JPH04118884A - Solid discharge element - Google Patents

Solid discharge element

Info

Publication number
JPH04118884A
JPH04118884A JP23875390A JP23875390A JPH04118884A JP H04118884 A JPH04118884 A JP H04118884A JP 23875390 A JP23875390 A JP 23875390A JP 23875390 A JP23875390 A JP 23875390A JP H04118884 A JPH04118884 A JP H04118884A
Authority
JP
Japan
Prior art keywords
electrode
hard carbon
discharge
carbide layer
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23875390A
Other languages
Japanese (ja)
Other versions
JP3135064B2 (en
Inventor
Hidekazu Ota
英一 太田
Yoshiyuki Kageyama
喜之 影山
Hitoshi Kondo
均 近藤
Yuji Kimura
裕治 木村
Masayoshi Takahashi
高橋 正悦
Kenji Kameyama
健司 亀山
Katsuyuki Yamada
勝幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP02238753A priority Critical patent/JP3135064B2/en
Publication of JPH04118884A publication Critical patent/JPH04118884A/en
Application granted granted Critical
Publication of JP3135064B2 publication Critical patent/JP3135064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To keep on stable and uniform discharging during continuous service by means of corona discharge by providing a protective membrane made up out of a hard carbon membrane or of a carbide layer or of a membrane composed of a laminated hard carbon membrane and carbide layer. CONSTITUTION:An exciting electrode 2 is provided within a dielectric substrate 1 as a first electrode, and a discharge electrode 3 is provided over the dielectric substrate 1 as a second electrode. In addition, the surface or the neighborhood of the second electrode 3 is sheathed with a hard carbon membrane 4 of a carbide layer 5. The dielectric substrate 1 shall be made of material such as the various kinds of fine ceramics, for example, alumina, zirconia and the like which is mechanically, electrically, physically and thermally stable. Both of the first and second electrodes 2 and 3 shall be desirably made of material which is much adaptable to the dielectric substrate 1, and is roughly equivalent to the substrate in thermal expansion coefficient particularly such as tungsten, tantalum, nickel, gold and the like. In order to form the hard carbon membrane 4, organic compound gas, hydrocarbon gas in particular shall be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真複写機、プリンターの感光体などを
帯電、除電させるコロナ放電装置に用いられる固体放電
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state discharge element used in a corona discharge device for charging and neutralizing photoreceptors of electrophotographic copying machines and printers.

〔従来の技術〕[Conventional technology]

従来、交流やパルス的な電圧で誘電体の表層上の空間に
イオンや電子を発生させ、それを直流電界で被帯電面に
移動させる機能をもたせた固体放電素子が提案されてい
る(たとえば特開昭59−44782号公報)。
Conventionally, solid-state discharge elements have been proposed that have the function of generating ions and electrons in the space above the surface layer of a dielectric material using alternating current or pulsed voltage, and moving them to the charged surface using a direct current electric field (for example, Publication No. 59-44782).

この固体放電素子の構造は誘電体の表面や内部に電極を
設け、これに高電圧を印加するものである。この固体放
電素子に使用する誘電体材料としては機械的、電気的、
化学的、熱的に丈夫なセラミック材料1例えば高純度ア
ルミナ磁膏が用いられている。これを生地のまま使用す
るか、表面に別の材料、例えば合成樹脂などを付着させ
て使用している。
The structure of this solid state discharge element is to provide electrodes on the surface or inside of a dielectric material, and to apply a high voltage to the electrodes. The dielectric material used in this solid state discharge device is mechanically, electrically,
A chemically and thermally strong ceramic material 1 such as high purity alumina plaster is used. This fabric is used as is, or another material, such as synthetic resin, is attached to the surface.

電極材料としては誘電体となじみが良く、熱膨張係数の
近いものを用いている。高純度アルミナ磁器のときはタ
ングステンが主として用いられている。
The electrode material used is one that is compatible with the dielectric and has a similar coefficient of thermal expansion. Tungsten is mainly used for high-purity alumina porcelain.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の従来技術のように電極材料としてタングステン等
の金属を用いた場合、コロナ放電を継続して行なうと、
電極のエツジ部分が放電の影響でしだいに変形して、結
果として放電が不均一になることがわかった。これはコ
ロナ放電により電極表面がイオン衝撃や電子衝撃を受け
るためと思われる。
When a metal such as tungsten is used as the electrode material as in the prior art described above, if corona discharge is continued,
It was found that the edge of the electrode gradually deforms under the influence of the discharge, resulting in uneven discharge. This is thought to be because the electrode surface is subjected to ion bombardment and electron bombardment due to corona discharge.

本発明は、これらの問題点を解決し、継続使用しても安
定に放電する固体放電素子を提供することを目的とする
An object of the present invention is to solve these problems and provide a solid-state discharge element that discharges stably even when used continuously.

〔課題を解決するための手段及び作用〕本発明者らは、
前記固体放電素子の問題点を解決すべく鋭意研究を重ね
た結果、電極表面に保護層として硬質炭素膜あるいは炭
化物層あるいはこれらを積層したものを設けることが特
に効果的であることを見出した。さらに上記硬質炭素膜
、炭化物層の成膜方法に関して、固体放電素子の構成要
素自体を利用する独自の方法をも開発した。
[Means and effects for solving the problem] The present inventors,
As a result of intensive research aimed at solving the problems of the solid-state discharge device, it has been found that it is particularly effective to provide a hard carbon film, a carbide layer, or a stack of these as a protective layer on the electrode surface. Furthermore, regarding the method for forming the above-mentioned hard carbon film and carbide layer, we have also developed a unique method that utilizes the constituent elements of the solid-state discharge device itself.

以下、添付図面にそって本発明の説明をおこなう。The present invention will be described below with reference to the accompanying drawings.

第1図は本発明の固体放電素子の一構成例を示したもの
で、誘電体基板l内に第1電極(励起電極)2を設け、
誘電体基板1上に第2電極(放電電極)3を設けている
。さらに第2電極3の表面あるいはその近傍に保護膜と
しての硬質炭素膜4あるいは炭化物層5を被覆しである
。第1図(a)が第2電極3の表面に保護層を設けた場
合、第1図(b)が第2電極3の表面及びその近傍に保
護層を設けた場合である。
FIG. 1 shows an example of the structure of the solid-state discharge element of the present invention, in which a first electrode (excitation electrode) 2 is provided in a dielectric substrate l,
A second electrode (discharge electrode) 3 is provided on the dielectric substrate 1 . Further, the surface of the second electrode 3 or its vicinity is coated with a hard carbon film 4 or a carbide layer 5 as a protective film. FIG. 1(a) shows a case where a protective layer is provided on the surface of the second electrode 3, and FIG. 1(b) shows a case where a protective layer is provided on the surface of the second electrode 3 and its vicinity.

誘電体基板1としては、種々のファインセラミック材料
、たとえばアルミナ、ジルコニアなど機械的、電気的、
化学的、熱的に安定な材料を使用するが、特にこれらに
限られるものではない。
The dielectric substrate 1 may be made of various fine ceramic materials such as alumina, zirconia, etc.
Chemically and thermally stable materials are used, but are not particularly limited to these.

第1電極2、第2電極3の金属材料としては、誘電体基
板1となじみが良く、熱膨張係数の近いものが好ましく
、具体的にはタングステン、タンタル、ニッケル、金な
どであるが、特にこれらに限定されるものではない。
The metal material for the first electrode 2 and the second electrode 3 is preferably a material that is compatible with the dielectric substrate 1 and has a coefficient of thermal expansion close to that of the dielectric substrate 1. Specific examples include tungsten, tantalum, nickel, and gold, but in particular It is not limited to these.

次に本発明の硬質炭素膜4について詳しく説明する。Next, the hard carbon film 4 of the present invention will be explained in detail.

硬質炭素膜4を形成するためには有機化合物ガス、特に
炭化水素ガスが用いられるにれら原料における相状態は
常温常圧において必ずしも気相である必要はなく、加熱
あるいは減圧等により溶融、蒸発、昇華等を経て気化し
得るものであれば、液相でも固相でも使用可能である。
In order to form the hard carbon film 4, an organic compound gas, especially a hydrocarbon gas, is used.The phase state of these raw materials does not necessarily have to be a gas phase at room temperature and normal pressure, but can be melted or evaporated by heating or reduced pressure. It can be used in either liquid phase or solid phase as long as it can be vaporized through sublimation or the like.

原料ガスとしての炭化水素ガスについては、例えばCH
4、C2HいC,H,、C,Hl。等のパラフィン系炭
化水素、C2H,等のアセチレン系炭化水素、オレフィ
ン系炭化水素、アセチレン系炭化水素、ジオレフィン系
炭化水素、さらには芳香族炭化水素などすべての炭化水
素を少なくとも含むガスが使用可能である。
Regarding hydrocarbon gas as a raw material gas, for example, CH
4, C2H C, H,, C, Hl. Gases containing at least all hydrocarbons such as paraffinic hydrocarbons such as C2H, acetylenic hydrocarbons such as C2H, olefinic hydrocarbons, acetylenic hydrocarbons, diolefinic hydrocarbons, and even aromatic hydrocarbons can be used. It is.

さらに、炭化水素以外でも1例えば、アルコール類、ケ
トン類、エーテル類、エステル類、C05CO□等、少
なくとも炭素元素を含む化合物であれば使用可能である
Furthermore, other than hydrocarbons, compounds containing at least the carbon element can be used, such as alcohols, ketones, ethers, esters, and C05CO□.

原料ガスからの硬質炭素膜の形成方法としては、成膜活
性種が、直流、低周波、高周波、あるいはマイクロ波等
を用いたプラズマ法により生成されるプラズマ状態を経
て形成される方法が好ましいが、より大面積化、均一性
向上、低温製膜の目的で、低圧下で堆積を行なうため、
t1界効果を利用する方法がさらに好ましい。また高温
における熱分解によっても活性種を形成できる。その他
にも、イオン化蒸着法、あるいはイオンビーム蒸着法等
により生成されるイオン状態を経て形成されてもよいし
、真空蒸着法、あるいはスパッタリング法等により生成
される中性粒子から形成されてもよいし、さらには、こ
れらの組み合わせにより形成されてもよい。
As a method for forming a hard carbon film from a raw material gas, a method in which active species for film formation are formed through a plasma state generated by a plasma method using direct current, low frequency, high frequency, microwave, etc. is preferable. , to perform deposition under low pressure for the purpose of larger area, improved uniformity, and low-temperature film formation.
More preferred is a method that utilizes the t1 field effect. Active species can also be formed by thermal decomposition at high temperatures. In addition, it may be formed through an ionic state generated by an ionization vapor deposition method, an ion beam vapor deposition method, etc., or it may be formed from neutral particles generated by a vacuum vapor deposition method, a sputtering method, etc. However, it may also be formed by a combination of these.

こうして作製される硬質炭素膜の堆積条件の一例はプラ
ズマCVD法の場合、次の通りである68F畠カニ 0
.1−5H/cm″ 圧 カニ 10”” 〜10Torr 堆積温度:室温〜950℃ このプラズマ状態により原料ガスがラジカルとイオンと
に分解され反応することによって、基板上に炭素原子C
と水素原子Hとからなるアモルファス(非晶質)及び微
結晶質(結晶の大きさは数10人〜数声)の少なくとも
一方を含む硬質炭化膜が堆積する。また、硬質炭化膜の
諸特性を第1表に示す。
An example of the deposition conditions for the hard carbon film produced in this way is as follows in the case of plasma CVD method.
.. 1-5H/cm" Pressure 10"" ~ 10 Torr Deposition temperature: Room temperature ~ 950°C Due to this plasma state, the raw material gas is decomposed into radicals and ions and reacts, thereby forming carbon atoms C on the substrate.
A hard carbonized film containing at least one of amorphous (non-crystalline) and microcrystalline (crystal size is several tens to several centimeters) is deposited. Further, various properties of the hard carbonized film are shown in Table 1.

第1表 注)測定法; 比抵抗(ρ):コプレナー型セルによるI−V特性より
求める。
Table 1 Note) Measuring method: Specific resistance (ρ): Determined from the IV characteristics using a coplanar cell.

ビッカース硬度(H)二マイクロビッカース計による。Vickers hardness (H) by 2 micro Vickers meter.

屈折率(n):エリプソメーターによる。Refractive index (n): by ellipsometer.

欠陥密度: ESHによる。Defect density: According to ESH.

こうして形成される硬質炭素膜はラマン分光法及びIR
吸収法による分析の結果、夫々、第2図及び第3図に示
すように炭素原子がSP゛の混成軌道とSP2の混成軌
道とを形成した原子間結合が混在していることが明らか
になっている。SP3結合とSP2結合の比率は、 I
Rスペクトルをピーク分離することで概ね推定できる。
The hard carbon film thus formed was measured using Raman spectroscopy and IR spectroscopy.
As a result of analysis by absorption method, it was revealed that there were interatomic bonds in which the carbon atoms formed SP' hybrid orbitals and SP2 hybrid orbitals, as shown in Figures 2 and 3, respectively. ing. The ratio of SP3 binding to SP2 binding is I
It can be roughly estimated by peak-separating the R spectrum.

IRスペクトルには、2800〜3150cm−”に多
くのモードのスペクトルが重なって測定されるが、夫々
の波数に対応するピークの帰属は明らかになっており、
第4図の如くガウス分布によってピーク分離を行ない、
夫々のピーク面積を算出し、その比率を求めればSP2
/SP3比を知ることができる。この方法による分析結
果から。
In the IR spectrum, the spectra of many modes overlap in the range from 2800 to 3150 cm-'', but the attribution of the peak corresponding to each wave number has been clarified.
Peak separation is performed using Gaussian distribution as shown in Figure 4,
If you calculate each peak area and find the ratio, SP2
/SP3 ratio can be known. From the analysis results using this method.

硬質炭素膜はその成膜条件により、5P3rich (
すなわちSP”poor)な膜から5P2rich (
すなわち5P3poor)な膜まで作製可能であること
が判った。
The hard carbon film is 5P3rich (
In other words, from a film with SP”poor) to 5P2rich (
In other words, it was found that it is possible to fabricate up to a 5P3poor film.

また、X線及び電子線回折分析によればアモルファス状
態(a−C:)I)、及び/又は約50人〜数戸程度の
微結晶粒を含むアモルファス状態にあることが判ってい
る。
Moreover, according to X-ray and electron diffraction analysis, it has been found that it is in an amorphous state (a-C:)I) and/or an amorphous state containing about 50 to several microcrystalline grains.

一般に量産に適しているプラズマCVD法の場合には、
RF出力が小さいほど膜の比抵抗値および硬度が増加し
、低圧力なほど活性種の寿命が増加するために基板温度
の低温化、大面積での均一化が図れ、かつ比抵抗、硬度
が増加する傾向にある。
In the case of plasma CVD method, which is generally suitable for mass production,
The lower the RF output, the higher the resistivity and hardness of the film, and the lower the pressure, the longer the life of the active species. There is a tendency to increase.

更に、低圧力ではプラズマ密度が減少するため、磁場閉
じ込め効果を利用する方法は、比抵抗の増加には特に効
果的である。
Furthermore, since the plasma density decreases at low pressures, methods using magnetic field confinement effects are particularly effective in increasing resistivity.

以上は通常用いられている平行平板型プラズマCVD装
置(法)で第1図の第2電極(3)の表面あるいはその
近傍に、硬質炭素膜4を形成する方法について述べたも
のであるが、本発明者らはさらに固体放電素子の構成要
素自体を利用する独自の成膜法をも開発した。以下にこ
れを述べる。
The above describes a method for forming a hard carbon film 4 on or near the surface of the second electrode (3) in FIG. 1 using a commonly used parallel plate plasma CVD apparatus (method). The present inventors have also developed a unique film-forming method that utilizes the constituent elements of solid-state discharge devices themselves. This will be discussed below.

成型1工U 第5図のごとく固体放電素子の基本構造体6(要素1,
2.3から構成されたもの)全体を硬質炭素膜の原料ガ
ス雰囲気(前記で説明したガス材料、圧力範囲と同じ)
に保持し、第1電極2と第2電極3間に数10−数10
MHz、具体的には50Hz−13,56MHz程度の
交流電圧を印加し、原料ガスからなるグロー放電を発生
させる。原料ガスは前述同様ラジカル及びイオンに分解
され、第2電極3表面及びその近傍に硬質炭素膜4が形
成される。このような成膜法をとることでグロー放電領
域は第2電極近傍に集中され、通常の平行平板型プラズ
マCVD装置を使用した場合よりも堆積速度が2倍以上
になり(プラズマ密度があがる。)、さらに堆積領域も
第2電極近傍に限定される。
Molding 1 U As shown in Figure 5, the basic structure 6 (element 1,
2.3)) The entire hard carbon membrane raw material gas atmosphere (same gas material and pressure range as explained above)
between the first electrode 2 and the second electrode 3.
An alternating current voltage of about MHz, specifically about 50 Hz to 13.56 MHz, is applied to generate a glow discharge made of the raw material gas. The raw material gas is decomposed into radicals and ions as described above, and a hard carbon film 4 is formed on the surface of the second electrode 3 and its vicinity. By employing such a film forming method, the glow discharge region is concentrated near the second electrode, and the deposition rate is more than double that when a normal parallel plate plasma CVD apparatus is used (the plasma density is increased). ), and the deposition region is also limited to the vicinity of the second electrode.

處櫃1工n 第6図のごとく第2電極3に電圧を印加し、第2電極3
自体を抵抗加熱(約900℃程度まで)する。原料ガス
の一部は熱分解されうるが、むしろ成膜法(1)と併用
することで、より効果的に硬質炭素膜4を成膜すること
ができる。この場合第2電極3の通電加熱は基板温度を
あたえるために主に利用され、特別な基板加熱用の装置
構成が必要なくなる。
As shown in Figure 6, voltage is applied to the second electrode 3, and the second electrode 3
Resistance heating itself (up to about 900°C). Although a part of the raw material gas may be thermally decomposed, the hard carbon film 4 can be formed more effectively by using it in combination with the film forming method (1). In this case, the electrical heating of the second electrode 3 is mainly used to provide the substrate temperature, and a special device configuration for heating the substrate is not required.

次に、本発明の炭化物層5について説明する。Next, the carbide layer 5 of the present invention will be explained.

一般に周期表IV、V、VI及び鉄族の炭化物は安定で
、高融点、高硬度の特性をもっている。特にTaC,l
lIC,V、C等は優れており(各々の融点は3877
℃、2865℃)、また、耐酸化性も耐熱金属より優れ
ている。
In general, carbides of groups IV, V, and VI of the periodic table and iron groups are stable, and have the characteristics of high melting point and high hardness. Especially TaC,l
IC, V, C, etc. are excellent (each melting point is 3877
℃, 2865℃), and its oxidation resistance is also superior to that of heat-resistant metals.

本発明の固体放電素子の第2電極材料を炭化反応させる
か、炭化物を表面に堆積させれば上記炭化物層を形成で
きる。具体的には、真空中で蒸発金属原子を供給する手
段と、該金属原子とガス分子(特に炭化水素ガス)を励
起させるプラズマ領域を発生させる手段を設け、基板上
に炭化物層として堆積させる。さらに具体的には活性化
反応性蒸着法、高周波イオンブレーティング法などで形
成することができる。圧力は概ね、10′″2〜10−
’Torrであり1反応ガスはC,H,、CI、等を使
用する。この場合にも、プラズマ領域発生手段として、
硬質炭化膜の形成時に使用した成膜法(1)を、また、
基板加熱及びガスの加熱手段として成膜法(2)を用い
ることは成膜装置を簡略化する上で有効である。
The carbide layer can be formed by subjecting the second electrode material of the solid discharge device of the present invention to a carbonization reaction or by depositing carbide on the surface. Specifically, means for supplying vaporized metal atoms in a vacuum and means for generating a plasma region that excites the metal atoms and gas molecules (particularly hydrocarbon gas) are provided to deposit them as a carbide layer on the substrate. More specifically, it can be formed by an activated reactive vapor deposition method, a high frequency ion blating method, or the like. The pressure is approximately 10'''2 to 10-
'Torr and one reaction gas is C, H, CI, etc. Also in this case, as a plasma region generating means,
The film formation method (1) used when forming the hard carbonized film was also
Using the film forming method (2) as a substrate heating and gas heating means is effective in simplifying the film forming apparatus.

上記で番±・第2電極3の表面あるいはその近傍に保護
膜として硬質炭素膜4、あるいは炭化物層5を設けたが
、本発明によれば第7図に示すように保護層として硬質
炭素膜4と炭化物層5とを積層したものを用いてもよい
。この場合、連続使用時の放電均一性の向上に加えて、
耐クラツク性、耐剥離性、耐酸化性の著しい向上が期待
できる。
In the above, the hard carbon film 4 or the carbide layer 5 was provided as a protective film on or near the surface of the second electrode 3, but according to the present invention, as shown in FIG. 4 and a carbide layer 5 may be used. In this case, in addition to improving discharge uniformity during continuous use,
Significant improvements in crack resistance, peeling resistance, and oxidation resistance can be expected.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明をさらに詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.

誘電体基板1の材料として高純度アルミナ(90%以上
)を用い、第1電極2の材料としてタングステンとアル
ミナの混合物を用いて同時焼結することで、先ず固体放
電素子の基本構造体6を作製した(第5図)、先に第2
電極3としてタングステンをスクリーン印刷法及びその
後の焼成によって形成した。さらに第2電極表面及びそ
の近傍にRFプラズマCVD法によって硬質炭素膜4に
堆積させた。このときの成膜条件を以下に示す。
By using high-purity alumina (90% or more) as the material for the dielectric substrate 1 and a mixture of tungsten and alumina as the material for the first electrode 2, the basic structure 6 of the solid-state discharge element is first formed by simultaneous sintering. (Fig. 5), first the second
Tungsten was formed as the electrode 3 by screen printing and subsequent firing. Further, a hard carbon film 4 was deposited on the surface of the second electrode and its vicinity by RF plasma CVD. The film forming conditions at this time are shown below.

RF出力=2111/cI112 圧   カニ 0.05Torr 基板温度:850℃(成膜法(2)を併用)CH,/)
12: 1.5vo1% こうして作成した固体放電素子を第8図に示す装置系で
連続放電テストした。第8図中、7は被帯電体、8は交
流電源で、本テストでは:3kHz、5〜7kVで駆動
した。9は直流バイアス電流であり、2kV印加した。
RF output = 2111/cI112 Pressure Crab 0.05 Torr Substrate temperature: 850°C (combined with film formation method (2)) CH, /)
12: 1.5vo1% The solid discharge device thus prepared was subjected to a continuous discharge test using the apparatus shown in FIG. In FIG. 8, 7 is an object to be charged, and 8 is an AC power source, which was driven at 3 kHz and 5 to 7 kV in this test. 9 is a DC bias current, and 2 kV was applied.

この条件でテストを行ったところ、第2電極3のエツジ
部にコロナ放電の発光が1!察された。比較のために硬
質炭素膜4のない固体放電素子も作成し、両者を継続し
て放電させ、その発光の様子から放電均一性を評価した
。その結果、硬質炭素膜4のないサンプルでは300時
間経過後ぐらいから放電の不均一が見られはじめた。一
方、硬質炭素膜4を設けたサンプルでは600時間経過
後も均一な放電が維持されることが確認された。ただし
、放電開始電圧は硬質炭素膜4のないサンプル(従来型
)が4.5kVであるのに対し、硬質炭素膜4を設けた
サンプル(本実施例)では5.2kVと若干高くなって
いた。300時間経過後の各サンプルの第2電極3のエ
ツジ部分を光学顕微銀で観察したところ、硬質炭素膜4
のないサンプルではエツジ部の変形が著しかった。一方
、硬質炭素膜4を設けたサンプルではエツジ部変形が比
較的小さくなっていた。
When a test was conducted under these conditions, 1! of corona discharge light was emitted at the edge of the second electrode 3! It was noticed. For comparison, a solid discharge device without the hard carbon film 4 was also created, and both devices were continuously discharged, and the discharge uniformity was evaluated from the appearance of light emission. As a result, in the sample without the hard carbon film 4, non-uniform discharge began to be observed after about 300 hours. On the other hand, it was confirmed that uniform discharge was maintained even after 600 hours in the sample provided with the hard carbon film 4. However, the discharge starting voltage was 4.5 kV for the sample without the hard carbon film 4 (conventional type), whereas it was slightly higher at 5.2 kV for the sample with the hard carbon film 4 (this example). . When the edge portion of the second electrode 3 of each sample was observed with an optical silver microscope after 300 hours, it was found that the hard carbon film 4
In the sample without , the deformation of the edges was significant. On the other hand, in the sample provided with the hard carbon film 4, the edge deformation was relatively small.

また、硬質炭素膜4と第2電極材料との密着力及び熱膨
張率差を緩和させるために第2電極3の表面に先ず炭化
物層5を形成し、次に硬質炭素膜4を形成して積層構造
の保護膜を設けた固体放電素子(第8図)を作成したと
ころ、連続使用時の安定性のみならず耐クラック性、耐
剥離性、耐酸化性の面でも著しい効果を示した。
In addition, in order to reduce the adhesion and the difference in thermal expansion coefficient between the hard carbon film 4 and the second electrode material, the carbide layer 5 is first formed on the surface of the second electrode 3, and then the hard carbon film 4 is formed. When a solid-state discharge device (Fig. 8) provided with a protective film having a laminated structure was prepared, it showed remarkable effects not only in terms of stability during continuous use but also in terms of crack resistance, peeling resistance, and oxidation resistance.

実施例2 実施例1と同様の構成で第2電極3の保護膜として炭化
物層5を用いたサンプルを作製し、上記と同様、連続放
電テストを行なった。その結果、炭化物層5を設けたサ
ンプルでは600時間経過後も均一な放電が維持される
ことが確認された。なお、このサンプルでは放電開始電
圧は5.5kVであった。
Example 2 A sample was prepared using the carbide layer 5 as a protective film for the second electrode 3 with the same configuration as in Example 1, and a continuous discharge test was conducted in the same manner as above. As a result, it was confirmed that in the sample provided with the carbide layer 5, uniform discharge was maintained even after 600 hours. In this sample, the discharge starting voltage was 5.5 kV.

実施例3 第7図に示した構成と同様に第2電極3の保護膜として
炭化物層5と硬質炭素膜4のvt、H材料を用いたサン
プルを作製し、上記と同様に連続放電テストを行なった
。その結果、700時間後も均一な放電が維持されるこ
とが確認された。放電開始電圧は約5.6kVであった
Example 3 A sample using Vt and H materials of the carbide layer 5 and the hard carbon film 4 was prepared as a protective film for the second electrode 3 in the same manner as the configuration shown in FIG. 7, and a continuous discharge test was conducted in the same manner as above. I did it. As a result, it was confirmed that uniform discharge was maintained even after 700 hours. The discharge starting voltage was about 5.6 kV.

(発明の効果〕 以上説明したように1本発明の固体放電素子によれば、
保護膜として硬質炭素膜あるいは炭化物層あるいはこれ
らを積層したものを設けたので、放電電極がコロナ放電
によるダメージから保脛され、コロナ放電による継続使
用においても安定した均一な放電の維持が可能となる。
(Effects of the Invention) As explained above, according to the solid discharge device of the present invention,
Since a hard carbon film, a carbide layer, or a stack of these is provided as a protective film, the discharge electrode is protected from damage caused by corona discharge, and stable and uniform discharge can be maintained even during continuous use due to corona discharge. .

また、特に保護膜として硬質炭素膜と炭化物層を積層し
たものを設けた場合には、上記の効果に加えて、耐クラ
ツク性、耐剥離性、耐酸化性が著しく向上する利点があ
る。
In addition, particularly when a protective film consisting of a hard carbon film and a carbide layer is provided, in addition to the above-mentioned effects, there is an advantage that crack resistance, peeling resistance, and oxidation resistance are significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(8)及び(b)は本発明による固体放電素子の
構成例を示す断面図、第2図ないし第4図は硬質炭素膜
の特性を説明するための図、第5図及び第6図は硬質炭
素膜の成膜法を説明するための図、第7図は本発明によ
る固体放電素子の別の構成例を示す断面図、第8図は連
続放電テストのための装置系を示す図である。 1・・・誘電体基板 2・・・第1電極(励起電極) 3・・・第2電極(放電電極) 4・・・硬質炭素膜 5・・・炭化物層
FIGS. 1(8) and (b) are cross-sectional views showing an example of the structure of a solid-state discharge device according to the present invention, FIGS. 2 to 4 are diagrams for explaining the characteristics of a hard carbon film, and FIGS. Fig. 6 is a diagram for explaining the method of forming a hard carbon film, Fig. 7 is a cross-sectional view showing another example of the structure of the solid-state discharge device according to the present invention, and Fig. 8 is a diagram showing an apparatus system for a continuous discharge test. FIG. 1... Dielectric substrate 2... First electrode (excitation electrode) 3... Second electrode (discharge electrode) 4... Hard carbon film 5... Carbide layer

Claims (3)

【特許請求の範囲】[Claims] (1)誘電体をはさんで第1電極と第2電極を、少くと
も一方の電極の一部が空気にさらされるように設け、電
極間でコロナ放電を行なわせる固体放電素子において、
空気にさらされる側の電極表面あるいは該電極とその近
傍が硬質炭素膜で被覆されていることを特徴とする固体
放電素子。
(1) In a solid-state discharge element in which a first electrode and a second electrode are provided with a dielectric material in between, at least a portion of one electrode is exposed to air, and a corona discharge is caused between the electrodes,
1. A solid-state discharge element characterized in that the surface of an electrode exposed to air or the electrode and its vicinity are coated with a hard carbon film.
(2)誘電体をはさんで第1電極と第2電極を、少くと
も一方の電極の一部が空気にさらされるように設け、電
極間でコロナ放電を行なわせる固体放電素子において、
空気にさらされる側の電極表面あるいは該電極とその近
傍が炭化物層で被覆されていることを特徴とする固体放
電素子。
(2) In a solid discharge element in which a first electrode and a second electrode are provided with a dielectric material in between, at least a portion of one electrode is exposed to air, and a corona discharge is caused between the electrodes,
1. A solid discharge element characterized in that an electrode surface exposed to air or the electrode and its vicinity are coated with a carbide layer.
(3)誘電体をはさんで第1電極と第2電極を、少くと
も一方の電極の一部が空気にさらされるように設け、電
極間でコロナ放電を行なわせる固体放電素子において、
空気にさらされる側の電極表面あるいは該電極とその近
傍が炭化物層と硬質炭素膜との積層で被覆されているこ
とを特徴とする固体放電素子。
(3) In a solid discharge element in which a first electrode and a second electrode are provided with a dielectric material in between, at least a portion of one electrode is exposed to air, and corona discharge is caused between the electrodes,
1. A solid-state discharge device characterized in that the surface of an electrode exposed to air or the electrode and its vicinity are covered with a laminated layer of a carbide layer and a hard carbon film.
JP02238753A 1990-09-07 1990-09-07 Solid discharge element Expired - Fee Related JP3135064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02238753A JP3135064B2 (en) 1990-09-07 1990-09-07 Solid discharge element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02238753A JP3135064B2 (en) 1990-09-07 1990-09-07 Solid discharge element

Publications (2)

Publication Number Publication Date
JPH04118884A true JPH04118884A (en) 1992-04-20
JP3135064B2 JP3135064B2 (en) 2001-02-13

Family

ID=17034753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02238753A Expired - Fee Related JP3135064B2 (en) 1990-09-07 1990-09-07 Solid discharge element

Country Status (1)

Country Link
JP (1) JP3135064B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370688A (en) * 1991-06-18 1992-12-24 Toto Ltd Corona discharge apparatus
JPH0636858A (en) * 1992-07-13 1994-02-10 Fuji Xerox Co Ltd Charge device
JP2006323366A (en) * 2005-04-19 2006-11-30 Ricoh Co Ltd Charging device, image forming apparatus, and process cartridge
JP2008251380A (en) * 2007-03-30 2008-10-16 Nippon Tungsten Co Ltd Static eliminator
JP2009032592A (en) * 2007-07-27 2009-02-12 Sharp Corp Manufacturing method of ion generating element, ion generating element, electrostatic charge device, and image forming device
JP2009031606A (en) * 2007-07-27 2009-02-12 Sharp Corp Manufacturing method for ion generating element, ion generating element, charging device, and image forming apparatus
JP2009031607A (en) * 2007-07-27 2009-02-12 Sharp Corp Ion generating element, manufacturing method for ion generating element, charging device and image forming apparatus
EP2343604A3 (en) * 2009-12-24 2014-09-17 Samsung Electronics Co., Ltd. Charge device and image forming apparatus having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370688A (en) * 1991-06-18 1992-12-24 Toto Ltd Corona discharge apparatus
JPH0636858A (en) * 1992-07-13 1994-02-10 Fuji Xerox Co Ltd Charge device
JP2006323366A (en) * 2005-04-19 2006-11-30 Ricoh Co Ltd Charging device, image forming apparatus, and process cartridge
JP2008251380A (en) * 2007-03-30 2008-10-16 Nippon Tungsten Co Ltd Static eliminator
JP2009032592A (en) * 2007-07-27 2009-02-12 Sharp Corp Manufacturing method of ion generating element, ion generating element, electrostatic charge device, and image forming device
JP2009031606A (en) * 2007-07-27 2009-02-12 Sharp Corp Manufacturing method for ion generating element, ion generating element, charging device, and image forming apparatus
JP2009031607A (en) * 2007-07-27 2009-02-12 Sharp Corp Ion generating element, manufacturing method for ion generating element, charging device and image forming apparatus
EP2343604A3 (en) * 2009-12-24 2014-09-17 Samsung Electronics Co., Ltd. Charge device and image forming apparatus having the same

Also Published As

Publication number Publication date
JP3135064B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
US4170662A (en) Plasma plating
Bubenzer et al. rf‐plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications
JPH11508963A (en) Electrically adjustable coating
JPS6117907B2 (en)
Hubička et al. Deposition of hematite Fe2O3 thin film by DC pulsed magnetron and DC pulsed hollow cathode sputtering system
JPH07295409A (en) Heating/fixing device and manufacture thereof
JPH0319164B2 (en)
da Cruz et al. Properties of titanium oxide films obtained by PECVD
JPH04118884A (en) Solid discharge element
JP4150789B2 (en) Amorphous carbon nitride film and manufacturing method thereof
TWI460295B (en) Conductive and protective film and method for producing the same
JP3509856B2 (en) Protective layer for stabilizing layer and its manufacturing method
JP2004217975A (en) Carbon thin film and manufacturing method therefor
JP3649873B2 (en) Thin film formation method by CVD and thin film and sliding parts
Hallil et al. Internal rf plasma parameters correlated with structure and properties of deposited hydrocarbon films
Bae et al. High-speed deposition of graphite-like carbon film by Ar/C6H6 surface-wave plasma with high-voltage pulse biasing
Panwar et al. Diamond‐like carbon films grown using a saddle field source
Kumar et al. High rate deposition of diamond like carbon films by very high frequency plasma enhanced chemical vapor deposition at 100 MHz
JP2002141292A (en) Method of manufacturing silicon thin film
RU2186152C2 (en) Method for manufacture of conducting alloy-treated diamond-like nanocomposite film and conducting alloy-treated diamond-like nanocomposite film
Chattopadhyay et al. Diamond synthesis by capacitively coupled radio frequency plasma with the addition of direct current power
Felmetsger et al. Dual cathode DC–RF and MF–RF coupled S-Guns for reactive sputtering
JP3623938B2 (en) Manufacturing method of electrostatic chuck
JPH0283816A (en) Magnetic recording medium
Mehta et al. Room-temperature deposition of diamond-like carbon films by the microwave plasma jet method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees