JP2001176715A - HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL - Google Patents

HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL

Info

Publication number
JP2001176715A
JP2001176715A JP36214999A JP36214999A JP2001176715A JP 2001176715 A JP2001176715 A JP 2001176715A JP 36214999 A JP36214999 A JP 36214999A JP 36214999 A JP36214999 A JP 36214999A JP 2001176715 A JP2001176715 A JP 2001176715A
Authority
JP
Japan
Prior art keywords
phase
saturation magnetization
magnetic material
powder
high saturation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36214999A
Other languages
Japanese (ja)
Inventor
Takeshi Hattori
毅 服部
Shin Tajima
伸 田島
Yoshio Kato
義雄 加藤
Katsunori Yamada
勝則 山田
Nobuo Kamiya
信雄 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP36214999A priority Critical patent/JP2001176715A/en
Publication of JP2001176715A publication Critical patent/JP2001176715A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder

Abstract

PROBLEM TO BE SOLVED: To provide high saturation magnetization Fe-N magnetic material of low cost, which exhibits saturation magnetization which is higher than or equal to that of Fe. SOLUTION: This high saturation magnetization Fe-N magnetic material is provided with a mixed phase of an α-Fe phase and a Fe16N2 phase. It is preferable that the formation ratio of the Fe16N2 phase in the mixed phase be 10-90%. This magnetic material is obtained by a method, where material powder such as iron oxide powder and metal iron powder are subjected to hydrogen reduction, nitriding is performed by using a gas containing ammonia, and the Fe16N2 phase is partially formed in the material powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高飽和磁化Fe−
N系磁性体において、Fe以上の飽和磁化を有するバル
ク体(粉末、板等)に関する。
[0001] The present invention relates to a high saturation magnetization Fe-
The present invention relates to a bulk material (powder, plate, or the like) having a saturation magnetization of Fe or higher in an N-based magnetic material.

【0002】[0002]

【従来の技術】Fe以上の飽和磁化を有する材料として
は、Fe−Co系合金が知られている。市販材料として
は、代表組成:Fe−48Co−2Vで表されるパーメ
ンジュール合金が有名である。また、Fe−Co系合金
以外には、Fe以上の高飽和磁化を有する材料はない
が、期待されている物質として、Fe16が知られ
ている。Fe16は、スレータ・ポーリング曲線か
ら推定されるFe−Co系合金の飽和磁化を超える高い
飽和磁化を持つ化合物として注目されているものであ
る。
2. Description of the Related Art As a material having a saturation magnetization higher than that of Fe, an Fe--Co alloy is known. As a commercially available material, a permendur alloy represented by a typical composition: Fe-48Co-2V is famous. In addition, there is no material having a high saturation magnetization higher than that of Fe other than the Fe—Co alloy, but Fe 16 N 2 is known as an expected substance. Fe 16 N 2 has attracted attention as a compound having a high saturation magnetization exceeding the saturation magnetization of the Fe—Co-based alloy estimated from the Slater-Pauling curve.

【0003】Fe16相の生成がX線回折やメスバ
ウワー解析で確認されている作製方法としては、(1)
焼き入れ・焼戻し法、(2)薄膜法、(3)イオン打ち
込み法、(4)低温窒化法の4種類がある。焼き入れ・
焼戻し法は、窒素含有オーステナイトを急冷して得たマ
ルテンサイト相を、さらに100〜150℃で数日間ア
ニールし、Fe16相を生成させる方法である(例
えば、JMD Coey, et al., J. Phys. Condens. Matter,
6(1994)L23参照。)。
[0003] The production method in which the formation of the Fe 16 N 2 phase has been confirmed by X-ray diffraction and Mossbauer analysis includes (1)
There are four types: quenching and tempering, (2) thin film, (3) ion implantation, and (4) low temperature nitriding. Quenching
The tempering method is a method in which a martensitic phase obtained by rapidly cooling nitrogen-containing austenite is further annealed at 100 to 150 ° C. for several days to form a Fe 16 N 2 phase (for example, JMD Coey, et al., J. Phys. Condens. Matter,
6 (1994) L23. ).

【0004】薄膜法は、分子線エピタキシー法を用い
て、In0.2Ga0.8As単結晶基板上にFe16
薄膜をエピタキシャル成長させる方法である(例え
ば、Y.Sugita, et al., J. Appl. Phys., 70(1991)5997
参照。)。また、イオン打ち込み法は、鏡面研磨したM
gO単結晶表面にFe薄膜を形成し、これにN 及び
イオンを打ち込み、Fe16相を生成させる方
法である(例えば、K.Nakashima and S.Okamoto, Appl.
Phys. Lett., 56(1990)92参照。 )。
[0004] The thin film method uses a molecular beam epitaxy method to deposit Fe 16 on an In 0.2 Ga 0.8 As single crystal substrate.
This is a method of epitaxially growing an N 2 thin film (for example, Y. Sugita, et al., J. Appl. Phys., 70 (1991) 5997).
reference. ). The ion implantation method uses a mirror-polished M
In this method, a Fe thin film is formed on the surface of a gO single crystal, and N 2 + and N + ions are implanted into the Fe thin film to generate a Fe 16 N 2 phase (for example, see K. Nakashima and S. Okamoto, Appl.
See Phys. Lett., 56 (1990) 92. ).

【0005】さらに、低温窒化法は、針状の酸化鉄を水
素還元して得た直径約20nmの微粒状α−Feをアン
モニア気流中において、110℃×10日の条件で加熱
処理し、Fe16相を生成させる方法である(例え
ば、永富他、「粉体および粉末冶金」、vol.46, No.2,
P151(1999)参照。)。
Further, in the low-temperature nitriding method, fine α-Fe particles having a diameter of about 20 nm obtained by hydrogenating acicular iron oxide are subjected to a heat treatment in an ammonia gas stream at 110 ° C. for 10 days. a method of generating a 16 N 2 phase (e.g., Nagatomi other, "powder and powder metallurgy", vol.46, No.2,
See P151 (1999). ).

【0006】[0006]

【発明が解決しようとする課題】Fe以上の飽和磁化を
発現するバルク材料としては、上述したFe−Co系合
金しか見出されていない。しかし、Fe−Co系合金
は、高価なCoを多く使用するため(30〜50mas
s%)、コストの高い材料となっている。
As the bulk material exhibiting a saturation magnetization higher than that of Fe, only the above-mentioned Fe-Co alloy has been found. However, an Fe—Co alloy uses a large amount of expensive Co (30 to 50 mas).
s%), which makes the material expensive.

【0007】これに対し、Fe−N系磁性体は、鉄と窒
素という安価な物質から作製されるため、Fe以上の飽
和磁化を発現する低コストな磁性材料として期待でき
る。実際に、薄膜法あるいはイオン打ち込み法で得られ
たFe−N系磁性体薄膜は、窒素量の増加とともにFe
16相の生成量が増加し、飽和磁化も増加すること
が確認されている。また、Fe16単相となる窒素
量で最大の飽和磁化となり、Fe−Co系合金と同等以
上の飽和磁化を示すことが確認されている。
On the other hand, since the Fe—N based magnetic material is made of inexpensive materials such as iron and nitrogen, it can be expected as a low-cost magnetic material that exhibits saturation magnetization higher than that of Fe. Actually, the Fe—N-based magnetic thin film obtained by the thin film method or the ion implantation method
It has been confirmed that the generation amount of the 16 N 2 phase increases and the saturation magnetization also increases. Further, it has been confirmed that the maximum saturation magnetization is obtained when the amount of nitrogen becomes a Fe 16 N 2 single phase, and the saturation magnetization is equal to or higher than that of the Fe—Co alloy.

【0008】しかしながら、Fe16相は準安定相
であるため、バルク材単相の作製が困難であり、また、
得られた試料について測定された磁気的性質には大きな
差が見られている。例えば、焼き入れ・焼戻し法では、
単相のFe16は得られず、得られた試料は、α−
Fe、γ−Fe、Fe16及びFeNの混合相と
なっている。また、窒素含有量の増加とともに、Fe
16相の生成量は増加するが、これに伴い残留オー
ステナイト(非磁性)も増加するため、全体の飽和磁化
は、α−Fe単相よりも低下する。
However, since the Fe 16 N 2 phase is a metastable phase, it is difficult to produce a bulk material single phase.
There is a large difference in the measured magnetic properties of the obtained samples. For example, in the quenching / tempering method,
No single-phase Fe 16 N 2 was obtained and the resulting sample was α-
It is a mixed phase of Fe, γ-Fe, Fe 16 N 2 and Fe 4 N. Also, as the nitrogen content increases, Fe
Although the generation amount of the 16 N 2 phase increases, the residual austenite (nonmagnetic) also increases with the increase, so that the overall saturation magnetization is lower than that of the α-Fe single phase.

【0009】一方、永富らの提案した低温窒化法によれ
ば、Fe16のバルク単体の合成が確認できたが、
得られた粉末の飽和磁化は、薄膜の報告値及びFe粉末
の飽和磁化にも達していないのが現状である。これは、
薄膜で観測された高飽和磁化が、薄膜特有の現象(膜の
内部応力等による歪に起因した磁気体積効果など)によ
り発現している可能性も考えられる。
On the other hand, according to the low-temperature nitriding method proposed by Nagatomi et al., It was confirmed that Fe 16 N 2 was synthesized in bulk.
At present, the saturation magnetization of the obtained powder does not reach the reported value of the thin film and the saturation magnetization of the Fe powder. this is,
It is also conceivable that the high saturation magnetization observed in the thin film is manifested by a phenomenon peculiar to the thin film (such as a magneto-volume effect caused by strain due to internal stress of the film).

【0010】本発明が解決しようとする課題は、低コス
トであり、かつ、Fe以上の飽和磁化を発現する高飽和
磁化Fe−N系磁性体を提供することにある。
An object of the present invention is to provide a high saturation magnetization Fe-N-based magnetic material which is low in cost and exhibits saturation magnetization higher than Fe.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明に係る高飽和磁化Fe−N系磁性体は、α−F
e相とFe16相の混相を主相とし、該混相中のF
16相の生成割合が10%以上90%以下である
ことを要旨とするものである。本発明に係るFe−N系
磁性体は、高価な合金元素を含まないので、低コストで
ある。また、本発明に係るFe−N系磁性体は、α−F
e相とFe16相の混相を備えているので、Fe以
上の高飽和磁化を発現するバルク体が得られる。その機
構の詳細については不明であるが、α−Fe相とFe
16相の界面近傍の相互作用によって、飽和磁化が
増加したためと考えられる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a high saturation magnetization Fe-N-based magnetic material according to the present invention comprises an α-F
e phase and Fe 16 N 2 phase as a main phase, and F
The gist is that the generation ratio of the e 16 N 2 phase is 10% or more and 90% or less. The Fe-N-based magnetic material according to the present invention does not contain an expensive alloy element, and therefore has a low cost. Further, the Fe-N-based magnetic material according to the present invention has an α-F
Since a mixed phase of the e phase and the Fe 16 N 2 phase is provided, a bulk body exhibiting high saturation magnetization higher than that of Fe can be obtained. The details of the mechanism are unknown, but the α-Fe phase and Fe
It is considered that the interaction near the interface of the 16 N 2 phase increased the saturation magnetization.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。本発明に係る高飽和磁化Fe−N系
磁性体は、α−Fe相とFe16相の混相を備えて
いる。このような組織を有する高飽和磁化Fe−N系磁
性体は、Feを含む磁性体に、Fe 相を一部生
成させることによって得ることができる。
Embodiments of the present invention will be described below in detail. The high saturation magnetization Fe-N-based magnetic material according to the present invention has a mixed phase of an α-Fe phase and a Fe 16 N 2 phase. High saturation magnetization Fe-N based magnetic material having such a structure is a magnetic body including Fe, it can be obtained by generating a part of Fe 1 6 N 2 phase.

【0013】ここで、磁性体の形状は、粉末、板等のい
わゆるバルク材であり、必ずしも薄膜である必要はな
い。また、例えば、カセットテープ、ビデオテープ等、
塗布型の磁気記録媒体に用いられるような粉末である場
合、その比表面積は、大きい方が好ましい。高い真の保
磁力を得るためには、粉末の比表面積は、10m/g
以上が好適である。
Here, the shape of the magnetic material is a so-called bulk material such as a powder or a plate, and does not necessarily need to be a thin film. Also, for example, cassette tapes, video tapes, etc.
In the case of a powder used for a coating type magnetic recording medium, the specific surface area is preferably large. In order to obtain a high true coercivity, the specific surface area of the powder should be 10 m 2 / g
The above is preferable.

【0014】さらに、本発明に係る磁性体において、高
い飽和磁化を得るためには、混相中に含まれるFe16
相の生成割合は、10〜90%が好ましい。なお、
「生成割合」とは、X線回折法で測定されたFe16
相の体積分率を示し、例えば、粉末試料の場合には、
次の数1の式にて表される。また、板などの試料では、
その方位配列、消衰等を考慮して体積分率を評価する必
要がある。
Further, in the magnetic material according to the present invention, in order to obtain high saturation magnetization, Fe 16 contained in the mixed phase is required.
The generation ratio of the N 2 phase is preferably from 10 to 90%. In addition,
"Production ratio" refers to Fe 16 N measured by an X-ray diffraction method.
Indicates the volume fraction of two phases, for example, in the case of a powder sample,
It is expressed by the following equation (1). For samples such as plates,
It is necessary to evaluate the volume fraction in consideration of the orientation arrangement, extinction and the like.

【0015】[0015]

【数1】 (Equation 1)

【0016】次に、本発明に係る高飽和磁化Fe−N系
磁性体の作用について説明する。多成分系の磁性体の飽
和磁化は、各生成相の相加平均により決定されているの
が一般的である。従って、Fe−N系磁性体において
も、従来は、磁化が最大となるFe16の飽和磁化
を超えることはないと考えられていた。
Next, the operation of the high saturation magnetization Fe-N based magnetic material according to the present invention will be described. In general, the saturation magnetization of a multi-component magnetic material is determined by the arithmetic mean of each generated phase. Therefore, even in the case of the Fe-N-based magnetic material, it has been conventionally considered that the magnetization does not exceed the saturation magnetization of Fe 16 N 2 at which the magnetization becomes maximum.

【0017】しかしながら、本発明に係る高飽和磁化F
e−N系磁性体においては、その飽和磁化は、後述する
ように、Fe16相の生成割合が増加するに伴い、
上に凸の曲線を描いて変化し、単なる相加平均を超える
高飽和磁化が得られている。しかも、従来のFe−N系
磁性体では、Feを超える飽和磁化を有するバルク材は
得られていないのに対し、本発明によれば、Feを超え
る高い飽和磁化を有するバルク材が得られている。その
原因の詳細については不明であるが、おそらく、α−F
e相とFe16相の界面近傍での窒素分布、磁気的
な相互作用、界面相の影響等、α−Fe相とFe16
相の界面近傍の相互作用によって、磁性体全体の飽和
磁化が増加したためと考えられる。
However, the high saturation magnetization F according to the present invention is
As will be described later, the saturation magnetization of the e-N-based magnetic material increases as the generation ratio of the Fe 16 N 2 phase increases.
A high saturation magnetization exceeding a mere arithmetic mean is obtained by changing the shape by drawing an upwardly convex curve. Moreover, a bulk material having a saturation magnetization exceeding Fe has not been obtained with the conventional Fe—N-based magnetic material, whereas a bulk material having a high saturation magnetization exceeding Fe has been obtained according to the present invention. I have. The details of the cause are unknown, but probably α-F
α-Fe phase and Fe 16 N, such as nitrogen distribution near the interface between the e phase and the Fe 16 N 2 phase, magnetic interaction, influence of the interface phase, etc.
It is considered that the interaction near the interface between the two phases increased the saturation magnetization of the entire magnetic body.

【0018】次に、本発明に係る高飽和磁化Fe−N系
磁性体の製造方法について説明する。本発明に係る高飽
和磁化Fe−N系磁性体は、還元工程と、窒化工程とを
備えている。還元工程は、鉄を含む原料を還元する工程
である。原料としては、酸化鉄粉末(例えば、α−Fe
、γ−Fe、FeO、Fe等。)、
一部に酸化鉄を含んだ金属鉄粉末(例えば、その表面が
薄い酸化膜で覆われた鉄粉等。)、一部に酸化鉄を含ん
だ金属鉄板等が用いられる。
Next, a method of manufacturing the high saturation magnetization Fe—N based magnetic material according to the present invention will be described. The high saturation magnetization Fe—N based magnetic material according to the present invention includes a reduction step and a nitriding step. The reduction step is a step of reducing a raw material containing iron. As a raw material, iron oxide powder (for example, α-Fe
2 O 3 , γ-Fe 2 O 3 , FeO, Fe 3 O 4 and the like. ),
A metal iron powder partially containing iron oxide (for example, iron powder whose surface is covered with a thin oxide film), a metal iron plate partially containing iron oxide, or the like is used.

【0019】なお、原料粉末の形状は、特に限定される
ものではない。すなわち、針状、紡錘状等の異方性を有
する形状であっても良く、あるいは、球状、立方体状等
の不定形であっても良い。
The shape of the raw material powder is not particularly limited. That is, it may be a shape having anisotropy such as a needle shape or a spindle shape, or may be an irregular shape such as a spherical shape or a cubic shape.

【0020】還元処理は、水素ガス気流中で行うのが好
ましい。また、使用する水素ガスは、高純度であること
が好ましい。具体的には、5N以上の水素ガス、あるい
は、酸素量が数ppm以下の水素ガスが好適である。
The reduction treatment is preferably performed in a stream of hydrogen gas. The hydrogen gas used is preferably of high purity. Specifically, a hydrogen gas of 5N or more, or a hydrogen gas having an oxygen amount of several ppm or less is preferable.

【0021】また、還元温度は、300℃〜700℃の
温度域で行うのが好ましい。還元温度が300℃未満に
なると、還元反応が不十分となるので好ましくない。一
方、原料が粉末である場合において、還元温度が700
℃を超えると、粉末の粒成長及び焼結が進行して比表面
積が低下し、例えば、磁気記録材料においては、高い真
の保磁力を有する粉末状の磁性体が得られないので好ま
しくない。
Further, the reduction is preferably carried out in a temperature range of 300 ° C. to 700 ° C. If the reduction temperature is lower than 300 ° C., the reduction reaction becomes insufficient, which is not preferable. On the other hand, when the raw material is a powder, the reduction temperature is 700
If the temperature exceeds ℃, the grain growth and sintering of the powder proceed to lower the specific surface area. For example, in a magnetic recording material, a powdery magnetic material having a high true coercive force cannot be obtained, which is not preferable.

【0022】窒化工程は、還元工程において得られた鉄
を含む原料を窒化処理する工程である。窒化処理は、ア
ンモニア気流中、あるいは、アンモニアガスを含んだ混
合ガス(例えば、アルゴン、水素、窒素のいずれか1以
上のガスとアンモニアガスとの混合ガス)気流中で行う
のが好ましい。また、使用するこれらのガスは、高純度
であることが好ましい。具体的には、5N以上のガス、
あるいは、酸素量が数ppm以下のガスを用いると良
い。
The nitriding step is a step of nitriding the raw material containing iron obtained in the reducing step. The nitriding treatment is preferably performed in an ammonia gas stream or a mixed gas stream containing an ammonia gas (for example, a mixed gas of any one or more of argon, hydrogen, and nitrogen and an ammonia gas). Further, these gases used are preferably of high purity. Specifically, a gas of 5N or more,
Alternatively, a gas having an oxygen content of several ppm or less may be used.

【0023】窒化温度は、100℃〜250℃が好まし
い。窒化温度が250℃を超えると、安定なFe
相、FeN相等が生成し、Fe16相が得られな
いので好ましくない。一方、窒化温度が100℃未満に
なると、Fe16相の生成速度が遅くなるので好ま
しくない。なお、磁性体中のFe16相の生成割合
は、窒化温度及び窒化時間に依存するので、目的とする
Fe16相の生成割合を得るには、窒化温度及び/
又は窒化時間を適宜調節すればよい。
The nitriding temperature is preferably from 100 ° C. to 250 ° C. When the nitriding temperature exceeds 250 ° C., stable Fe 3 N
Phase, Fe 4 N phase and the like are generated, and an Fe 16 N 2 phase cannot be obtained, which is not preferable. On the other hand, if the nitriding temperature is lower than 100 ° C., the generation rate of the Fe 16 N 2 phase is undesirably reduced. Since the formation ratio of the Fe 16 N 2 phase in the magnetic material depends on the nitriding temperature and the nitriding time, the desired formation ratio of the Fe 16 N 2 phase is determined by the nitriding temperature and / or the nitriding temperature.
Alternatively, the nitriding time may be appropriately adjusted.

【0024】以上のように、酸化鉄粉末等の原料を還元
処理し、これを窒化すると、鉄内部には、Fe−N系化
合物が生成する。この時、窒化温度を上述の範囲内とす
ると、準安定相であるFe16相を生成させること
ができる。また、窒化温度及び/又は窒化時間を適宜調
節することにより、Fe16相の生成割合を任意に
制御することができる。このようにして得られたFe−
N系磁性体は、α−Fe相とFe16相の混相を備
えており、Feを超える高い飽和磁化を発現する。
As described above, when a raw material such as an iron oxide powder is subjected to a reduction treatment and is nitrided, an Fe—N-based compound is generated inside the iron. At this time, if the nitriding temperature is set within the above range, a Fe 16 N 2 phase which is a metastable phase can be generated. Further, by appropriately adjusting the nitriding temperature and / or the nitriding time, the generation ratio of the Fe 16 N 2 phase can be arbitrarily controlled. The Fe- thus obtained
The N-based magnetic material has a mixed phase of an α-Fe phase and a Fe 16 N 2 phase, and exhibits high saturation magnetization exceeding Fe.

【0025】[0025]

【実施例】(実施例1)γ−Feの不定形超微粉
末(粒径10〜50nm)約2gをアルミナボートに乗
せ、水素気流中500℃で8時間還元処理を行った。次
いで、還元処理した粉末をアンモニアガスとアルゴンガ
スの流量比を2:1とした混合ガス気流中において、1
30℃×24時間窒化処理を行い、炉冷した。炉冷後に
試料を取り出して、振動試料型磁力計(東英工業製VS
M、最大印加磁場:1432kA/m)による飽和磁化
の測定を行った。得られた粉末の磁気特性は、飽和磁化
σs=208Am/kgであった。また、この粉末の
生成相をX線回折により評価したところ、生成相は、α
−Fe相とFe16相の混相であり、Fe16
相の生成割合は、60%であった。
(Example 1) About 2 g of amorphous ultrafine powder of γ-Fe 2 O 3 (particle size: 10 to 50 nm) was put on an alumina boat and subjected to a reduction treatment at 500 ° C. for 8 hours in a hydrogen stream. Next, the reduced powder is placed in a mixed gas stream having a flow ratio of ammonia gas to argon gas of 2: 1.
A nitriding treatment was performed at 30 ° C. for 24 hours and the furnace was cooled. After the furnace is cooled, the sample is taken out, and a vibrating sample magnetometer (VS.
M, maximum applied magnetic field: 1432 kA / m). The magnetic properties of the obtained powder were saturation magnetization σs = 208 Am 2 / kg. When the produced phase of this powder was evaluated by X-ray diffraction, the produced phase was α
A mixed phase of an Fe 16 N 2 phase and Fe 16 N 2
The phase formation ratio was 60%.

【0026】(実施例2〜4)供試材料は、実施例1の
場合と同一のものを使用した。この供試材を実施例1と
同一の条件下で還元処理した後、窒化温度及び窒化時間
を変えて窒化処理を行い、Fe16相の生成割合の
異なる粉末状の磁性体を得た。得られた粉末について、
実施例1と同一条件下で、磁気特性の測定及び生成相の
評価を行った。得られた粉末の生成相は、いずれもα−
Fe相とFe16相の混相であり、Fe16
の生成割合は、それぞれ、65%、40%及び10%で
あった。また、飽和磁化σsは、それぞれ、207Am
/kg、206Am/kg及び201Am/kg
であった。
(Examples 2 to 4) The same test materials as in Example 1 were used. After subjecting this test material to a reduction treatment under the same conditions as in Example 1, a nitridation treatment was performed by changing the nitriding temperature and the nitriding time to obtain a powdered magnetic material having a different generation ratio of the Fe 16 N 2 phase. . About the obtained powder,
Under the same conditions as in Example 1, the measurement of the magnetic properties and the evaluation of the generated phase were performed. The resulting phases of the resulting powder were all α-
This was a mixed phase of the Fe phase and the Fe 16 N 2 phase, and the generation ratios of the Fe 16 N 2 phase were 65%, 40%, and 10%, respectively. The saturation magnetization s is 207 Am
2 / kg, 206 Am 2 / kg and 201 Am 2 / kg
Met.

【0027】(比較例1)窒化条件を140℃×24時
間とした以外は、実施例1と同一の条件下で、γ−Fe
の還元処理及び窒化処理を行った。また、実施例
1と同一の条件下で、磁気特性の測定及び生成相の評価
を行った。得られた粉末の磁気特性は、飽和磁化σs=
200Am/kgであった。また、この粉末の生成相
をX線回折により評価したところ、生成相は、Fe16
相の単相であった。
Comparative Example 1 γ-Fe was obtained under the same conditions as in Example 1 except that the nitriding conditions were 140 ° C. for 24 hours.
A reduction treatment and a nitridation treatment of 2 O 3 were performed. Further, under the same conditions as in Example 1, the measurement of the magnetic properties and the evaluation of the generated phase were performed. The magnetic characteristics of the obtained powder are as follows:
200Am was 2 / kg. When the produced phase of this powder was evaluated by X-ray diffraction, the produced phase was Fe 16
It was a single phase of N 2 phase.

【0028】(比較例2)γ−Feの不定形超微
粉末(粒径10〜50nm)約2gをアルミナボートに
乗せ、水素気流中500℃で8時間還元処理を行った。
得られた還元粉末について、実施例1と同一の条件下
で、磁気特性の測定及び生成相の評価を行った。還元粉
末の磁気特性は、飽和磁化σs=200Am/kgで
あった。また、この還元粉末の生成相をX線回折により
評価したところ、生成相は、α−Feの単相であった。
Comparative Example 2 About 2 g of amorphous ultrafine powder of γ-Fe 2 O 3 (particle diameter: 10 to 50 nm) was placed on an alumina boat and subjected to a reduction treatment at 500 ° C. for 8 hours in a hydrogen stream.
With respect to the obtained reduced powder, measurement of magnetic properties and evaluation of a generated phase were performed under the same conditions as in Example 1. The magnetic properties of the reduced powder were as follows: saturation magnetization σs = 200 Am 2 / kg. When the produced phase of this reduced powder was evaluated by X-ray diffraction, the produced phase was a single phase of α-Fe.

【0029】図1に、実施例1〜4及び比較例1で得ら
れた粉末のX線回折パターンを示す。粉末試料で、Fe
16単相のとき、IFe16N2(202)/I
Fe1 6N2(220)≒2.0となる。また、2θ=
50°のピークは、Fe16 (202)ピークであ
り、2θ=52.4°のピークは、Fe16(22
0)のピークとFe(110)のピークが重なってい
る。また、図2に、図1から数1の式を用いて求めたF
16相の生成割合(%)と、粉末の飽和磁化(A
/kg)との関係をグラフに示したものである。ま
た、表1はその裏付けデータを示している。
FIG. 1 shows the results obtained in Examples 1 to 4 and Comparative Example 1.
2 shows the X-ray diffraction pattern of the powder obtained. In the powder sample, Fe
16N2When single phase, IFe16N2 (202)/ I
Fe1 6N2 (220)≒ 2.0. Also, 2θ =
The peak at 50 ° is Fe16N 2(202) at the peak
The peak at 2θ = 52.4 ° is Fe16N2(22
0) peak and Fe (110) peak overlap
You. Further, FIG. 2 shows the F obtained by using the equation of Equation 1 from FIG.
e16N2Phase formation ratio (%) and powder saturation magnetization (A
m2/ Kg) is shown in a graph. Ma
Table 1 shows the supporting data.

【0030】[0030]

【表1】 [Table 1]

【0031】図2より、実施例1〜4で得られた本発明
に係るFe−N系磁性体の飽和磁化σsは、Fe16
単相の場合及びα−Fe単相の場合よりも増加し、F
相の生成割合が約60%のところで飽和磁化
σsが極大になっていることがわかる。また、表1に、
印加磁場796kA/mの場合の磁化σsを併せて示し
た。印加磁場が796kA/mである場合、Fe16
単相及びα−Fe単相の磁化σsは、それぞれ、18
6Am/kg及び195Am/kgであった。これ
に対し、Fe16相及びα−Fe相の混相を備えた
本発明に係る磁性体の磁化σsは、196〜199Am
/kgであり、各相の相加平均から求められる磁化の
値を大きく上回った。
FIG. 2 shows that the saturation magnetization σs of the Fe—N-based magnetic material according to the present invention obtained in Examples 1 to 4 is Fe 16 N
2 and the α-Fe single phase,
It can be seen that production ratio of e 1 6 N 2 phase saturation magnetization σs is in maximum at about 60%. Also, in Table 1,
The magnetization σs when the applied magnetic field is 796 kA / m is also shown. When the applied magnetic field is 796 kA / m, Fe 16 N
The magnetizations s of the two single phases and the α-Fe single phase are 18
6Am was 2 / kg and 195Am 2 / kg. On the other hand, the magnetization σs of the magnetic material according to the present invention having the mixed phase of the Fe 16 N 2 phase and the α-Fe phase is 196 to 199 Am
2 / kg, which greatly exceeded the value of magnetization determined from the arithmetic mean of each phase.

【0032】以上、本発明の実施の形態について詳細に
説明したが、本発明は上記実施の形態に何ら限定される
ものではなく、本発明の要旨を逸脱しない範囲内で種々
の改変が可能である。例えば、上記実施例では、出発原
料としてγ−Feの不定形粉末を用いたが、α−
Fe、FeO、Feなどを出発原料として
用いても良い。また、出発原料として金属鉄粉末を用い
る場合において、表面の酸化膜が問題とならない時に
は、還元工程を省略し、直接、窒化処理しても良く、こ
れにより上記実施の形態と同様の効果を得ることができ
る。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. is there. For example, in the above example, an amorphous powder of γ-Fe 2 O 3 was used as a starting material.
Fe 2 O 3 , FeO, Fe 3 O 4 or the like may be used as a starting material. Further, in the case where the iron oxide powder is used as a starting material, when the oxide film on the surface is not a problem, the reduction step may be omitted and the nitriding treatment may be directly performed, thereby obtaining the same effect as the above embodiment. be able to.

【0033】[0033]

【発明の効果】本発明に係る高飽和磁化Fe−N系磁性
体は、α−Fe相とFe16相の混相を備えている
ので、Feを超える高い飽和磁化を発現するバルク体が
低コストで得られるという効果がある。また、混相中の
Fe16相の生成割合を10%〜90%とすると、
α−Fe単相あるいはFe16単相の場合よりも高
い飽和磁化を発現するという効果がある。
The high saturation magnetization Fe-N based magnetic material according to the present invention has a mixed phase of the α-Fe phase and the Fe 16 N 2 phase. The effect is obtained at low cost. Further, when the generation ratio of the Fe 16 N 2 phase in the mixed phase is 10% to 90%,
There is an effect that a higher saturation magnetization is exhibited than in the case of the α-Fe single phase or the Fe 16 N 2 single phase.

【0034】以上のように本発明によれば、低コストか
つ高飽和磁化を有する磁性材料が得られるので、これを
例えば塗布型の磁気記録媒体に応用すれば、磁気記録媒
体の高記録密度化、製造コストの削減等に寄与するもの
であり、産業上、その効果の極めて大きな発明である。
As described above, according to the present invention, a magnetic material having a low cost and a high saturation magnetization can be obtained. If this magnetic material is applied to, for example, a coating type magnetic recording medium, it is possible to increase the recording density of the magnetic recording medium. The present invention contributes to reduction of manufacturing cost and the like, and is an industrially extremely effective invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Fe16相の生成割合の異なるFe−N系
磁性体のX線回折パターンである。
FIG. 1 is an X-ray diffraction pattern of Fe—N based magnetic materials having different generation ratios of a Fe 16 N 2 phase.

【図2】Fe16相の生成割合と飽和磁化の関係を
示す図である。
FIG. 2 is a diagram showing the relationship between the generation ratio of Fe 16 N 2 phase and saturation magnetization.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 義雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 山田 勝則 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 神谷 信雄 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 5E041 AA11 AA19 BD00 CA01 NN01 NN15  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshio Kato 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside of Toyota Central R & D Laboratories Co., Ltd. No. 41, Yokomichi, Toyota Central Research Laboratory Co., Ltd. (72) Inventor Nobuo Kamiya 41, Ochi-Cho, Yoji, Nagakute-cho, Aichi-gun, Aichi Prefecture F-term in Toyota Central Research Laboratory Co., Ltd. 5E041 AA11 AA19 BD00 CA01 NN01 NN15

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 α−Fe相とFe16相の混相を主
相とし、該混相中のFe16相の生成割合が10%
以上90%以下である高飽和磁化Fe−N系磁性体。
1. A alpha-Fe phase and Fe 16 N 2 phase mixed phase as the main phase, the rate of formation of Fe 16 N 2 phase in該混phase 10%
A high saturation magnetization Fe-N based magnetic material having a content of not less than 90% or less.
【請求項2】 前記磁性体において、α−Fe相とFe
16相の相加平均以上の飽和磁化を有している請求
項1に記載の高飽和磁化Fe−N系磁性体。
2. The method according to claim 1, wherein the magnetic material comprises an α-Fe phase and Fe
High saturation magnetization Fe-N based magnetic material according to claim 1 which has a arithmetic mean more saturated magnetization of 16 N 2 phase.
【請求項3】 前記磁性体は、バルク体である請求項1
又は2に記載の高飽和磁化Fe−N系磁性体。
3. The magnetic body according to claim 1, wherein the magnetic body is a bulk body.
Or the high saturation magnetization Fe-N-based magnetic material according to 2.
JP36214999A 1999-12-21 1999-12-21 HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL Pending JP2001176715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36214999A JP2001176715A (en) 1999-12-21 1999-12-21 HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36214999A JP2001176715A (en) 1999-12-21 1999-12-21 HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL

Publications (1)

Publication Number Publication Date
JP2001176715A true JP2001176715A (en) 2001-06-29

Family

ID=18476074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36214999A Pending JP2001176715A (en) 1999-12-21 1999-12-21 HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL

Country Status (1)

Country Link
JP (1) JP2001176715A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964811B2 (en) 2002-09-20 2005-11-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US7238439B2 (en) 2003-02-19 2007-07-03 Hitachi Maxell, Ltd. Magnetic recording medium containing particles with a core containing a Fe16N2 phase
US7241501B2 (en) 2003-11-27 2007-07-10 Dowa Mining Co., Ltd. Iron nitride magnetic powder and method of producing the powder
US7267896B2 (en) 2002-03-18 2007-09-11 Hitachi Maxell, Ltd. Magnetic tape and magnetic tape cartridge
JP2008159259A (en) * 2008-02-13 2008-07-10 Hitachi Maxell Ltd Magnetic recording medium
WO2011049080A1 (en) * 2009-10-22 2011-04-28 戸田工業株式会社 Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet
EP2954540A4 (en) * 2013-02-07 2017-06-28 Regents of the University of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
EP2666563A4 (en) * 2011-01-21 2018-04-04 Toda Kogyo Corporation Ferromagnetic granular powder and method for manufacturing same, as well as anisotropic magnet, bonded magnet, and pressed-powder magnet
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
WO2021131162A1 (en) 2019-12-25 2021-07-01 株式会社日立製作所 Soft magnetic steel sheet, method for manufacturing said soft magnetic steel sheet, and core and dynamo-electric machine in which said soft magnetic steel sheet is used
DE112019006230T5 (en) 2019-02-13 2021-09-02 Hitachi, Ltd. SOFT MAGNETIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME ELECTRIC MOTOR CONTAINING SOFT MAGNETIC MATERIAL
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
DE112021003213T5 (en) 2020-09-30 2023-04-27 Hitachi, Ltd. Soft magnetic material, method of manufacturing a soft magnetic material and electric motor

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445858B2 (en) 2002-03-18 2008-11-04 Hitachi Maxell, Ltd. Magnetic recording medium using magnetic powder having a core portion and an outer layer portion including a rare earth element and magnetic recording cassette
US7267896B2 (en) 2002-03-18 2007-09-11 Hitachi Maxell, Ltd. Magnetic tape and magnetic tape cartridge
US7291409B2 (en) 2002-03-18 2007-11-06 Hitachi Maxell, Ltd. Magnetic recording medium using magnetic powder having a core portion and an outer layer portion including a rare earth element and magnetic recording cassette
US7510790B2 (en) 2002-09-20 2009-03-31 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US6964811B2 (en) 2002-09-20 2005-11-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US7238439B2 (en) 2003-02-19 2007-07-03 Hitachi Maxell, Ltd. Magnetic recording medium containing particles with a core containing a Fe16N2 phase
US7700204B2 (en) 2003-02-19 2010-04-20 Hitachi Maxell, Ltd. Magnetic recording medium containing particles with a core containing a FE16N2 phase
US7241501B2 (en) 2003-11-27 2007-07-10 Dowa Mining Co., Ltd. Iron nitride magnetic powder and method of producing the powder
JP2008159259A (en) * 2008-02-13 2008-07-10 Hitachi Maxell Ltd Magnetic recording medium
WO2011049080A1 (en) * 2009-10-22 2011-04-28 戸田工業株式会社 Ferromagnetic particle powder, method for producing same, anisotropic magnet and bonded magnet
EP2666563A4 (en) * 2011-01-21 2018-04-04 Toda Kogyo Corporation Ferromagnetic granular powder and method for manufacturing same, as well as anisotropic magnet, bonded magnet, and pressed-powder magnet
US11742117B2 (en) 2011-08-17 2023-08-29 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10692635B2 (en) 2013-02-07 2020-06-23 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
JP2017126755A (en) * 2013-02-07 2017-07-20 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
EP2954540A4 (en) * 2013-02-07 2017-06-28 Regents of the University of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11217371B2 (en) 2013-02-07 2022-01-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US10961615B2 (en) 2014-06-30 2021-03-30 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US11214862B2 (en) 2014-08-08 2022-01-04 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
DE112019006230T5 (en) 2019-02-13 2021-09-02 Hitachi, Ltd. SOFT MAGNETIC MATERIAL AND METHOD FOR MANUFACTURING THE SAME ELECTRIC MOTOR CONTAINING SOFT MAGNETIC MATERIAL
WO2021131162A1 (en) 2019-12-25 2021-07-01 株式会社日立製作所 Soft magnetic steel sheet, method for manufacturing said soft magnetic steel sheet, and core and dynamo-electric machine in which said soft magnetic steel sheet is used
DE112021003213T5 (en) 2020-09-30 2023-04-27 Hitachi, Ltd. Soft magnetic material, method of manufacturing a soft magnetic material and electric motor

Similar Documents

Publication Publication Date Title
JP2001176715A (en) HIGH SATURATION MAGNETIZATION Fe-N MAGNETIC MATERIAL
JP3848486B2 (en) Iron nitride magnetic powder material for magnetic recording medium, method for producing the same, and magnetic recording medium
JP3932326B2 (en) Manufacturing method of iron nitride magnetic material
Lee et al. Rapid ordering of Zr-doped FePt alloy films
Sun et al. Synthesis and magnetic properties of CoPt nanoparticles
Yamanaka et al. Humidity effects in Fe16N2 fine powder preparation by low-temperature nitridation
JP2017530547A (en) Multi-layer iron nitride hard magnetic material
JP2000277311A5 (en)
KR20040037609A (en) HIGH-DENSITY MAGNETIC RECORDING MEDIA USING FePtC FILM AND MANUFACTURING METHOD THEREOF
Kuo et al. Microstructure and magnetic properties of the (FePt) 100− x Cr x thin films
JP2005273011A (en) Iron based nanosize particle and production method therefor
JP2012246174A (en) Method for manufacturing iron nitride material, and iron nitride material
CN104823249A (en) Rare-earth permanent magnetic powders, bonded magnet comprising same, and device using bonded magnet
JPS60131949A (en) Iron-rare earth-nitrogen permanent magnet
Kikkawa et al. Fine Fe16N2 powder prepared by low-temperature nitridation
Luborsky Permanent magnets in use today
JP2011246820A (en) Iron-based nanosize particle and method for producing the same
US20210123126A1 (en) MAGNETIC MATERIAL INCLUDING a"-Fe16(NxZ1-x)2 OR A MIXTURE OF a"-Fe16Z2 AND a"-Fe16N2, WHERE Z INCLUDES AT LEAST ONE OF C, B, OR O
Mohapatra et al. Hard and semi-hard Fe-based magnetic materials
JP4502978B2 (en) Iron nitride magnetic powder material, method for producing the same, and magnetic recording medium
JPS5976403A (en) Ferromagnetic substance containing as base carburized nitrided iron
JP5011588B2 (en) Magnetic material
Tobise et al. Proposal of New Co-Addition Method for α”-Fe₁₆ (N, C) ₂ Particles by Gas–Solid Reactions
Talijan Magnetic properties of sintered high energy Sm-Co and Nd-Fe-B magnets
JPH04230004A (en) Manufacture of magnetic recording needle ferroalloy magnetic particle powder