JPH0412008A - Production of magnetic powder - Google Patents

Production of magnetic powder

Info

Publication number
JPH0412008A
JPH0412008A JP2112703A JP11270390A JPH0412008A JP H0412008 A JPH0412008 A JP H0412008A JP 2112703 A JP2112703 A JP 2112703A JP 11270390 A JP11270390 A JP 11270390A JP H0412008 A JPH0412008 A JP H0412008A
Authority
JP
Japan
Prior art keywords
transition metal
compound
reaction
mixed gas
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2112703A
Other languages
Japanese (ja)
Inventor
Yoshiteru Kageyama
景山 芳輝
Yoshiaki Sawada
沢田 義秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP2112703A priority Critical patent/JPH0412008A/en
Publication of JPH0412008A publication Critical patent/JPH0412008A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase coercive force by reacting an organic transition metal compound selected from a transition metal carbonyl compound and a pi.complex compound of transition metal with NH3 in a vapor-phase reacting system applied with a specific magnetic field. CONSTITUTION:An organic transition metal compound selected from a transition metal carbonyl compound such as Fe(CO)5 and a complex compound of transition metal such as (pi.C5H5)2Fe is made to a mixed gas diluted with NH3 or NH3/H2 mixed gas in a ratio of 1-60vol.% and reacted at 10-200 deg.C for from 30sec to 1hr stagnation time to form NH3 adduct or amino compound of an organic transition metal. Next, said reacted gas is further diluted to <=3vol.% with NH3 or a mixed gas of NH3 and H2 and subjected to vapor-phase thermal decomposing reaction in a reaction system applied of >=100 gauss magnetic field at 250-700 deg.C for <=5min residence time to afford the aimed magnetic nitride transition metal powder having 100-200esu/g saturated magnetization and 800-2500 oersted coercive force.

Description

【発明の詳細な説明】 〔発明の背景〕 (産業上の利用分野) 本発明は磁気記録用途に好適な磁性粉末の製造法に関す
る。更に詳しくは、高密度磁気記録媒体等に適する優れ
た磁気特性と耐久性を有する窒化遷移金属磁性粉末の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Background of the Invention] (Field of Industrial Application) The present invention relates to a method for producing magnetic powder suitable for magnetic recording applications. More specifically, the present invention relates to a method for producing transition metal nitride magnetic powder having excellent magnetic properties and durability suitable for high-density magnetic recording media and the like.

(従来の技術) 近年、磁気記録の高密度化の要求に伴い、記録媒体用途
に従来用いられていたγ−Fe2O3、Co被被着−F
e203などの酸化鉄に代わり、高保磁力と高残留磁化
を有する鉄または鉄を主体とする合金の磁性粉が実用化
されている。
(Prior art) In recent years, with the demand for higher density magnetic recording, γ-Fe2O3, Co-coated -F, which has been conventionally used for recording media,
In place of iron oxide such as e203, magnetic powders of iron or iron-based alloys having high coercive force and high residual magnetization have been put into practical use.

しかし、これら鉄系磁性粉は、空気中の酸化を受は易い
不安定な性質を有し、これを安定化させる為に表面に酸
化被膜を形成させることから、残留磁化が金属本来のそ
の値に比較するとそれほど大きくないという欠点がある
However, these iron-based magnetic powders have unstable properties that are easily susceptible to oxidation in the air, and in order to stabilize this, an oxide film is formed on the surface, so the residual magnetization is lower than the original value of the metal. The disadvantage is that it is not very large compared to .

一方、窒化遷移金属磁性材料、とりわけ窒化鉄磁性材料
は、金属並みの高残留磁化を有し、しかも金属の欠点で
ある酸化劣化に対しても酸化を受は難く耐久性を有する
ことから、磁気記録材料としての開発が行なわれている
(田崎明他 固体物理:11.721.1984)。
On the other hand, transition metal nitride magnetic materials, especially iron nitride magnetic materials, have high residual magnetization comparable to that of metals, and are resistant to oxidation deterioration, which is a drawback of metals, and are therefore durable. It is being developed as a recording material (Akira Tasaki et al. Solid State Physics: 11.721.1984).

この磁気記録用窒化鉄磁性粉末の製造法としては、一般
に針状の酸化鉄または鉄をアンモニアと水素の混合気体
中において350〜450℃て少なくとも3時間以上反
応させることにより形成する方法が知られている。しか
しながら、この方法で得られる窒化鉄磁性粉末は、酸化
鉄または鉄が還元過程における焼結防止のための不純物
を含んでいなければならないこと並びに該粉末か多孔性
の構造であるために結晶および組成が不均一となり優れ
た磁気特性、特に高保磁力か得られないという欠点かあ
った。
A generally known method for manufacturing iron nitride magnetic powder for magnetic recording is to form it by reacting acicular iron oxide or iron in a mixed gas of ammonia and hydrogen at 350 to 450°C for at least 3 hours. ing. However, the iron nitride magnetic powder obtained by this method must contain impurities to prevent iron oxide or iron from sintering during the reduction process, and because the powder has a porous structure, crystals and The disadvantage was that the composition was non-uniform and excellent magnetic properties, especially high coercive force, could not be obtained.

本発明の目的は、従来技術の欠点を解消し、不純物の混
入がなく、高保磁力、高飽和磁化を有する、磁気記録材
料に好適な窒化遷移金属磁性粉末の製造法を提供するこ
とである。
An object of the present invention is to provide a method for producing transition metal nitride magnetic powder suitable for magnetic recording materials, which eliminates the drawbacks of the prior art, is free of impurities, has high coercive force, and high saturation magnetization.

〔発明の概要〕[Summary of the invention]

本発明者等は、上記従来技術の欠点を解消すべく鋭意検
討の結果、出発金属材料として特定の有機遷移金属化合
物を使用し、これとアンモニアとを特定の磁場を印加し
た気相反応系において反応させることにより、生成物の
組成並びに結晶構造が均一で、かつ高保磁力、高飽和磁
化を有する窒化遷移金属磁性粉末が得られることを見い
出し、本発明を完成した。
As a result of intensive studies to eliminate the drawbacks of the above-mentioned prior art, the present inventors used a specific organic transition metal compound as a starting metal material, and combined this with ammonia in a gas phase reaction system by applying a specific magnetic field. The present invention was completed based on the discovery that a transition metal nitride magnetic powder having a uniform product composition and crystal structure, high coercive force, and high saturation magnetization can be obtained by the reaction.

即ち、本発明による磁性粉末の製造法は、遷移金属カル
ボニル化合物および遷移金属のπ−コンプレックス化合
物から選択される有機遷移金属化合物とアンモニアとを
100ガウス以上の磁場を印加した気相反応系において
反応させることにより窒化遷移金属磁性粉末を生成させ
ることを特徴とするものである。
That is, the method for producing magnetic powder according to the present invention involves reacting an organic transition metal compound selected from transition metal carbonyl compounds and transition metal π-complex compounds with ammonia in a gas phase reaction system in which a magnetic field of 100 Gauss or more is applied. The present invention is characterized in that transition metal nitride magnetic powder is produced by this process.

〔発明の詳細な説明〕[Detailed description of the invention]

有機遷移金属化合物 本発明においては、出発金属材料として、遷移金属カル
ボニル化合物および遷移金属のπ−コンプレックス化合
物から選択される有機遷移金属化合物(以下、簡単のた
め単に「有機遷移金属化合物」と称する)が使用される
。遷移金属カルボニル化合物としては、Fe、N 1S
Co、W、M。
Organic transition metal compound In the present invention, an organic transition metal compound selected from transition metal carbonyl compounds and transition metal π-complex compounds (hereinafter simply referred to as "organic transition metal compound" for simplicity) is used as a starting metal material. is used. As transition metal carbonyl compounds, Fe, N 1S
Co, W, M.

等のカルボニル化合物、例えば、Fe (Co) 5、
及びこれらの混合物がある。また、遷移金属のπ−コン
プレックス化合物とは、炭素間2重結合または3重結合
と金属が結合したものであり、具体的には(π−C5H
5) 2Fe。
carbonyl compounds such as Fe(Co)5,
and mixtures thereof. In addition, a π-complex compound of a transition metal is a compound in which a carbon-carbon double bond or triple bond is bonded to a metal, specifically (π-C5H
5) 2Fe.

(π−CH)(π−C6H7)Fe。(π-CH)(π-C6H7)Fe.

(π−C5H5)2CO5等のメタセロン化合物を挙げ
ることができる。これらのうち、最も好ましいものはF
e(Co)5である。
Examples include metatheron compounds such as (π-C5H5)2CO5. Among these, the most preferable one is F
e(Co)5.

窒化遷移金属粉末の製造 本発明による窒化遷移金属粉末の製造は、上記有機遷移
金属化合物とアンモニアとを100ガウス以上の磁場を
印加した気相中で反応させることによって行うものであ
って、その具体的な製造法は、例えば下記に示す通りで
ある。
Production of transition metal nitride powder Production of transition metal nitride powder according to the present invention is carried out by reacting the organic transition metal compound and ammonia in a gas phase with a magnetic field of 100 Gauss or more applied. A typical manufacturing method is as shown below, for example.

好ましい一つの方法は、窒化金属形成反応を2段階で実
施することからなるものである。この好ましい方法によ
れば、窒化金属の結晶及び組成か均一で形状か一定に調
節された粉末を得ることかできる。
One preferred method consists of carrying out the metal nitride formation reaction in two stages. According to this preferred method, it is possible to obtain a metal nitride powder whose crystal and composition are uniform and whose shape is controlled to be constant.

すなわち、第一段階は、第一の気相反応ゾーンで有機遷
移金属化合物とアンモニアを反応させて有機遷移金属の
アンモニア付加化合物またはアミノ化合物を形成させる
ものであって、 例えばF e (CO) 5を使用する場合はFe(C
O)4NH3、 [F e (CO) 3 N H−)っ等およびこれら
の混合物が形成される。このような化合物の形成により
、第二段階における窒化金属の形成反応において、有機
遷移金属化合物の熱分解による金属粉の形成を抑制させ
て、窒化金属の形成の選択率を向上させることができる
That is, the first step is to react the organic transition metal compound and ammonia in the first gas phase reaction zone to form an ammonia addition compound or an amino compound of the organic transition metal, for example, F e (CO) 5 When using Fe(C
O)4NH3, [Fe(CO)3NH-), etc., and mixtures thereof are formed. By forming such a compound, the formation of metal powder due to thermal decomposition of the organic transition metal compound can be suppressed in the metal nitride formation reaction in the second step, and the selectivity for metal nitride formation can be improved.

この第一段階の反応は、例えば、有機遷移金属化合物を
、アンモニアまたはアンモニアと水素の混合気体で1〜
60体積%(好ましくは5〜50体積96)の割合で希
釈した混合気体とし、反応温度10〜200℃、好まし
くは50〜180℃、滞留時間30秒〜1時間、好まし
くは1〜20分の条件下にて行うことができる。この段
階の反応においては、磁場の印加は必ずしも必要ではな
い。
In this first stage reaction, for example, an organic transition metal compound is mixed with ammonia or a mixed gas of ammonia and hydrogen for 1 to 30 minutes.
A mixed gas diluted at a ratio of 60% by volume (preferably 5 to 50% by volume96), a reaction temperature of 10 to 200°C, preferably 50 to 180°C, and a residence time of 30 seconds to 1 hour, preferably 1 to 20 minutes. This can be done under certain conditions. At this stage of the reaction, application of a magnetic field is not necessarily required.

第二段階は、第二の気相反応ゾーンで上記第一反応ゾー
ンを経た反応気体を気相熱分解反応に付すことによって
窒化遷移金属粉末を形成させるためのものである。具体
的には、例えば、上記の反応気体を更にアンモニアまた
はアンモニアと水素の混合気体で希釈して3体積%以下
、好ましくは1.5体積%以下(投入有機遷移金属化合
物を基準として換算)とし、この混合気体を100ガウ
ス以上、好ましくは300ガウス以上、特に好ましくは
500〜1500ガウスの磁場を印加した反応系内に2
50〜700℃、5分以下(好ましくは300〜500
℃、2分以下)滞留させて気相熱分解反応を行なうこと
により窒化金属粉末を形成させる。
The second stage is for forming transition metal nitride powder by subjecting the reaction gas that has passed through the first reaction zone to a gas phase pyrolysis reaction in a second gas phase reaction zone. Specifically, for example, the above reaction gas is further diluted with ammonia or a mixed gas of ammonia and hydrogen to make it 3% by volume or less, preferably 1.5% by volume or less (calculated based on the input organic transition metal compound). , this gas mixture is placed in a reaction system to which a magnetic field of 100 Gauss or more, preferably 300 Gauss or more, particularly preferably 500 to 1500 Gauss is applied.
50-700℃, 5 minutes or less (preferably 300-500℃
℃ for 2 minutes or less) to perform a gas phase pyrolysis reaction to form a metal nitride powder.

本発明の方法によれば、磁場の印加により形状異方性を
有する針状の粒子が得られるか、好ましい形状は、短軸
径が50〜250への範囲、長軸径が短軸に対して通常
5倍以上、好ましくは10〜25倍である。なお、ここ
で短軸径および長軸径とは所与の粉末について観察され
るそれぞれの平均径を意味する。
According to the method of the present invention, acicular particles having shape anisotropy can be obtained by applying a magnetic field.The preferred shape is that the short axis diameter is in the range of 50 to 250 mm, and the long axis diameter is in the range of 50 to 250 mm. It is usually 5 times or more, preferably 10 to 25 times. Note that the minor axis diameter and major axis diameter herein mean respective average diameters observed for a given powder.

磁気特性は飽和磁化が100〜200emu/ g。As for magnetic properties, saturation magnetization is 100 to 200 emu/g.

保磁力が800〜2500エルステツドの範囲である。The coercive force is in the range of 800 to 2500 oersteds.

上記の窒化遷移金属粉末の形成は、X線回折あるいは電
子線回折により、その存在を確認することができる。
The formation of the transition metal nitride powder described above can be confirmed by X-ray diffraction or electron beam diffraction.

本発明の方法により得られる窒化遷移金属磁性粉は高密
度記録媒体として好ましいものであるが、窒化金属磁性
粉末を要する分野はこれに限られるものではなく、本発
明で得られる窒化金属粉の用途もそれに限られるもので
ない。
The transition metal nitride magnetic powder obtained by the method of the present invention is preferable as a high-density recording medium, but the fields requiring the metal nitride magnetic powder are not limited to this, and the applications of the metal nitride powder obtained by the present invention are It is not limited to this.

実施例1 2本の円筒反応管を直列に連結してなる反応装置におい
て、アンモニアで希釈したF e (CO) 5混合気
体を下記の2条件で順次反応に付して、窒化金属磁性粉
を得た。
Example 1 In a reaction apparatus consisting of two cylindrical reaction tubes connected in series, a mixture of Fe (CO) 5 diluted with ammonia was subjected to a reaction under the following two conditions in order to form metal nitride magnetic powder. Obtained.

反応条件 第一反応ゾーン Fe (Co)   ・18体積% 5゛ 反応温度=130℃ 滞留時間:15分 第二反応ゾーン アンモニア二投入Fe (Co)5換算で3体積%とな
るように添加 反応温度、400℃ 滞留時間、2.8秒 直流磁場:600ガウス 第一反応ゾーンにおける生成物は、元素分析より〔Fe
(CO)3NH〕2の化合物であった。
Reaction conditions First reaction zone Fe (Co) ・18 volume % 5゛ Reaction temperature = 130 ° C Residence time: 15 minutes Second reaction zone Ammonia 2 input Fe (Co) Addition reaction temperature so that it becomes 3 volume % in terms of 5 , 400°C residence time, 2.8 seconds DC magnetic field: 600 Gauss The product in the first reaction zone was found to be [Fe
It was a compound of (CO)3NH]2.

得られた窒化金属粉の構造は、X線スペクトルよりF 
e 3Nであると認められた。磁気特性は、理研電子製
振動型磁力計により測定し、保磁力1.3800e、飽
和磁化175emu/gであった。
The structure of the obtained metal nitride powder was determined from the X-ray spectrum by F
e It was recognized that it was 3N. The magnetic properties were measured using a vibrating magnetometer manufactured by Riken Denshi, and the coercive force was 1.3800e, and the saturation magnetization was 175 emu/g.

また、この粒子は、軸比は12で短軸径は160人であ
った。
Further, this particle had an axial ratio of 12 and a minor axis diameter of 160.

実施例2 実施例1において、Fe (CO)5に替えて(C5H
5)2Feを用い下記の2条件で順次反応に付して、窒
化金属磁性粉を得た。
Example 2 In Example 1, (C5H
5) Metal nitride magnetic powder was obtained by sequentially reacting with 2Fe under the following two conditions.

反応条件 第一反応ゾーン (C2H5) 2Fe : 20体積%反  応  温
  度= 170℃ 滞  留  時  間: 15分 第二反応ゾーン アンモニア:投入(C2H5)2Fe換算で3体積%と
なるように添加 反応温度:450℃ 滞留時間、2.0秒 直流磁場、600ガウス 得られた窒化金属粉の構造は、X線スペクトルよりF 
e 、Nであると認められた。磁気特性は、保磁力11
500e、飽和磁化154emu/gてあった。また、
この粒子は、軸比は1]、平均短軸径は180Aであっ
た。
Reaction conditions First reaction zone (C2H5) 2Fe: 20% by volume Reaction Temperature = 170°C Residence time: 15 minutes Second reaction zone Ammonia: Input (C2H5) Addition reaction to give 3% by volume in terms of 2Fe Temperature: 450°C Residence time: 2.0 seconds DC magnetic field: 600 Gauss The structure of the obtained metal nitride powder was determined from the X-ray spectrum by F
e, was recognized as N. The magnetic properties are coercive force 11
500e, and the saturation magnetization was 154 emu/g. Also,
The particles had an axial ratio of 1] and an average minor axis diameter of 180A.

Claims (1)

【特許請求の範囲】[Claims]  遷移金属カルボニル化合物および遷移金属のπコンプ
レックス化合物から選択される有機遷移金属化合物とア
ンモニアとを100ガウス以上の磁場を印加した気相反
応系において反応させることにより窒化遷移金属磁性粉
末を生成させることを特徴とする磁性粉末の製造法。
A transition metal nitride magnetic powder is produced by reacting an organic transition metal compound selected from transition metal carbonyl compounds and transition metal π complex compounds with ammonia in a gas phase reaction system to which a magnetic field of 100 Gauss or more is applied. Characteristic manufacturing method of magnetic powder.
JP2112703A 1990-04-27 1990-04-27 Production of magnetic powder Pending JPH0412008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112703A JPH0412008A (en) 1990-04-27 1990-04-27 Production of magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112703A JPH0412008A (en) 1990-04-27 1990-04-27 Production of magnetic powder

Publications (1)

Publication Number Publication Date
JPH0412008A true JPH0412008A (en) 1992-01-16

Family

ID=14593387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112703A Pending JPH0412008A (en) 1990-04-27 1990-04-27 Production of magnetic powder

Country Status (1)

Country Link
JP (1) JPH0412008A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808027B1 (en) * 2006-08-18 2008-02-28 한국과학기술연구원 Fabrication method of nickel nano-powder by gas phase reaction
CN105081352A (en) * 2014-05-07 2015-11-25 中国科学院宁波材料技术与工程研究所 Method for growing nanometer particles on substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808027B1 (en) * 2006-08-18 2008-02-28 한국과학기술연구원 Fabrication method of nickel nano-powder by gas phase reaction
CN105081352A (en) * 2014-05-07 2015-11-25 中国科学院宁波材料技术与工程研究所 Method for growing nanometer particles on substrate

Similar Documents

Publication Publication Date Title
US8535634B2 (en) Iron nitride powders for use in magnetic, electromagnetic, and microelectronic devices
JP2000277311A (en) Iron nitride-based magnetic powder material, manufacture thereof, and magnetic recording medium
EP0361349B1 (en) Magnetic fine particles of epsilon&#39; iron carbide
JP2001176715A (en) HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL
JP3963649B2 (en) Method for producing tungsten carbide by vapor-phase carburization
Tajima et al. Synthesis and magnetic properties of Fe7C3 particles with high saturation magnetization
JPH0412008A (en) Production of magnetic powder
US5552073A (en) Ferromagnetic fine particles of ε iron carbide and method for producing the same
JPS61154112A (en) Stabilization method of ferromagnetic metallic particulate
JPH0123402B2 (en)
JPH0230626A (en) Iron carbide fine granule and production thereof
Coquay et al. X-ray diffraction and Mössbauer characterization of an Fe/SiO 2 catalyst for the synthesis of carbon nanotubes
JPS5976403A (en) Ferromagnetic substance containing as base carburized nitrided iron
JPH01192713A (en) Production of iron carbide fine particles
US4272285A (en) Process for producing magnetic metal powders
JPH0412009A (en) Production of magnetic powder
JPH0298904A (en) Cobalt magnetic powder containing carbon
JPH0269904A (en) Manufacture of modified magnetic metal powder
JPS63270405A (en) Production of metal hyperfine powder
JPH04202602A (en) Manufacture of metal magnetic powder
JPS61111921A (en) Production of acicular particle containing iron carbide
JPH02111804A (en) Manufacture of magnetic metal powder
JPH0269903A (en) Magnetic powder of carbon containing metal
WO1988010002A1 (en) Process for producing ultrafine magnetic metal powder
JPH0465309A (en) Production of iron carbide fine powder