JP3623938B2 - Manufacturing method of electrostatic chuck - Google Patents

Manufacturing method of electrostatic chuck Download PDF

Info

Publication number
JP3623938B2
JP3623938B2 JP2001373918A JP2001373918A JP3623938B2 JP 3623938 B2 JP3623938 B2 JP 3623938B2 JP 2001373918 A JP2001373918 A JP 2001373918A JP 2001373918 A JP2001373918 A JP 2001373918A JP 3623938 B2 JP3623938 B2 JP 3623938B2
Authority
JP
Japan
Prior art keywords
range
coating layer
electrostatic chuck
electrical resistivity
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001373918A
Other languages
Japanese (ja)
Other versions
JP2002246455A (en
Inventor
眞助 増田
清利 藤井
Original Assignee
ジーイー・スペシャルティ・マテリアルズ・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジーイー・スペシャルティ・マテリアルズ・ジャパン株式会社 filed Critical ジーイー・スペシャルティ・マテリアルズ・ジャパン株式会社
Priority to JP2001373918A priority Critical patent/JP3623938B2/en
Publication of JP2002246455A publication Critical patent/JP2002246455A/en
Application granted granted Critical
Publication of JP3623938B2 publication Critical patent/JP3623938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン半導体、化合物半導体、液晶等のフラットパネルディスプレイ(FPD)、ハードディスク、ソーフィルターその他の電子デバイスの製造プロセスに好適に用いられる静電チャックの製造方法に関する。
【0002】
【従来の技術】
シリコン半導体、化合物半導体、液晶等のフラットパネルディスプレイ、ハードディスク、ソーフィルターその他の電子デバイスの製造プロセスにおいて、ドライエッチングやPVD(物理的気相蒸着法)、CVD(化学的気相蒸着法)等を行う際に対象物(シリコンウエハー)を固定するために静電チャックが広く用いられている。
【0003】
静電チャックは、たとえば図1に示すように、グラファイト板1の周囲をPBN(熱分解窒化ホウ素)等の絶縁層2で被覆してなる絶縁基材上にPG等の導体で電極3を所定パターンで配置し、これらを被膜層4で被覆した構成を有している。あるいは、酸化物や窒化物等のセラミックスを絶縁基材とし、この上に高融点モリブデン、タングステン等の導体を電極3とし、これらを被膜層4で被覆した構成としてもよい。図示しないが、電極3の両端は端子を通じて電源に接続されている。
【0004】
この構成の静電チャックにおいて、表面(チャック面)上にシリコンウエハー等の被吸着物5を載置して、電極端子間に電圧を印加するとクーロン力が発生し、被吸着物5をチャックすることができる。また、この構成では静電チャックがヒータを兼ねており、適正なチャック吸引力を発揮させるとともに所定プロセスを最適温度に維持するために被吸着物5を均一に加熱している。
【0005】
なお、図1は双極型静電チャックの構成例を示すものであり、単極型静電チャックにおいては、絶縁基材上に単一の導体電極を配置したものを被膜層で被覆した構成を有し、電極と、表面に載置した被吸着物との間に電圧印加することによってチャックする。
【0006】
静電チャックにおける上記被膜層は、10〜1013Ω・cmの範囲の電気抵抗率を持つことが好ましい。被膜層に上記範囲の電気抵抗率を持たせることにより、電極と被吸着物との間に極微弱電流が流れることを許容し、ジョンソンラーベック効果によりチャック吸引力が大幅に増大する。また、被吸着物の離脱時間短縮にも有用である。
【0007】
この観点より、本出願人は、CVDを用いてPBNに微量のカーボンを含有させて被膜層4とすることにより上記範囲の電気抵抗率を与える手法を発案し、特許第2756944号を取得した。この方法によれば、PBN成形のための反応ガス(たとえば三塩化ホウ素+アンモニア)に加えてカーボン添加のために必要なガス(たとえばメタン)を減圧高温CVD炉内に導入し、微量カーボンを含有するPBN成形体を得ることで、上記範囲の電気抵抗率を有する被膜層が形成される。
【0008】
【発明が解決しようとする課題】
ところで、静電チャックの被膜層は、上記範囲の電気抵抗率を持つことが望まれるだけでなく、平滑性、薄膜性、低摩擦性、パーティクル発生抑制のための耐摩耗性等も重要な要求性能である。また、図1に示すようにヒータを兼ねる場合には、熱伝導率、赤外線透過性等のヒータとしての要求性能も満たす必要がある。
【0009】
特許第2756944号ではCVD法により微量のカーボンを添加したPBN(C−PBN)で被膜層を形成しており、概ね満足すべき性能を発揮し得るものであるが、C−PBNは一部非晶質を含むものの概して結晶質であるため、基材から層剥離しやすく耐久性が若干劣ること、被膜層から結晶が脱離してパーティクルの発生原因となること、複数の反応ガスによる化学反応となるためカーボン含有量を厳密にコントロールするためにはプロセス制御が複雑であり、電気抵抗率にもバラツキが生じやすいこと、膜厚が不均一になりやすいため製品化には表面研磨が必要であること、等の問題があった。
【0010】
【課題を解決するための手段】
本発明者は、静電チャックにおける被膜層としての各種要求性能を高次元で満たすことのできる材料として、ダイアモンドライクカーボン(DLC)と呼ばれる非晶質炭素に着目した。
【0011】
DLCは、炭素同位体の一種としてグラファイト構造(sp2)とダイアモンド構造(sp3)とが混在した構造を有し、したがって、電気抵抗率についても、導電性のグラファイト(電気抵抗率=10−3Ω・cm付近)と非導電性のダイアモンド(電気抵抗率=約1012〜1016Ω・cm)の中間的数値である約10〜1013Ω・cmの範囲を持たせることが容易である。さらに、DLCは平滑性、薄膜性、低摩擦性等に優れ、非晶質であることから各種成膜工程で問題となっているパーティクル発生極小化のための要求性能である耐摩耗性等にも優れるため静電チャックの被膜層として好適であり、また、熱伝導率、赤外線透過性等のヒータ適性にも優れている。
【0012】
DLCは、その耐摩耗性や硬質性を利用して切削工具や金型に用いられ、また、ハードディスクやVTR磁気テープ等の電子部品にも使用されているが、出願人の知る限り、静電チャックの被膜層として使用した例は過去にない。
【0013】
本発明は上記知見に基づいてさらに実験と研究を重ねた結果完成したものであり、請求項1にかかる本発明は、絶縁基材上に導体電極を所定パターンに形成し、プラズマCVD炉内にて、炭化水素化合物をプラズマ放電によりイオン化した後250μsec以下のアフターグロータイム内に−1kV〜−20kVのパルス電圧を印加することにより炭化水素イオンを絶縁基材およびその上の導体電極表面に加速衝突させて、10〜1013Ω・cmの範囲の電気抵抗率を有する非晶質炭素を主成分とする被膜層を導体電極表面に被覆形成することを特徴とする静電チャックの製造方法である。
【0019】
請求項2にかかる本発明は、絶縁基材上に導体電極を所定パターンに形成し、被膜層を導体電極表面に被覆形成した後、プラズマCVD炉内にて、炭化水素化合物をプラズマ放電によりイオン化した後250μsec以下のアフターグロータイム内に−1kV〜−20kVのパルス電圧を印加することにより炭化水素イオンを被膜層表面に加速衝突させて、10〜1013Ω・cmの範囲の電気抵抗率を有する非晶質炭素を主成分とする表面保護膜を被膜層表面に被覆形成することを特徴とする静電チャックの製造方法である。
【0021】
なお、被膜層の成膜原料となる炭化水素化合物および表面保護膜の成膜原料となる炭化水素化合物は、いずれも気体、液体、固体を問わずに用いることが可能である。
【0022】
【発明の実施の形態】
本発明の実施形態として、図1に示される構造の双極型静電チャックにおいて被膜層4を10〜1013Ω・cmの範囲の電気抵抗率を有するDLC硬質被膜として形成する方法について、以下に説明する。
【0023】
<試験1>
厚さ10mmのグラファイト板1の表面に減圧高温CVD法により300μmのPBN絶縁層2を形成し、さらに、同じく減圧高温CVD法により50μmのPG層を両面に形成した後、このPG層のうちの導体電極3となる所定パターンの部分を残して他の部分を除去することにより、PBN絶縁層2の両面に所定パターンの導体電極3を形成した。
【0024】
次いで、各種の炭化水素化合物を原料ガスに用いてプラズマCVD法により2.5μm厚のDLC硬質被膜4に成膜して、各種の静電チャックを得た。プラズマCVD法について図2および図3を参照して概説すると、プラズマCVD炉10の電極11上に被成膜体6(絶縁基材上に所定パターンの導体電極を形成したもの)を載置し、真空ポンプ12によりCVD炉10内を減圧雰囲気に維持して、炭化水素化合物(CxHy)を気体、液体または固体にして原料導入部17から導入し、プラズマ電源13からミキシングユニット16を介して高周波を被成膜体6に印加する。これにより被成膜体6の周辺にプラズマ領域14が形成され、導入された炭化水素化合物がイオン化される。次いで所定のアフターグロータイム(プラズマ高周波電圧印加後パルス電圧印加までの時間)経過後にパルス電源15からミキシングユニット16を介して所定のパルス電圧を被成膜体6に印加することによって、炭化水素イオンが高速移動して被成膜体の表面に蒸着してDLC硬質被膜4が形成される。この実施例では、パルス電圧を−10kV、プラズマCVD炉内の圧力を6〜9×10−3Torr、炭化水素ガスの流量を6ccmとしてプラズマCVD法を実施した。得られた各種の静電チャックにおいてDLC硬質被膜4の電気抵抗率を測定した結果を図4に示す。
【0025】
図4に示すように、DLC硬質被膜4の成膜原料ガスとしてメタン(CH)、アセチレン(C)、トルエン(C)、キシレン(C10)、デカン(C1022)のいずれを用いた場合も、電気抵抗率が10〜1013Ω・cmの範囲のDLC硬質被膜4として成膜させることができた。また、この結果から、成膜原料として用いる炭化水素化合物の分子量と成膜されるDLC硬質被膜4の電気抵抗率との間に相関性が見られ、この試験で用いた中で最も分子量が小さいメタン(CH)を用いた場合の電気抵抗率が10〜1013Ω・cmの範囲の下限と略合致しており、最も分子量が大きいデカン(C1022)を用いた場合の電気抵抗率が10〜1013Ω・cmの範囲の上限と略合致していることが分かる。この試験結果から、10〜1013Ω・cmの範囲のDLC硬質被膜4を成膜させるためには、炭化水素化合物(CxHy)のxが1〜10の範囲にあり且つyが2〜22の範囲にあるものを成膜原料として用いるべきことが確認された。
【0026】
なお、図4には各成膜原料を用いた場合に成膜されたDLC硬質被膜4のラマンスペクトルピーク高さ比が併せて示されている。これは、DLC硬質被膜4をラマン分光分析にかけて炭素のラマンスペクトルを4つのピークに分割した場合において1360cm−1のピーク高さを1としたときの1500cm−1のピーク高さ比を示すもので、電気抵抗率と相関性を持っていること、および、これを0.7〜1.2の範囲とすることが10〜1013Ω・cmの範囲の電気抵抗率を与えるために好適であることが既に本出願人によって確認されている(特願2001−134121)。図4に示す成膜原料を用いた場合はいずれもこのラマンスペクトルピーク高さ比が0.7〜1.2の範囲内にあり、この観点からも静電チャックとして好適なものであることが確認された。
【0027】
<試験2>
原料ガスにトルエン(C)を用い、被成膜体6に印加するパルス電圧を−1kV〜−20kVの範囲で変化させた他は、試験1と同様にしてプラズマCVD法を実施した。得られた各種の静電チャックにおいてDLC硬質被膜4の電気抵抗率を測定した結果を図5に示す。
【0028】
図5に示すように、パルス電圧を−1kV〜−20kVの範囲で変化させたいずれの場合にも電気抵抗率が10〜1013Ω・cmの範囲のDLC硬質被膜4として成膜させることができた。また、この結果から、成膜条件としてのパルス電圧と成膜されるDLC硬質被膜4の電気抵抗率との間に相関性が見られ、この試験で用いた中で最も小さい−1kVのパルス電圧とした場合の電気抵抗率が10〜1013Ω・cmの範囲の上限と略合致しており、最も大きい−20kVのパルス電圧とした場合の電気抵抗率が10〜1013Ω・cmの範囲の下限と略合致していることが分かる。この試験結果から、10〜1013Ω・cmの範囲のDLC硬質被膜4を成膜させるためには、プラズマCVD法による成膜時に被成膜体6に印加するパルス電圧を−1kV〜−20kVの範囲とすべきことが確認された。
【0029】
<試験3>
原料ガスにトルエン(C)を用い、被成膜体6に印加するパルス電圧を−5kVとし、プラズマ放電後パルス電圧印加までのアフターグロータイムを70〜250μsecの範囲で変化させた他は、試験1と同様にしてプラズマCVD法を実施した。得られた各種の静電チャックにおいてDLC硬質被膜4の電気抵抗率を測定した結果を図6に示す。
【0030】
図6に示すように、アフターグロータイムを70〜250μsecの範囲で変化させたいずれの場合にも電気抵抗率が10〜1013Ω・cmの範囲のDLC硬質被膜4として成膜させることができた。また、この結果から、成膜条件としてのアフターグロータイムと成膜されるDLC硬質被膜4の電気抵抗率との間に相関性が見られ、この試験で用いた中で最も長い250μsecのアフターグロータイムとした場合の電気抵抗率が10〜1013Ω・cmの範囲の上限と略合致していることが分かる。この試験結果から、10〜1013Ω・cmの範囲のDLC硬質被膜4を成膜させるためには、CVD法による成膜時におけるアフターグロータイムを250μsec以下とすべきことが確認された。
【0031】
<試験4>
試験1と同様にしてPBN絶縁層2の両面に所定パターンの導体電極3を形成した後、被膜層4として特許第2756944号記載のように微量カーボン添加されたPBNをCVD法により形成した。このPBN被膜層の形成は、減圧高温CVD炉内に、BCl/NH/CHを1/3/2.4のモル比で混合したガスを導入し、圧力0.5Torr、温度1850℃の条件でCVD処理することにより行った。形成されたPBN被膜層4の電気抵抗率を測定したところ約1010Ω・cmであった。
【0032】
さらに、プラズマCVD法によりPBN被膜層4上にDLC硬質被膜としての表面保護膜7を形成した(図7)。このDLC表面保護膜7の成膜条件について、試験1と同様にして原料ガスとしての炭化水素化合物を様々に変え、試験2と同様にして印加パルス電圧を様々に変化させ、また試験3と同様にしてプラズマ放電後パルス電圧印加までのアフターグロータイムを様々に変化させて実施したところ、いずれも試験1〜3について既述したと同様の結果が得られた。すなわち、プラズマCVD法で10〜1013Ω・cmの範囲のDLC表面保護膜7を成膜させるためには、炭化水素化合物(CxHy)のxが1〜10の範囲にあり且つyが2〜22の範囲にあるものを成膜原料として用いることが好ましく、印加パルス電圧を−1kV〜−20kVの範囲とすることが好ましく、また、アフターグロータイムを250μsec以下とすることが好ましいことが確認された。
【0033】
以上の試験において、静電チャックの絶縁基材には、グラファイト板1の周囲をPBN絶縁層2で被覆してなるものを用いたが、これに限定されるものではなく、たとえば酸化物や窒化物等のセラミックスの単体を絶縁基材として用いてもよい。また、電極にはPGを用いているが、これに限定されるものではなく、他の導電材料たとえば高融点金属モリブデンやタングステン等を用いてもよい。
【0034】
【発明の効果】
本発明方法によれば、プラズマCVD炉内にて炭化水素化合物をプラズマ放電によりイオン化した後にパルス電圧を印加させて被膜層(請求項1)または表面保護膜(請求項2)を形成するに当たり、「250μsec以下のアフターグロータイム内に−1kV〜−20kVのパルス電圧を印加する」という条件を備えることにより、成膜された被膜層(請求項1)または表面保護膜(請求項2)の電気抵抗率を所望範囲(10 〜10 13 Ω・cm)に調整することができ、このようにして製造された静電チャックをシリコン半導体、化合物半導体、液晶等のフラットパネルディスプレイ、ハードディスク、ソーフィルターその他の電子デバイスの製造プロセスに好適に用いることができる。
【図面の簡単な説明】
【図1】双極型静電チャックの構成を示す断面図である。
【図2】プラズマCVD法による成膜原理図である。
【図3】プラズマCVD法におけるプラズマおよびパルス電圧印加のタイミングチャートである。
【図4】原料ガスとしての炭化水素化合物を様々に変えてプラズマCVD法を実施して成膜したDLC硬質被膜の電気抵抗率およびラマンスペクトルピーク高さ比を測定した結果を示す表である。
【図5】印加パルス電圧を様々に変えてプラズマCVD法を実施して成膜したDLC硬質被膜の電気抵抗率を測定した結果を示す表である。
【図6】アフターグロータイムを様々に変えてプラズマCVD法を実施して成膜したDLC硬質被膜の電気抵抗率を測定した結果を示す表である。
【図7】図1の双極型静電チャックにさらに表面保護層を形成した構成を示す断面図である。
【符号の説明】
1 グラファイト板
2 絶縁層
3 導体電極
4 被膜層(本発明では非晶質炭素を主成分とするDLC硬質被膜)
5 シリコンウエハー等の被吸着物
6 被成膜体
7 表面保護層(本発明では非晶質炭素を主成分とするDLC硬質被膜)
10 プラズマCVD炉
11 電極
12 真空ポンプ
13 プラズマ電源
14 プラズマ領域
15 パルス電源
16 ミキシングユニット
17 原料導入部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of an electrostatic chuck suitably used in a manufacturing process of a flat panel display (FPD) such as a silicon semiconductor, a compound semiconductor, and a liquid crystal, a hard disk, a saw filter, and other electronic devices.
[0002]
[Prior art]
Dry etching, PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), etc. in the manufacturing process of flat panel displays such as silicon semiconductor, compound semiconductor, liquid crystal, hard disk, saw filter and other electronic devices Electrostatic chucks are widely used to fix an object (silicon wafer) when performing.
[0003]
For example, as shown in FIG. 1, the electrostatic chuck has a predetermined electrode 3 made of a conductor such as PG on an insulating substrate formed by covering the periphery of a graphite plate 1 with an insulating layer 2 such as PBN (pyrolytic boron nitride). It has the structure which arrange | positioned by the pattern and coat | covered these with the coating layer 4. FIG. Or it is good also as a structure which made ceramics, such as an oxide and a nitride, into an insulating base material, and made the conductors, such as high melting point molybdenum and tungsten, the electrode 3, and coat | covered these with the coating layer 4. Although not shown, both ends of the electrode 3 are connected to a power source through terminals.
[0004]
In the electrostatic chuck having this configuration, the object 5 such as a silicon wafer is placed on the surface (chuck surface), and when a voltage is applied between the electrode terminals, a Coulomb force is generated, and the object 5 is chucked. be able to. Further, in this configuration, the electrostatic chuck also serves as a heater, and the attracted object 5 is uniformly heated in order to exhibit an appropriate chuck suction force and maintain a predetermined process at an optimum temperature.
[0005]
FIG. 1 shows an example of the configuration of a bipolar electrostatic chuck. In a monopolar electrostatic chuck, a configuration in which a single conductor electrode is disposed on an insulating base material is covered with a coating layer. And chucking by applying a voltage between the electrode and the object to be adsorbed placed on the surface.
[0006]
The coating layer in the electrostatic chuck preferably has an electrical resistivity in the range of 10 8 to 10 13 Ω · cm. By providing the coating layer with an electrical resistivity in the above range, a very weak current is allowed to flow between the electrode and the object to be adsorbed, and the chucking force is greatly increased by the Johnson Rabeck effect. It is also useful for shortening the separation time of the object to be adsorbed.
[0007]
From this point of view, the applicant of the present invention has invented a technique for providing an electric resistivity in the above-mentioned range by adding a small amount of carbon to PBN to form the coating layer 4 using CVD, and obtained Japanese Patent No. 2756944. According to this method, in addition to the reaction gas for forming PBN (for example, boron trichloride + ammonia), a gas necessary for adding carbon (for example, methane) is introduced into the low-pressure high-temperature CVD furnace and contains a small amount of carbon. By obtaining a PBN molded body to be formed, a coating layer having an electrical resistivity in the above range is formed.
[0008]
[Problems to be solved by the invention]
By the way, the coating layer of the electrostatic chuck is not only required to have an electrical resistivity in the above range, but also has important requirements such as smoothness, thin film properties, low friction, and wear resistance for suppressing particle generation. Is performance. In addition, in the case of serving also as a heater as shown in FIG. 1, it is necessary to satisfy required performance as a heater such as thermal conductivity and infrared transparency.
[0009]
In Japanese Patent No. 2756944, a coating layer is formed with PBN (C-PBN) to which a small amount of carbon is added by a CVD method, and generally satisfactory performance can be exhibited, but C-PBN is partially non-existent. Although it contains crystalline material, it is generally crystalline, so it is easy to peel off from the base material, and its durability is slightly inferior. Crystals are detached from the coating layer, causing generation of particles, and chemical reactions with multiple reaction gases. Therefore, in order to strictly control the carbon content, process control is complicated, electric resistivity tends to vary, and film thickness tends to be non-uniform, so surface polishing is necessary for commercialization. There was a problem.
[0010]
[Means for Solving the Problems]
The inventor has focused on amorphous carbon called diamond-like carbon (DLC) as a material that can satisfy various required performances as a coating layer in an electrostatic chuck in a high dimension.
[0011]
DLC has a structure in which a graphite structure (sp2) and a diamond structure (sp3) are mixed as a kind of carbon isotope. Therefore, the electrical resistivity is also conductive graphite (electric resistivity = 10 −3 Ω). It is easy to have a range of about 10 8 to 10 13 Ω · cm, which is an intermediate value between (near cm) and non-conductive diamond (electric resistivity = about 10 12 to 10 16 Ω · cm). . Furthermore, DLC is excellent in smoothness, thin film properties, low friction properties, etc., and since it is amorphous, it has the required performance for minimizing the generation of particles, which is a problem in various film forming processes. Therefore, it is suitable as a coating layer for an electrostatic chuck, and is suitable for heaters such as thermal conductivity and infrared transmittance.
[0012]
DLC is used for cutting tools and molds by utilizing its wear resistance and hardness, and is also used for electronic parts such as hard disks and VTR magnetic tapes. There has been no example of using it as a coating layer of a chuck.
[0013]
The present invention has been completed as a result of further experiments and researches based on the above knowledge, and the present invention according to claim 1 is a method in which a conductor electrode is formed in a predetermined pattern on an insulating substrate, Then, after ionizing the hydrocarbon compound by plasma discharge, by applying a pulse voltage of −1 kV to −20 kV within an afterglow time of 250 μsec or less, the hydrocarbon ions are accelerated and collided with the insulating base material and the conductor electrode surface thereon. A method for manufacturing an electrostatic chuck, comprising: forming a coating layer mainly composed of amorphous carbon having an electrical resistivity in a range of 10 8 to 10 13 Ω · cm on a surface of a conductor electrode. is there.
[0019]
In the present invention according to claim 2, the conductor electrode is formed in a predetermined pattern on the insulating base material, the coating layer is formed on the surface of the conductor electrode, and then the hydrocarbon compound is ionized by plasma discharge in the plasma CVD furnace. Then, by applying a pulse voltage of −1 kV to −20 kV within an afterglow time of 250 μsec or less, hydrocarbon ions are accelerated and collided with the surface of the coating layer, and an electric resistivity in the range of 10 8 to 10 13 Ω · cm. A method for manufacturing an electrostatic chuck, comprising: forming a surface protective film mainly comprising amorphous carbon on the surface of a coating layer.
[0021]
Note that the hydrocarbon compound as the film forming raw material for the coating layer and the hydrocarbon compound as the film forming raw material for the surface protective film can be used regardless of gas, liquid, or solid.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
As an embodiment of the present invention, a method for forming the coating layer 4 as a DLC hard coating having an electrical resistivity in the range of 10 8 to 10 13 Ω · cm in the bipolar electrostatic chuck having the structure shown in FIG. Explained.
[0023]
<Test 1>
A 300 μm PBN insulating layer 2 is formed on the surface of the graphite plate 1 having a thickness of 10 mm by a low pressure high temperature CVD method, and a 50 μm PG layer is similarly formed on both sides by a low pressure high temperature CVD method. The conductor electrode 3 having a predetermined pattern was formed on both surfaces of the PBN insulating layer 2 by removing the other part while leaving the part of the predetermined pattern to be the conductor electrode 3.
[0024]
Subsequently, various hydrocarbon compounds were formed into a DLC hard coating 4 having a thickness of 2.5 μm by a plasma CVD method using a raw material gas to obtain various electrostatic chucks. The plasma CVD method will be briefly described with reference to FIGS. 2 and 3. A film-formed body 6 (a conductor electrode having a predetermined pattern is formed on an insulating base material) is placed on the electrode 11 of the plasma CVD furnace 10. The inside of the CVD furnace 10 is maintained in a reduced pressure atmosphere by the vacuum pump 12, and the hydrocarbon compound (CxHy) is introduced into the gas, liquid, or solid from the raw material introduction unit 17, and the high frequency is supplied from the plasma power source 13 through the mixing unit 16. Is applied to the film formation target 6. As a result, a plasma region 14 is formed around the film formation target 6 and the introduced hydrocarbon compound is ionized. Then, after a predetermined after glow time (time from application of plasma high-frequency voltage to application of pulse voltage) has elapsed, a predetermined pulse voltage is applied to the film-forming body 6 from the pulse power source 15 via the mixing unit 16, thereby producing hydrocarbon ions. Moves at a high speed and is vapor-deposited on the surface of the film formation body to form the DLC hard coating 4. In this example, the plasma CVD method was performed with a pulse voltage of −10 kV, a pressure in the plasma CVD furnace of 6 to 9 × 10 −3 Torr, and a flow rate of hydrocarbon gas of 6 ccm. The results of measuring the electrical resistivity of the DLC hard coating 4 in the various electrostatic chucks obtained are shown in FIG.
[0025]
As shown in FIG. 4, methane (CH 4 ), acetylene (C 2 H 2 ), toluene (C 7 H 8 ), xylene (C 8 H 10 ), decane (C When any of 10 H 22 ) was used, the DLC hard coating 4 having an electric resistivity in the range of 10 8 to 10 13 Ω · cm could be formed. In addition, from this result, there is a correlation between the molecular weight of the hydrocarbon compound used as the film forming raw material and the electrical resistivity of the DLC hard film 4 to be formed, and the molecular weight is the smallest among those used in this test. Electricity when decane (C 10 H 22 ) having the largest molecular weight is used, which is substantially consistent with the lower limit of the range of 10 8 to 10 13 Ω · cm when methane (CH 4 ) is used. It can be seen that the resistivity substantially matches the upper limit of the range of 10 8 to 10 13 Ω · cm. From this test result, in order to form the DLC hard coating 4 in the range of 10 8 to 10 13 Ω · cm, x of the hydrocarbon compound (CxHy) is in the range of 1 to 10 and y is in the range of 2 to 22. It was confirmed that a material in the range should be used as a film forming raw material.
[0026]
FIG. 4 also shows the Raman spectrum peak height ratio of the DLC hard coating 4 formed when each film forming raw material is used. This indicates the peak height ratio of 1500 cm -1 when the one of the peak height of 1360 cm -1 in the case of dividing the DLC hard coating 4 into four peaks Raman spectrum of the carbon subjected to Raman spectroscopic analysis In order to provide an electrical resistivity in the range of 10 8 to 10 13 Ω · cm, it is preferable to have a correlation with the electrical resistivity and to make this in the range of 0.7 to 1.2. It has already been confirmed by the present applicant (Japanese Patent Application No. 2001-134121). When the film forming raw material shown in FIG. 4 is used, the Raman spectrum peak height ratio is in the range of 0.7 to 1.2, and from this point of view, it is suitable as an electrostatic chuck. confirmed.
[0027]
<Test 2>
Plasma CVD was performed in the same manner as in Test 1 except that toluene (C 7 H 8 ) was used as the source gas and the pulse voltage applied to the film formation target 6 was changed in the range of −1 kV to −20 kV. . The results of measuring the electrical resistivity of the DLC hard coating 4 in the various electrostatic chucks obtained are shown in FIG.
[0028]
As shown in FIG. 5, the DLC hard film 4 having an electric resistivity in the range of 10 8 to 10 13 Ω · cm is formed in any case where the pulse voltage is changed in the range of −1 kV to −20 kV. I was able to. Further, from this result, a correlation was found between the pulse voltage as the film formation condition and the electrical resistivity of the DLC hard coating 4 to be formed, and the smallest pulse voltage of −1 kV used in this test. The electrical resistivity is approximately in agreement with the upper limit of the range of 10 8 to 10 13 Ω · cm, and the electrical resistivity when the largest pulse voltage is −20 kV is 10 8 to 10 13 Ω · cm. It can be seen that it is almost coincident with the lower limit of the range. From this test result, in order to form the DLC hard coating 4 in the range of 10 8 to 10 13 Ω · cm, the pulse voltage applied to the film formation target 6 during the film formation by the plasma CVD method is −1 kV to −−. It was confirmed that it should be in the range of 20 kV.
[0029]
<Test 3>
Other than using toluene (C 7 H 8 ) as the source gas, setting the pulse voltage to be applied to the film formation target 6 to −5 kV, and changing the afterglow time after the plasma discharge until the pulse voltage is applied in the range of 70 to 250 μsec. In the same manner as in Test 1, the plasma CVD method was performed. The results of measuring the electrical resistivity of the DLC hard coating 4 in the various electrostatic chucks obtained are shown in FIG.
[0030]
As shown in FIG. 6, the DLC hard film 4 having an electrical resistivity in the range of 10 8 to 10 13 Ω · cm can be formed in any case where the afterglow time is changed in the range of 70 to 250 μsec. did it. In addition, from this result, there is a correlation between the afterglow time as the film formation condition and the electrical resistivity of the DLC hard film 4 to be formed, and the longest afterglow of 250 μsec used in this test. It can be seen that the electrical resistivity in the case of thyme substantially matches the upper limit of the range of 10 8 to 10 13 Ω · cm. From this test result, in order to form the DLC hard film 4 in the range of 10 8 to 10 13 Ω · cm, it was confirmed that the afterglow time at the time of film formation by the CVD method should be 250 μsec or less.
[0031]
<Test 4>
After the conductor electrodes 3 having a predetermined pattern were formed on both surfaces of the PBN insulating layer 2 in the same manner as in Test 1, PBN doped with a trace amount of carbon as described in Japanese Patent No. 2756944 was formed as the coating layer 4 by the CVD method. This PBN coating layer is formed by introducing a gas in which BCl 3 / NH 3 / CH 4 is mixed at a molar ratio of 1/3 / 2.4 into a reduced pressure high temperature CVD furnace, pressure 0.5 Torr, temperature 1850 ° C. It was performed by performing the CVD process under the conditions of When the electrical resistivity of the formed PBN coating layer 4 was measured, it was about 10 10 Ω · cm.
[0032]
Further, a surface protective film 7 as a DLC hard film was formed on the PBN film layer 4 by plasma CVD (FIG. 7). With respect to the film forming conditions of the DLC surface protective film 7, the hydrocarbon compound as the source gas is changed variously in the same manner as in the test 1, the applied pulse voltage is changed in the same manner as in the test 2, and the same as in the test 3. When the afterglow time from the plasma discharge to the application of the pulse voltage was changed in various ways, the same results as described in the tests 1 to 3 were obtained. That is, in order to form the DLC surface protective film 7 in the range of 10 8 to 10 13 Ω · cm by plasma CVD, x of the hydrocarbon compound (CxHy) is in the range of 1 to 10 and y is 2 It is preferable to use a material in the range of ˜22 as a film forming raw material, it is preferable that the applied pulse voltage is in the range of −1 kV to −20 kV, and the afterglow time is preferably 250 μsec or less. It was done.
[0033]
In the above test, the insulating base material of the electrostatic chuck is the one in which the periphery of the graphite plate 1 is covered with the PBN insulating layer 2, but is not limited to this. A simple substance of ceramics such as an object may be used as an insulating substrate. Moreover, although PG is used for the electrode, it is not limited to this, and other conductive materials such as refractory metal molybdenum or tungsten may be used.
[0034]
【The invention's effect】
According to the method of the present invention, a hydrocarbon compound is ionized by plasma discharge in a plasma CVD furnace and then a pulse voltage is applied to form a coating layer (Claim 1) or a surface protection film (Claim 2). By providing a condition that “a pulse voltage of −1 kV to −20 kV is applied within an afterglow time of 250 μsec or less”, the electrical property of the formed coating layer (Claim 1) or surface protective film (Claim 2) The resistivity can be adjusted to a desired range (10 8 to 10 13 Ω · cm) . The electrostatic chuck manufactured in this way is used as a flat panel display such as a silicon semiconductor, a compound semiconductor, and a liquid crystal, a hard disk, and a saw filter. It can be suitably used in other electronic device manufacturing processes.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a bipolar electrostatic chuck.
FIG. 2 is a diagram showing a principle of film formation by a plasma CVD method.
FIG. 3 is a timing chart of plasma and pulse voltage application in the plasma CVD method.
FIG. 4 is a table showing the results of measuring the electrical resistivity and Raman spectral peak height ratio of DLC hard coatings formed by performing plasma CVD with various changes in hydrocarbon compounds as source gases.
FIG. 5 is a table showing the results of measuring the electrical resistivity of a DLC hard film formed by performing plasma CVD with various applied pulse voltages.
FIG. 6 is a table showing the results of measuring the electrical resistivity of a DLC hard film formed by performing plasma CVD with various afterglow times.
7 is a cross-sectional view showing a configuration in which a surface protective layer is further formed on the bipolar electrostatic chuck of FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Graphite plate 2 Insulating layer 3 Conductor electrode 4 Film layer (In the present invention, DLC hard film mainly composed of amorphous carbon)
5 Adsorbed object such as silicon wafer 6 Deposited body 7 Surface protective layer (in the present invention, DLC hard film mainly composed of amorphous carbon)
DESCRIPTION OF SYMBOLS 10 Plasma CVD furnace 11 Electrode 12 Vacuum pump 13 Plasma power supply 14 Plasma area | region 15 Pulse power supply 16 Mixing unit 17 Raw material introduction part

Claims (2)

絶縁基材上に導体電極を所定パターンに形成し、プラズマCVD炉内にて、炭化水素化合物をプラズマ放電によりイオン化した後250μsec以下のアフターグロータイム内に−1kV〜−20kVのパルス電圧を印加することにより炭化水素イオンを絶縁基材およびその上の導体電極表面に加速衝突させて、10〜1013Ω・cmの範囲の電気抵抗率を有する非晶質炭素を主成分とする被膜層を導体電極表面に被覆形成することを特徴とする静電チャックの製造方法。A conductor electrode is formed in a predetermined pattern on an insulating substrate, and a hydrocarbon compound is ionized by plasma discharge in a plasma CVD furnace, and then a pulse voltage of −1 kV to −20 kV is applied within an afterglow time of 250 μsec or less. A coating layer mainly composed of amorphous carbon having an electrical resistivity in the range of 10 8 to 10 13 Ω · cm by causing hydrocarbon ions to be accelerated and collided with the insulating base material and the surface of the conductor electrode thereon. A method of manufacturing an electrostatic chuck, comprising coating a conductive electrode surface. 絶縁基材上に導体電極を所定パターンに形成し、被膜層を導体電極表面に被覆形成した後、プラズマCVD炉内にて、炭化水素化合物をプラズマ放電によりイオン化した後250μsec以下のアフターグロータイム内に−1kV〜−20kVのパルス電圧を印加することにより炭化水素イオンを被膜層表面に加速衝突させて、10〜1013Ω・cmの範囲の電気抵抗率を有する非晶質炭素を主成分とする表面保護膜を被膜層表面に被覆形成することを特徴とする静電チャックの製造方法。After the conductor electrode is formed in a predetermined pattern on the insulating substrate and the coating layer is formed on the surface of the conductor electrode, the hydrocarbon compound is ionized by plasma discharge in a plasma CVD furnace, and the afterglow time is 250 μsec or less. The main component is amorphous carbon having an electrical resistivity in the range of 10 8 to 10 13 Ω · cm by applying a pulse voltage of −1 kV to −20 kV to the surface to accelerate collision of hydrocarbon ions with the surface of the coating layer. A method for manufacturing an electrostatic chuck, comprising: forming a surface protective film on the surface of a coating layer.
JP2001373918A 2000-12-11 2001-12-07 Manufacturing method of electrostatic chuck Expired - Fee Related JP3623938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373918A JP3623938B2 (en) 2000-12-11 2001-12-07 Manufacturing method of electrostatic chuck

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-376599 2000-12-11
JP2000376599 2000-12-11
JP2001373918A JP3623938B2 (en) 2000-12-11 2001-12-07 Manufacturing method of electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2002246455A JP2002246455A (en) 2002-08-30
JP3623938B2 true JP3623938B2 (en) 2005-02-23

Family

ID=26605627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373918A Expired - Fee Related JP3623938B2 (en) 2000-12-11 2001-12-07 Manufacturing method of electrostatic chuck

Country Status (1)

Country Link
JP (1) JP3623938B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653964B2 (en) * 2003-04-08 2011-03-16 株式会社栗田製作所 DLC film forming method and DLC film-formed product
JP2005281727A (en) * 2004-03-26 2005-10-13 Kurita Seisakusho:Kk Dlc film body manufacturing method and dlc film body
CN102160167B (en) * 2008-08-12 2013-12-04 应用材料公司 Electrostatic chuck assembly
JP2019057531A (en) * 2017-09-19 2019-04-11 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Wafer support device

Also Published As

Publication number Publication date
JP2002246455A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
TW516155B (en) Electrostatic chuck and the manufacturing method thereof
US8264813B2 (en) Electrostatic chuck device
US7446284B2 (en) Etch resistant wafer processing apparatus and method for producing the same
KR20070085946A (en) Encapsulated wafer processing device and process for making thereof
JP4811608B2 (en) Wafer heating apparatus having electrostatic adsorption function
US5748436A (en) Ceramic electrostatic chuck and method
JPH08227933A (en) Wafer heater with electrostatic attracting function
JP2012502478A (en) Wafer processing apparatus with adjustable electrical resistivity
JPH05129210A (en) Hot plate
JP3623938B2 (en) Manufacturing method of electrostatic chuck
JPH02239622A (en) Protective layer for stabilizing layer and its manufacture
US20030107865A1 (en) Wafer handling apparatus and method of manufacturing the same
JP3602067B2 (en) Electrostatic chuck
JPH01239919A (en) Method and apparatus for plasma treatment
JP2017034042A (en) Wafer support device
JP2756944B2 (en) Ceramic electrostatic chuck
JP3911555B2 (en) Silicon-based thin film manufacturing method
JPH0774451B2 (en) Film forming equipment
JPH04118884A (en) Solid discharge element
JPH04238882A (en) High-temperature insulated article
EP3686922A1 (en) Wafer supporting device
JP2002246454A (en) Electrostatic chuck
JP4302428B2 (en) Wafer heating device having electrostatic adsorption function
JP2003273194A (en) Electrostatic chuck
JP2951564B2 (en) Thin film formation method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041025

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3623938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees