融はんだ中に拡散す
るはんだくわれ現象により外部電極が消失し、はんだ付
けできないという欠点も有していた。
Furthermore, when soldering external electrodes made of silver or silver/palladium to a substrate, if a flow method using molten jet solder is used, which is shorter and requires simpler equipment than the reflow method, it is possible to solder the inside of the external electrode. Another drawback was that the external electrodes disappeared due to the solder bleed phenomenon in which silver diffused into the molten solder, making it impossible to solder.

【0007】これを回避するため、銀又は銀/パラジウ
ム層の上にニッケル層及びはんだ層を順次電解メッキ法
で形成する方法がとられている。しかし、この場合は、
メッキ工程の工数が多く、工業的に不利益な上、コンデ
ンサ素子に微少な欠陥があると、メッキ液が浸透し、損
失,絶縁抵抗などの電気的性能を低下させると共に、使
用中の信頼性を低下させるという欠点があった。
In order to avoid this, a method has been adopted in which a nickel layer and a solder layer are successively formed on the silver or silver/palladium layer by electrolytic plating. However, in this case,
The plating process requires a lot of man-hours, which is industrially disadvantageous, and if there is a minute defect in the capacitor element, the plating solution will penetrate, reducing electrical performance such as loss and insulation resistance, and reducing reliability during use. It had the disadvantage of lowering the

【0008】[0008]

【発明が解決しようとする課題】前記のとおり、従来で
は基板のたわみ応力により、基板にはんだ付けされたチ
ップ形セラミックコンデンサにクラックが生じるという
欠点があった。また、フロ−はんだ付け法におけるはん
だくわれを回避するため、ニッケル及びはんだメッキを
行う方法では工数が多い上に信頼性を損なうという欠点
があった。
As described above, conventional capacitors have the disadvantage that cracks occur in the chip-shaped ceramic capacitors soldered to the substrate due to the bending stress of the substrate. Furthermore, the method of plating with nickel and solder in order to avoid solder blemishes in the flow soldering method has the disadvantage of requiring a large number of steps and impairing reliability.

【0009】本発明は上記のような従来技術の欠点を解
決するため提案されたものであり、その目的の一つは、
基板にはんだ付け実装されたチップ形セラミックコンデ
ンサに基板のたわみ応力が直接かかり、コンデンサ素子
にクラックを生じることを回避する簡略で実用性の高い
構成で実現することである。
The present invention was proposed to solve the above-mentioned drawbacks of the prior art, and one of its purposes is to
The purpose of this invention is to realize a simple and highly practical configuration that avoids the occurrence of cracks in the capacitor element due to direct application of board deflection stress to the chip-type ceramic capacitor soldered and mounted on the board.

【0010】更にもう一つの目的として上記と同じ構成
により、コンデンサの信頼性を損なうことなく、溶融は
んだを用いるフロ−はんだ付け法で基板実装できる優れ
たチップ形セラミックコンデンサを提供することである
Another object of the present invention is to provide an excellent chip-type ceramic capacitor which can be mounted on a board by flow soldering using molten solder without impairing the reliability of the capacitor, using the same structure as described above.

【0011】[0011]

【課題を解決するための手段】本発明になるチップ形セ
ラミックコンデンサは、従来の公知の材料及び方法によ
りセラミック素子に外部電極を形成し、鉛成分が80%
以上98%未満のはんだを用いて金属板を上記外部電極
にはんだ付けしてなることを特徴とするものである。
[Means for Solving the Problems] The chip-type ceramic capacitor of the present invention has an external electrode formed on a ceramic element using conventionally known materials and methods, and has a lead content of 80%.
The present invention is characterized in that the metal plate is soldered to the external electrode using less than 98% solder.

【0012】0012

【作用】前記本発明の構成からなるチップ形コンデンサ
を基板にはんだ付け実装した場合、基板からのたわみ応
力は硬度が低く、塑性変形しやすい、すなわちヤング率
の小さいはんだ部分で吸収されるため、コンデンサにか
かる応力が小さくなり、したがって、クラックなどの不
具合は生じにくくなる。はんだの成分中、鉛を多くする
と硬度が低くなり、かつヤング率が小さくなることが知
られている。発明者の実験によれば、鉛が80%であれ
ば実用上問題ない程度まで硬度及びヤング率が小さいこ
とがわかった。しかし、鉛が98%以上になると、外部
電極と金属板のはんだ付け強度が低下し実用上問題があ
る。
[Operation] When the chip-type capacitor having the structure of the present invention is soldered and mounted on a board, the bending stress from the board is absorbed by the solder part, which has low hardness and is easily deformed plastically, that is, has a small Young's modulus. The stress applied to the capacitor is reduced, and defects such as cracks are therefore less likely to occur. It is known that increasing the amount of lead in the solder components lowers the hardness and Young's modulus. According to the inventor's experiments, it was found that if the lead content is 80%, the hardness and Young's modulus are small enough to cause no practical problems. However, when the lead content exceeds 98%, the soldering strength between the external electrode and the metal plate decreases, which poses a practical problem.

【0013】以上のことから、はんだの成分は鉛が80
%以上98%未満の場合、本発明の目的を満足させるこ
とができる。本発明の他の目的としてのリフロ−はんだ
付けにおいては、はんだの鉛含有量が80%以上の場合
、融点が279℃以上となるため、通常のフロ−はんだ
付け温度220〜250℃でははんだが溶融しないので
、したがって、このはんだに覆われている外部電極部分
のはんだくわれ現象は発生せず、不具合は生じない。
[0013] From the above, the solder component contains 80% lead.
% or more and less than 98%, the object of the present invention can be satisfied. In reflow soldering as another object of the present invention, if the lead content of the solder is 80% or more, the melting point will be 279°C or higher, so the solder will not work at the normal flow soldering temperature of 220 to 250°C. Since the solder does not melt, the solder portion of the external electrode covered with the solder will not be soldered, and no problems will occur.

【0014】[0014]

【実施例】図1に示すように、セラミック誘電体1の内
部に交互に内部電極2を配し、公知の方法によって作製
したチップ形積層セラミックコンデンサ素子の外部電極
3に、内側にクリ−ムはんだを塗布した金属キャップ状
の金属板4をはめ込み、はんだの溶融温度まで加熱する
ことにより、外部電極3と金属板4をはんだ5付けし接
合させ、図2に正断面図、図3に斜視図を示すコンデン
サを作製した。
[Example] As shown in Fig. 1, internal electrodes 2 are arranged alternately inside a ceramic dielectric 1, and cream is applied to the external electrodes 3 of a chip-type multilayer ceramic capacitor element manufactured by a known method. A metal cap-shaped metal plate 4 coated with solder is fitted and heated to the melting temperature of the solder, thereby bonding the external electrode 3 and the metal plate 4 with solder 5. Fig. 2 shows a front cross-sectional view, and Fig. 3 shows a perspective view. The capacitor shown in the figure was fabricated.

【0015】金属板4の材質は、0.1mm厚の鉄ニッ
ケル合金(42%Ni)で3μm厚の90%スズ10%
鉛のはんだを電気メッキにより形成したものを用いた。 クリ−ムはんだの組成は表1に示すように3種類の組成
を用いた。比較例2としてコンデンサ素子と金属板は上
記と同じもので、外部電極と金属板の接合を導電性接着
剤(エポキシ樹脂基材に銀粉を80wt%混練したもの
)を用い、150℃で30分加熱硬化することにより行
ったコンデンサも作製した。
The material of the metal plate 4 is 0.1 mm thick iron-nickel alloy (42% Ni) and 3 μm thick 90% tin 10%.
A lead solder formed by electroplating was used. Three types of cream solder compositions were used as shown in Table 1. As Comparative Example 2, the capacitor element and metal plate were the same as above, and the external electrode and metal plate were bonded using a conductive adhesive (80 wt% silver powder mixed into an epoxy resin base material) at 150°C for 30 minutes. Capacitors were also fabricated by heat curing.

【0016】[0016]

【表1】[Table 1]

【0017】以上4種のコンデンサと図1に示すような
従来例のコンデンサを市販のアルミ積層基板を用い、コ
ンデンサが搭載できるようパタ−ンを形成したテスト基
板に市販のクリ−ムはんだ(63%鉛,37%スズ)を
用いてリフロ−はんだ付けを行った。これらを−55℃
で30分保持し、次に+125℃で30分保持すること
を1サイクルとする熱衝撃試験を200サイクル行い、
試験後、コンデンサにクラックが見られるもの、又は静
電容量が試験の値から20%以上減少するものを故障と
判定した。試料数は各条件50個とした。表2に上記試
験結果を示す。
A commercially available aluminum laminate board was used for the above four types of capacitors and a conventional capacitor as shown in FIG. 1, and commercially available cream solder (63 % lead, 37% tin) was used for reflow soldering. These at -55℃
A thermal shock test was conducted for 200 cycles in which one cycle was held at +125°C for 30 minutes and then held at +125°C for 30 minutes.
After the test, capacitors with cracks or whose capacitance decreased by 20% or more from the test value were determined to be faulty. The number of samples was 50 for each condition. Table 2 shows the above test results.

【0018】[0018]

【表2】[Table 2]

【0019】この結果から、従来例では熱衝撃試験によ
る基板の繰り返したわみ応力によりコンデンサにクラッ
クが発生し、静電容量が低下したのに対し、実施例では
クラックの発生がないか、又は発生率が少なく実用上問
題ないレベルであることがわかる。本発明で限定したは
んだの鉛含有量範囲から外れた比較例1はクラック発生
率が高いことがわかる。これははんだの鉛含有量が少な
いため、硬度,ヤング率とも高く、基板のたわみ応力を
吸収できなかったためである。比較例2ははんだの代わ
りに導電性接着剤を用いたものであるが、熱衝撃試験で
は実施例1と同様クラック発生は見られなかった。しか
し、この比較例2のコンデンサ及び実施例1のコンデン
サを基板にフロ−はんだ付けし85℃,95%RHの高
温高湿雰囲気で定格電圧を1000時間連続印加した結
果、実施例1では100個中故障がなかったのに対し、
比較例2では30%の絶縁抵抗低下が発生した。絶縁抵
抗が低下したコンデンサ内部にはクラックが見られ、明
らかに高温高湿の試験中に導電性接着剤が変形し、コン
デンサ素子にストレスを与えたことが予想される。
From this result, it was found that in the conventional example, cracks occurred in the capacitor due to the repeated deflection stress of the substrate due to the thermal shock test, and the capacitance decreased, whereas in the example, there was no cracking, or the occurrence rate was low. It can be seen that the amount is small and is at a level that poses no problem in practical use. It can be seen that Comparative Example 1, which falls outside the lead content range of the solder defined in the present invention, has a high crack occurrence rate. This is because the lead content of the solder is low, so the hardness and Young's modulus are both high, and the bending stress of the board cannot be absorbed. Comparative Example 2 uses a conductive adhesive instead of solder, but similar to Example 1, no cracks were observed in the thermal shock test. However, as a result of flow soldering the capacitor of Comparative Example 2 and the capacitor of Example 1 to a board and continuously applying the rated voltage for 1000 hours in a high temperature and high humidity atmosphere of 85°C and 95% RH, in Example 1, 100 pieces were soldered. While there were no failures during
In Comparative Example 2, a 30% decrease in insulation resistance occurred. Cracks were observed inside the capacitor where the insulation resistance had decreased, and it is clear that the conductive adhesive was deformed during the high temperature and high humidity test, which is expected to have caused stress to the capacitor element.

【0020】次に、従来例と実施例1及び実施例2のコ
ンデンサを250℃の溶融はんだに10秒間浸漬し引き
上げた後、外部電極を観察した。従来例では外部電極の
1/3以上がはんだくわれによって消失しているが、実
施例では全くはんだくわれはなく、金属キャップ全面が
新しいはんだで覆われていることから、溶融はんだによ
るフロ−はんだ付けが可能であることが確認された。
Next, the capacitors of the conventional example, Example 1, and Example 2 were immersed in molten solder at 250° C. for 10 seconds and pulled out, and then the external electrodes were observed. In the conventional example, more than 1/3 of the external electrode has disappeared due to solder burrows, but in the example, there is no solder bulge at all and the entire surface of the metal cap is covered with new solder, so there is no flow caused by molten solder. It was confirmed that soldering is possible.

【0021】なお、図4は本発明の他の実施例を示す斜
視図であり、金属板14としてL字形のものを用いたも
のである。
FIG. 4 is a perspective view showing another embodiment of the present invention, in which an L-shaped metal plate 14 is used.

【0022】[0022]

【発明の効果】以上述べたように、本発明の構成による
チップ形セラミックコンデンサは、温度変化などによる
基板のたわみ応力によってコンデンサ素子にクラックな
どが生じることなく、実用上の信頼性が極めて高い。ま
た、溶融はんだに対するはんだくわれがないため、生産
性の高いフロ−はんだ付け法が可能であり、工業的に極
めて価値が高いものである。
As described above, the chip-type ceramic capacitor constructed according to the present invention has extremely high reliability in practical use since cracks do not occur in the capacitor element due to bending stress of the substrate due to temperature changes and the like. Furthermore, since there is no solder dent in the molten solder, a highly productive flow soldering method is possible, which is extremely valuable industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明になる積層コンデンサ素子を示す正断面
図である。
FIG. 1 is a front cross-sectional view showing a multilayer capacitor element according to the present invention.

【図2】本発明になるコンデンサを示す正断面図である
FIG. 2 is a front sectional view showing a capacitor according to the present invention.

【図3】本発明になるコンデンサの斜視図である。FIG. 3 is a perspective view of a capacitor according to the present invention.

【図4】本発明の他の実施例になるコンデンサを示す斜
視図である。
FIG. 4 is a perspective view showing a capacitor according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  セラミック誘電体 2  内部電極 3  外部電極 4  金属板 5  はんだ 1 Ceramic dielectric 2 Internal electrode 3 External electrode 4 Metal plate 5 Solder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  誘電体がセラミックからなるコンデン
サ素子と、このコンデンサ素子に設けた外部電極と、こ
の外部電極にはんだ付けした金属板を具備し、前記金属
板が80%以上98%未満の鉛を含むはんだではんだ付
けされているチップ形セラミックコンデンサ。
1. A capacitor element whose dielectric material is made of ceramic, an external electrode provided on the capacitor element, and a metal plate soldered to the external electrode, wherein the metal plate contains 80% or more and less than 98% lead. Chip-shaped ceramic capacitors that are soldered with solder.
JP3042569A 1991-02-13 1991-02-13 Chip type ceramic capacitor Pending JPH04259205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3042569A JPH04259205A (en) 1991-02-13 1991-02-13 Chip type ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3042569A JPH04259205A (en) 1991-02-13 1991-02-13 Chip type ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH04259205A true JPH04259205A (en) 1992-09-14

Family

ID=12639697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3042569A Pending JPH04259205A (en) 1991-02-13 1991-02-13 Chip type ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH04259205A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191933B1 (en) 1998-01-07 2001-02-20 Tdk Corporation Ceramic capacitor
JP2002025804A (en) * 2000-07-07 2002-01-25 Toshiba Corp Ceramic element unit and its manufacturing method
EP1508905A3 (en) * 2003-08-19 2007-05-16 TDK Corporation Electronic component
EP2131374A1 (en) 2008-06-02 2009-12-09 Murata Manufacturing Co., Ltd. Ceramic electronic component with diffusion bonding between external electrode and metal terminal, and method for manufacturing the same
US20150021080A1 (en) * 2013-07-22 2015-01-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic part to be embedded in board and printed circuit board having multilayer ceramic electronic part embedded therein
US20160042869A1 (en) * 2014-08-05 2016-02-11 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
JP2020087588A (en) * 2018-11-20 2020-06-04 株式会社村田製作所 Electronic component
CN113228210A (en) * 2018-12-26 2021-08-06 松下知识产权经营株式会社 Capacitor with a capacitor element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191933B1 (en) 1998-01-07 2001-02-20 Tdk Corporation Ceramic capacitor
US6523235B1 (en) 1998-01-07 2003-02-25 Tdk Corporation Method of manufacturing a ceramic capacitor
JP2002025804A (en) * 2000-07-07 2002-01-25 Toshiba Corp Ceramic element unit and its manufacturing method
EP1508905A3 (en) * 2003-08-19 2007-05-16 TDK Corporation Electronic component
EP2131374A1 (en) 2008-06-02 2009-12-09 Murata Manufacturing Co., Ltd. Ceramic electronic component with diffusion bonding between external electrode and metal terminal, and method for manufacturing the same
US8134825B2 (en) 2008-06-02 2012-03-13 Murata Manufacturing Co., Ltd. Ceramic electronic component and method for manufacturing the same
US20150021080A1 (en) * 2013-07-22 2015-01-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic part to be embedded in board and printed circuit board having multilayer ceramic electronic part embedded therein
US9607762B2 (en) * 2013-07-22 2017-03-28 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic part to be embedded in board and printed circuit board having multilayer ceramic electronic part embedded therein
US20160042869A1 (en) * 2014-08-05 2016-02-11 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having the same
US9842699B2 (en) * 2014-08-05 2017-12-12 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor having terminal electrodes and board having the same
JP2020087588A (en) * 2018-11-20 2020-06-04 株式会社村田製作所 Electronic component
CN113228210A (en) * 2018-12-26 2021-08-06 松下知识产权经营株式会社 Capacitor with a capacitor element
CN113228210B (en) * 2018-12-26 2023-04-28 松下知识产权经营株式会社 Capacitor with a capacitor body

Similar Documents

Publication Publication Date Title
CN109994317B (en) Multilayer capacitor and method for manufacturing the same
KR101973433B1 (en) Multilayered capacitor and method of manufacturing the same
JPH11162771A (en) Laminated ceramic capacitor
JPS63107087A (en) Hybrid integrated circuit board
JP3363369B2 (en) Multilayer ceramic capacitors
JP3760770B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP3267067B2 (en) Ceramic electronic components
JP7334285B2 (en) Multi-component leadless stack
JPH04259205A (en) Chip type ceramic capacitor
JPH04188810A (en) Composite ceramic capacitor
JPH11162780A (en) Laminated ceramic capacitor combination and manufacture of the same
JP3115713B2 (en) Ceramic electronic components
JPH08203771A (en) Ceramic electronic component
JP2014072373A (en) Ceramic electronic component with metal terminal
JP6255742B2 (en) Ceramic electronic components with metal terminals
JP2000138131A (en) Chip type electronic component
JP2850200B2 (en) Multilayer ceramic electronic components
JPH11233370A (en) Ceramic capacitor
JPH08203769A (en) Ceramic electronic component
JPH04171911A (en) Compound ceramic capacitor
JPH0737420A (en) Conductive paste composition and circuit board using conductive paste composition
JP2000138130A (en) Chip type electronic parts
JPH0864464A (en) Manufacture of chip type ceramic electronic component
JP2001023438A (en) Conductive paste and ceramic electronic component
JPS62274614A (en) Porcelain electrode structure