JPH0398260A - Manufacture of hydrogen storage electrode - Google Patents

Manufacture of hydrogen storage electrode

Info

Publication number
JPH0398260A
JPH0398260A JP1235144A JP23514489A JPH0398260A JP H0398260 A JPH0398260 A JP H0398260A JP 1235144 A JP1235144 A JP 1235144A JP 23514489 A JP23514489 A JP 23514489A JP H0398260 A JPH0398260 A JP H0398260A
Authority
JP
Japan
Prior art keywords
hydrogen storage
silicone rubber
electrode
alloy
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1235144A
Other languages
Japanese (ja)
Other versions
JPH0812778B2 (en
Inventor
Tetsuo Sakai
哲男 境
Hiroshi Ishikawa
博 石川
Atsushi Takagi
淳 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Toyoda Automatic Loom Works Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1235144A priority Critical patent/JPH0812778B2/en
Priority to US07/576,701 priority patent/US5104753A/en
Priority to EP90117398A priority patent/EP0417697B1/en
Priority to DE69008977T priority patent/DE69008977T2/en
Publication of JPH0398260A publication Critical patent/JPH0398260A/en
Publication of JPH0812778B2 publication Critical patent/JPH0812778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the capacity reducing property at the time of high ratio discharge and charge and discharge cycle lifetime by kneading a microcapsuled hydrogen storage alloy powder with an uncrosslinked/silicone rubber, and completing crosslinking of the uncrosslinked silicone rubber after electrode molding to form a hydrogen storage electrode. CONSTITUTION:Alloy composition LaNi2.5CO2.4Al0.1 is used as a hydrogen storage alloy for negative electrode. This alloy is mechanically formed into powders less than 100 mesh, and electro. less copper plating is conducted by use of a plating solution. To the resulting copper-plated alloy powders, uncrosslinked silicone rubber is added as a binding agent to amount to about 10wt.% to the total weight of the alloy powders and the binding agent, kneaded and preliminarily molded into a sheet, which is then pressure molded at room temperature with both sides thereof being sandwiched between nickel meshes to form a hydrogen storage electrode. The crosslinking of the uncrosslinked silicone rubber is completed after electrode molding.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水素を負極活物質とするアルカリ二次電池の
負極として用いられる水素吸蔵電極の製造方法に関し、
例えば、大型電極の製造を容易化しかつその放電特性の
改善を図った水素吸蔵電極の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a hydrogen storage electrode used as a negative electrode of an alkaline secondary battery using hydrogen as a negative electrode active material.
For example, the present invention relates to a method of manufacturing a hydrogen storage electrode that facilitates the manufacture of a large electrode and improves its discharge characteristics.

[従来技術] 従来、アルカリ二次電池の一つとして金属酸化物を正極
活物質とし水素を負極活物質とする金属酸化物/水素電
池があるが、この金属酸化物/水素電池の一つとして、
水素を可逆的に吸蔵・放出する水素吸蔵合金を含有する
水素吸蔵電極を負極としたものがある。この水索吸蔵電
極は水素の吸蔵放出が良好でかつ、低抵抗とする必要が
あり、例えば、水素吸蔵合金粉末を結着材と混合して成
型される。
[Prior art] Conventionally, as an alkaline secondary battery, there is a metal oxide/hydrogen battery that uses a metal oxide as a positive electrode active material and hydrogen as a negative electrode active material. ,
There is one in which the negative electrode is a hydrogen storage electrode containing a hydrogen storage alloy that reversibly stores and releases hydrogen. This water cable storage electrode must have good hydrogen storage and release properties and low resistance, and is formed by mixing hydrogen storage alloy powder with a binder, for example.

既に知られる上記結着材の使用例として、特開昭61−
16470号公報は、ポリテトラフルオ口エチレン(P
TFE)粉末を開示している。
As an example of the use of the above-mentioned binder, which is already known, there is
No. 16470 discloses polytetrafluoroethylene (P
TFE) powder is disclosed.

特開昭61−101957号公報は、水素吸蔵合金粉末
の表面を銅で被覆してマイクロカプセル化し、このマイ
クロカプセルとフッ素樹脂粉末(結着材〉とを混練し、
集電体に圧接して水素吸蔵電極とすることを開示してい
る。
JP-A No. 61-101957 discloses that the surface of hydrogen-absorbing alloy powder is coated with copper to form microcapsules, and the microcapsules and fluororesin powder (binder) are kneaded,
It discloses that it is pressed into contact with a current collector to form a hydrogen storage electrode.

[発明が解決しようとする課題] ところが、上記した各先行技術に開示された従来の水索
吸蔵電極は、水素吸蔵合金粉末が充放電により変形する
ので形状安定性に劣る点と、急速(高率〉放電時の容量
低下が大きい点とに問題があった。これらの問題は特に
大型電極において顕著である。すなわち、体積変化率や
変形率が同じでも、大型電極は小型電極よりも絶対的な
体積変化量や変形量が大となり、その結果として、水素
吸蔵電極よりの合金粉末の脱落や破損が生じやすい。結
着材の増量により強度向上を図ることは可能であるが、
そうすると、合金粉末の減量、水素流通の妨害、電気抵
抗の増加が生じ、高率放電時の容量低下が顕著となる。
[Problems to be Solved by the Invention] However, the conventional water cable storage electrodes disclosed in the above-mentioned prior art have poor shape stability because the hydrogen storage alloy powder deforms due to charging and discharging, and rapid (high The problem was that the capacity drop during discharge was large.These problems are particularly noticeable in large electrodes.In other words, even if the volume change rate and deformation rate are the same, large electrodes have a larger capacity drop than small electrodes. The amount of volume change and deformation becomes large, and as a result, the alloy powder is likely to fall off or break from the hydrogen storage electrode. Although it is possible to improve the strength by increasing the amount of binder,
This causes a reduction in the amount of alloy powder, obstruction of hydrogen flow, and an increase in electrical resistance, resulting in a significant decrease in capacity during high rate discharge.

したがって、結着材量をいたずらに増加することなく、
形状保持性及び放電特性に優れる水素吸蔵電極が、特に
大型電極分野において求められていた。
Therefore, without unnecessarily increasing the amount of binder,
Hydrogen storage electrodes with excellent shape retention and discharge characteristics have been desired, particularly in the field of large electrodes.

本発明は、上記問題に鑑みなされたものであり、優れた
放電特性及び形状保持性を有する水素吸蔵電極の製造方
法を提供することをその解決すべき課題としている。
The present invention has been made in view of the above problems, and an object to be solved is to provide a method for manufacturing a hydrogen storage electrode having excellent discharge characteristics and shape retention.

[課題を解決するための手段コ 本発明の水素吸蔵電極の製造方法は、水素吸蔵合金粉末
の表面を銅又はニッケルで水素流通可能に被覆してマイ
クロカプセル化し、該マイクロカプセルを未架橋のシリ
コーンゴムと共に混練した後、該混合物を集電体で支持
して加圧成型すると同時に前記シリコーンゴムを架橋さ
せることを特徴としている。
[Means for Solving the Problems] The method for producing a hydrogen storage electrode of the present invention involves coating the surface of a hydrogen storage alloy powder with copper or nickel to allow hydrogen to flow through it to form microcapsules, and then encapsulating the microcapsules with uncrosslinked silicone. After kneading with rubber, the mixture is supported by a current collector and pressure molded, and at the same time, the silicone rubber is crosslinked.

水素吸蔵合金粉末としては、チタン一ニッケル合金、ラ
ンタン一ニッケル合金、ジルコニウム一ニッケル合金な
どを採用することができ、平均粒径は、10〜100μ
m程度が好適である。銅又はニッケル被膜は、マイクロ
カプセル(銅又はニッケルにより被覆ざれた水素吸蔵合
金粉末〉重量の5〜30重量%程度とすることが好まし
い。
As the hydrogen storage alloy powder, titanium-nickel alloy, lanthanum-nickel alloy, zirconium-nickel alloy, etc. can be adopted, and the average particle size is 10 to 100μ.
Approximately m is suitable. The copper or nickel coating is preferably about 5 to 30% by weight of the microcapsule (hydrogen storage alloy powder coated with copper or nickel).

シリコーンゴムとしては、ジメチルシリコーンゴム、メ
チルビニルシリコーンゴム、メチルフエニールシリコー
ンゴム、フエニールビニルシリコンゴム、フッ化シリコ
ーンゴムなどを採用することができる。
As the silicone rubber, dimethyl silicone rubber, methyl vinyl silicone rubber, methyl phenyl silicone rubber, phenyl vinyl silicon rubber, fluorinated silicone rubber, etc. can be employed.

未架橋のシリコーンゴムとしては、例えば一液型室温硬
化型、二液型加熱硬化型のものが挙げられる。一液型室
温硬化型のものとして、例えば東レKK製のSE915
5など、二液型加熱硬化型のものとして、例えば東レK
K製のCY52−237などがある。
Examples of the uncrosslinked silicone rubber include one-component room temperature curing type and two-component heat curing type. As a one-component room temperature curing type, for example, SE915 manufactured by Toray KK
For example, Toray K
There are CY52-237 manufactured by K.

シリコーンゴムの混合量は混合物の3〜20重量%特に
5〜15・重量%とすることが重要である。
It is important that the amount of silicone rubber mixed is 3 to 20% by weight, particularly 5 to 15% by weight of the mixture.

3重量%を下回ると充分な結合力が得られず、理由は不
明であるが高率放電時の容量が低下する。
If it is less than 3% by weight, sufficient bonding strength will not be obtained, and for reasons that are unclear, the capacity during high rate discharge will decrease.

20重量%を超えると内部抵抗が増加して高率放電時の
容量が低下する。
If it exceeds 20% by weight, the internal resistance will increase and the capacity during high rate discharge will decrease.

成型圧力は50〜300kg/Cm2、特に、100〜
250kg/Cm2の範囲とスルコトカ重要である。5
0kCl/Cm2を下回ると電極の機械的強度が低下す
るため充分な結合力が得られず、マイクロカプセルの脱
落が生じやすくなる。
Molding pressure is 50-300kg/Cm2, especially 100-300kg/Cm2
The range of 250 kg/Cm2 and Surkotka are important. 5
If it is less than 0 kCl/Cm2, the mechanical strength of the electrode decreases, so that sufficient bonding force cannot be obtained, and the microcapsules tend to fall off.

また、理由は不明であるが高率放電時の容量が低下する
。300kg/cm2を超えるとマイクロカプセル間が
密になり過ぎて多孔構造が失われ、電気化学的な水素の
吸蔵放出が円滑に行なわれなくなり、また、内部抵抗が
増加して高率放電時の容量が低下する。
Furthermore, although the reason is unknown, the capacity during high rate discharge decreases. If it exceeds 300 kg/cm2, the microcapsules become too dense, the porous structure is lost, electrochemical hydrogen storage and release cannot be carried out smoothly, and the internal resistance increases and the capacity during high rate discharge decreases. decreases.

5 [実施例] (第1実施例〉 合金組成LaNi2.5CO2.4AI0.1を負極用
の水素吸蔵合金として用いた。この合金を機械的に10
0メッシュ以下の粉末とし、市販のメッキ溶液を用いて
無電解銅メッキを行った。
5 [Example] (First example) An alloy composition of LaNi2.5CO2.4AI0.1 was used as a hydrogen storage alloy for the negative electrode.This alloy was mechanically
The powder was made into a powder of 0 mesh or less, and electroless copper plating was performed using a commercially available plating solution.

この時のメッキ量はメッキした合金に対して20重量%
になるようにした。
The amount of plating at this time is 20% by weight of the plated alloy.
I made it so that

この銅メッキした合金粉末4.59に、合金粉末と結着
剤とを合わせた重量に対して約10重量%となるように
未架橋シリコーンゴムを結着材として加え、混練してシ
ート状に予備戒型した後、その両側をニッケルメッシュ
(すなわち本発明でいう集電体)で挟んで室温で200
kg/cm2の圧力で加圧戒型して水素吸蔵電極を製作
した。
Uncrosslinked silicone rubber is added as a binder to this copper-plated alloy powder 4.59 in an amount of approximately 10% by weight based on the combined weight of the alloy powder and binder, and is kneaded to form a sheet. After forming a preliminary mold, it was sandwiched between nickel meshes (i.e. current collectors in the present invention) on both sides and heated for 200 minutes at room temperature.
A hydrogen storage electrode was manufactured by pressurizing at a pressure of kg/cm2.

未架橋シリコーンゴムの架橋は電極戒型後に完了させて
いる。未架橋シリコーンゴム液としては、一液型室温硬
化型のものとして、東レKK製のSE91 55、SE
915B、SE737、SE738、信越化学KK製の
KE45、KE42、K6 E3492、KE3493を用いた。二液型加熱硬化型
のものとして、東レKKIluのCY52−237、S
E1700を用い、これらの硬化には、加圧成型状態で
150℃に30分保持した。電極の大きさは4X30m
2で厚さは約1mmとした。
Crosslinking of the uncrosslinked silicone rubber was completed after electrode molding. As the uncrosslinked silicone rubber liquid, one-component room temperature curing type SE91 55 and SE manufactured by Toray KK are used.
915B, SE737, SE738, and KE45, KE42, K6 E3492, and KE3493 manufactured by Shin-Etsu Chemical KK were used. As a two-component heat-curing type, Toray KKIlu's CY52-237, S
E1700 was used for curing, and the molding was held at 150° C. for 30 minutes in a pressure molded state. Electrode size is 4x30m
2 and the thickness was about 1 mm.

この電極をニッケル極を対極として6N水酸化カリウム
水溶液中に浸漬して充放電を繰り返し、完全に活性化処
理したものを電池用の負極として供した。この水素吸蔵
電極の初期容量は約900m八hであった。
This electrode was immersed in a 6N potassium hydroxide aqueous solution with the nickel electrode as a counter electrode, and charged and discharged repeatedly, and the electrode was completely activated and used as a negative electrode for a battery. The initial capacity of this hydrogen storage electrode was about 900m8h.

一方、正極として容1350mAhの焼結式酸化ニッケ
ル板を用意し、これら正、負極をナイロン不Ili布製
のセパレー夕を介して対置し、5N水酸化カリウム水溶
液に水酸化リチウムを1mo/.11の割合で溶解した
電解液中に浸漬して、公称容量が3 5 0mA hで
ある正極規制の電池を構成した。
On the other hand, a sintered nickel oxide plate with a capacity of 1350 mAh was prepared as a positive electrode, and these positive and negative electrodes were placed opposite each other with a separator made of nylon non-Ili cloth interposed therebetween, and 1 mo/. A positive electrode regulated battery with a nominal capacity of 350 mAh was constructed by immersing it in an electrolyte solution dissolved at a ratio of 11%.

作威したこれらの電池を20゜C,0.50の電流で3
時間充電し、0.5C、IC、2C、3C、4C、5C
の各放電電流で終止電圧0.8Vまで放電し、電池容量
の放電電流依存性を調べた。この結果を第2図に示す。
These batteries were heated at 20°C and at a current of 0.50 for 3
Charge for 0.5C, IC, 2C, 3C, 4C, 5C
The battery was discharged to a final voltage of 0.8 V at each discharge current, and the dependence of the battery capacity on the discharge current was investigated. The results are shown in FIG.

比較例としてPTFE粉末を結着材として用い300’
C、300kCI/Cm2で加熱加圧成型したものも示
した。PTFE粉末は、銅メッキした合金粉末とPTF
E粉末との和に対して5重量%とした。
As a comparative example, PTFE powder was used as a binder and 300'
C, those molded under heat and pressure at 300 kCI/Cm2 are also shown. PTFE powder is copper-plated alloy powder and PTF
The amount was 5% by weight based on the sum of E powder.

シリコーンゴムを用いた水素吸蔵電極を具備する電池の
容量特性は第1図の斜線領域の範囲に含まれていた。こ
の結果から明らかなように、シリコーンゴムを用いるも
のは、PTFEを用いるものに比べて高率放電での容量
低下が格段に小さい。
The capacity characteristics of a battery equipped with a hydrogen storage electrode using silicone rubber were included in the shaded area in FIG. As is clear from this result, those using silicone rubber have a much smaller decrease in capacity at high rate discharge than those using PTFE.

(第2実施例) 次に、結着剤としてシリコーンゴムを用いた水素吸蔵電
極の充放電サイクル数と容量(負極容量)低下との関連
を第2図に示す。電極の成型条件は第1実施例と同じで
ある。
(Second Example) Next, FIG. 2 shows the relationship between the number of charge/discharge cycles and the decrease in capacity (negative electrode capacity) of a hydrogen storage electrode using silicone rubber as a binder. The electrode molding conditions are the same as in the first example.

充放電サイクルは、充電が400mAX3時間、放電が
400mAで放電終了電圧0.8Vとした。
The charge/discharge cycle consisted of charging at 400 mAX for 3 hours and discharging at 400 mA, with a discharge end voltage of 0.8 V.

比較例として上記したP丁「E粉末を結着材として用い
たものも用意した。この試験結果から明らかなように、
シリコーンゴムを用いた水素吸蔵電極はPTFEを結着
材とする従来のもの比較して更に優れたサイクル寿命を
有していることがわかった。
As a comparative example, we also prepared a product using the above-mentioned P-cho "E powder" as a binder.As is clear from this test result,
It has been found that a hydrogen storage electrode using silicone rubber has an even better cycle life than a conventional electrode using PTFE as a binder.

(第3実施例〉 次に、結着剤としてシリコーンゴムを用いた水素吸蔵電
極におけるシリコーンゴムの混合量と高率放電時の容量
維持率との関係を第3図に示す。
(Third Example) Next, FIG. 3 shows the relationship between the amount of silicone rubber mixed and the capacity retention rate during high rate discharge in a hydrogen storage electrode using silicone rubber as a binder.

なお、上記容量維持率は0.50放電に対する5C放電
時の放電容量の割合を示す。混合量以外の条件は第1実
施例と同じである。
Note that the above capacity retention rate indicates the ratio of discharge capacity at 5C discharge to 0.50 discharge. Conditions other than the mixing amount are the same as in the first example.

この結果から、シリコーンゴムの混合量は3〜20重量
%さらに好ましくは5〜15重量%とするのがよいこと
がわかった。
From this result, it was found that the amount of silicone rubber mixed is preferably 3 to 20% by weight, more preferably 5 to 15% by weight.

(第4実施例〉 次に、結着剤としてシリコーンゴムを用いた水素吸蔵電
極における戊型圧力と高率放電時の容量維持率との関係
を第4図に示す。上記容量維持率も0.5C放電に対す
る5C放電時の放電容量の割合を示す。成型圧力以外の
条件は第1実施例と9 同じである。
(Fourth Example) Next, Fig. 4 shows the relationship between the hollow-shaped pressure and the capacity retention rate during high rate discharge in a hydrogen storage electrode using silicone rubber as a binder.The capacity retention rate is also 0. The ratio of discharge capacity during 5C discharge to 5C discharge is shown.The conditions other than the molding pressure are the same as in the first example.

この結果から、成型圧力は50〜300kg/Cm2ざ
らに好ましくは100〜250kg/Cm2とするのが
よいことがわかった。
From this result, it was found that the molding pressure is preferably 50 to 300 kg/Cm2, more preferably 100 to 250 kg/Cm2.

[発明の効果] 以上説明したように、本発明の水素吸蔵電極の製造方法
は、マイクロカプセル化ざれた水素吸蔵合金粉末を未架
橋シリ]一ンゴムと混練し、電極戒型後に未架橋シリコ
ーンゴムの架橋を完了させて水素吸蔵電極を形或してい
るので、実験結果からわかるように、高率放電時の容量
低下特性及び充放電サイクル寿命の改善が可能になる。
[Effects of the Invention] As explained above, in the method for manufacturing a hydrogen storage electrode of the present invention, microencapsulated hydrogen storage alloy powder is kneaded with uncrosslinked silicone rubber, and after electrode molding, uncrosslinked silicone rubber is mixed. Since the hydrogen storage electrode is formed by completing the crosslinking of the hydrogen storage electrode, as can be seen from the experimental results, it is possible to improve the capacity reduction characteristics during high rate discharge and the charge/discharge cycle life.

恐らくは、シリコーンゴムが隣接するマイクロカプセル
間を弾性的に結合するので、マイクロカプセルの変形及
びそれによる電気抵抗の増加や水素流通性の劣化が抑止
され、高率放電時の容量低下が抑制される。換言すれば
、シリコーンゴムはその大きなゴム弾性により、マイク
ロカプセルの変形を抑止し、かつマイクロカプセルと結
着材とが分離するのを防止するものと思われ、その結果
、10 電極の形状安定性、及び、マイクロカプセルとシリコー
ンゴムとの結合性が改善され、絶対変形量が大きな大型
電極の製造が容易となるものと思われる。
Presumably, silicone rubber elastically bonds adjacent microcapsules, suppressing the deformation of microcapsules and the resulting increase in electrical resistance and deterioration of hydrogen flow, thereby suppressing capacity reduction during high rate discharge. . In other words, silicone rubber seems to suppress the deformation of the microcapsules and prevent the separation of the microcapsules and the binder due to its large rubber elasticity, and as a result, the shape stability of the 10 electrodes is It is also believed that the bond between the microcapsules and the silicone rubber is improved, making it easier to manufacture large-sized electrodes with a large amount of absolute deformation.

なお、従来のPTFEやフッ素樹脂製の結看材でも、マ
イクロカプセルの変形に追従して多少は弾性変形する。
Note that even conventional binding materials made of PTFE or fluororesin undergo elastic deformation to some extent following the deformation of the microcapsules.

しかし、このような結着材の弾性変形限界は低く、マイ
クロカプセルの変形量が大きくなると、結着材とマイク
ロカプセルとの結合が微視的には破れ(結着材のマイク
ロカプセル保持力が劣化し)、大型電極の形状安定性が
損われるとともにその内部電気抵抗が増加し、高率放電
における容量低下が著しくなるのではないかと考えられ
る。
However, the limit of elastic deformation of such a binder is low, and when the amount of deformation of the microcapsules becomes large, the bond between the binder and the microcapsules is microscopically broken (the microcapsule retention force of the binder is reduced). It is thought that the shape stability of the large electrode is impaired and its internal electrical resistance increases, leading to a significant decrease in capacity during high rate discharge.

また本発明によれば、水素吸蔵電極の製造において、高
温(例えば300℃程度)加熱を必要としないので電極
製造が容易であり、戒型性及び経済性に優れる。
Further, according to the present invention, in manufacturing the hydrogen storage electrode, high temperature (for example, about 300° C.) heating is not required, so the electrode can be easily manufactured, and is excellent in formability and economical efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の製造方法で製造された水素11 吸蔵電極を用いた電池の高率放電時における容量低下特
性を示す特性図、第2図は、本発明の製造方法で製造さ
れた水素吸蔵電極の充放電サイクル寿命を示す特性図、
第3図はシリコンゴム組或量と高率放電時の容量維持率
との関係を示す特性図、第4図は成型圧力と高率放電時
の容量維持率との関係を示す特性図である。
Figure 1 is a characteristic diagram showing the capacity reduction characteristics during high rate discharge of a battery using a hydrogen-11 storage electrode manufactured by the manufacturing method of the present invention, and Figure 2 is a characteristic diagram showing the capacity reduction characteristics of a battery manufactured by the manufacturing method of the invention. Characteristic diagram showing the charge/discharge cycle life of the hydrogen storage electrode,
Figure 3 is a characteristic diagram showing the relationship between a certain amount of silicone rubber and the capacity retention rate during high rate discharge, and Figure 4 is a characteristic diagram showing the relationship between molding pressure and capacity retention rate during high rate discharge. .

Claims (1)

【特許請求の範囲】[Claims] (1)水素吸蔵合金粉末の表面を銅又はニッケルで水素
流通可能に被覆してマイクロカプセル化し、該マイクロ
カプセルを未架橋のシリコーンゴムと共に混練した後、
該混合物を集電体で支持して加圧成型すると同時に前記
シリコーンゴムを架橋させることを特徴とする水素吸蔵
電極の製造方法。
(1) After coating the surface of the hydrogen-absorbing alloy powder with copper or nickel to allow hydrogen to flow and forming microcapsules, and kneading the microcapsules with uncrosslinked silicone rubber,
A method for producing a hydrogen storage electrode, which comprises pressurizing and molding the mixture while supporting it with a current collector, and simultaneously crosslinking the silicone rubber.
JP1235144A 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode Expired - Lifetime JPH0812778B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1235144A JPH0812778B2 (en) 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode
US07/576,701 US5104753A (en) 1989-09-11 1990-08-31 Hydrogen storage electrode and process for producing the same
EP90117398A EP0417697B1 (en) 1989-09-11 1990-09-10 Hydrogen storage electrode and process for producing the same
DE69008977T DE69008977T2 (en) 1989-09-11 1990-09-10 Hydrogen storage electrode and process for its manufacture.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1235144A JPH0812778B2 (en) 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode

Publications (2)

Publication Number Publication Date
JPH0398260A true JPH0398260A (en) 1991-04-23
JPH0812778B2 JPH0812778B2 (en) 1996-02-07

Family

ID=16981706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1235144A Expired - Lifetime JPH0812778B2 (en) 1989-09-11 1989-09-11 Method for manufacturing hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH0812778B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289045A (en) * 1990-04-03 1991-12-19 Matsushita Electric Ind Co Ltd Manufacture of negative electrode for alkaline battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS5814463A (en) * 1981-07-16 1983-01-27 Matsushita Electric Ind Co Ltd Manufacture of electrode for lead storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material
JPS5814463A (en) * 1981-07-16 1983-01-27 Matsushita Electric Ind Co Ltd Manufacture of electrode for lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289045A (en) * 1990-04-03 1991-12-19 Matsushita Electric Ind Co Ltd Manufacture of negative electrode for alkaline battery
JPH0795444B2 (en) * 1990-04-03 1995-10-11 松下電器産業株式会社 Alkaline battery negative electrode manufacturing method

Also Published As

Publication number Publication date
JPH0812778B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
KR920007381B1 (en) Making method of akaline battery
JPH05205746A (en) Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery
JPS5937667A (en) Metal oxide-hydrogen battery
US5104753A (en) Hydrogen storage electrode and process for producing the same
JPH0398260A (en) Manufacture of hydrogen storage electrode
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JP3008519B2 (en) Hydrogen storage electrode, method for producing the same, and metal oxide-hydrogen storage battery using the same
JPS6166366A (en) Hydrogen-occlusion electrode
JP3472489B2 (en) Hydrogen storage electrode and method for producing the same
JPH0750608B2 (en) Method for manufacturing hydrogen storage electrode
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JPH0992271A (en) Hydrogen storage alloy electrode
JPH088101B2 (en) Method for manufacturing hydrogen storage electrode
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH0398261A (en) Manufacture of hydrogen storage electrode
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JPH02278659A (en) Manufacture of hydrogen storage electrode
JPH1140148A (en) Alkaline storage battery and manufacture of electrode thereof
EP0865090A1 (en) Electrode for cell
JP3306058B2 (en) Hydrogen storage alloy electrode and nickel metal hydride secondary battery
JPS59114767A (en) Manufacture of hydrogen electrode
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH0251874A (en) Alkaline zinc lead-acid battery
JPH0757771A (en) Manufacture of metal-hydrogen alkaline storage battery
JPH05251081A (en) Hydrogen storage electrode current collector, its manufacture, hidrogen storage electrode using it and nickel-hydrogen storage battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term