JPH038744A - Rare earth element-doped quartz glass fiber preform and preparation thereof - Google Patents

Rare earth element-doped quartz glass fiber preform and preparation thereof

Info

Publication number
JPH038744A
JPH038744A JP1143271A JP14327189A JPH038744A JP H038744 A JPH038744 A JP H038744A JP 1143271 A JP1143271 A JP 1143271A JP 14327189 A JP14327189 A JP 14327189A JP H038744 A JPH038744 A JP H038744A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
base material
fluorine
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1143271A
Other languages
Japanese (ja)
Other versions
JPH0791088B2 (en
Inventor
Yoshiharu Konya
義治 紺谷
Kazuo Kamiya
和雄 神屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
KDDI Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Kokusai Denshin Denwa KK filed Critical Shin Etsu Chemical Co Ltd
Priority to JP1143271A priority Critical patent/JPH0791088B2/en
Publication of JPH038744A publication Critical patent/JPH038744A/en
Publication of JPH0791088B2 publication Critical patent/JPH0791088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To prepare the subject optical fiber preform containing a rare earth element homogeneously doped therein in a high concentration and having an excellent optical function, etc., by adding a rare earth element-containing com pound to a porous quartz glass base material, heating the base material in the presence of a fluorine compound and subsequently sintering the treated base material to form glass. CONSTITUTION:Silica glass fine particles produced by a flame hydrolysis method are deposited to prepare a porous glass base material. The base material is impregnated with a rare earth element-containing compound (e.g. erbium chlo ride) and heated in the presence of a fluorine compound to fix the rare earth element compound as a fluorine compound thereof. The treated base material is sintered at a high temperature to form transparent glass, thereby providing a rare earth element-doped quartz glass optical fiber preform comprising a core made of quartz glass containing the rare earth element and the fluorine and a clad made of quartz glass containing the fluorine in an amount layer than that of the fluorine contained in the quartz glass forming the core.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類元素ドープ石英ガラス系光ファイバ用母
材、特には光機能を有していることから光ファイバレー
ザー、光増幅器、センサー素子として有用とされる希土
類元素ドープ石英ガラス系光ファイバ用母材およびこの
製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a rare earth element-doped silica glass base material for optical fibers, and in particular, because it has an optical function, it can be used as an optical fiber laser, optical amplifier, or sensor element. The present invention relates to a base material for a rare earth element-doped silica glass optical fiber and a method for manufacturing the same.

(従来の技術) 光機能を有する石英ガラスについては、石英ガラスに希
土類元素を添加した希土類元素ドープ石英ガラスが公知
とされている。
(Prior Art) Regarding quartz glass having optical functions, rare earth element-doped quartz glass, which is obtained by adding a rare earth element to quartz glass, is known.

しかして、この希土類元素ドープ石英ガラスの製造につ
いては、四塩化けい素などのけい素化合物と希土類元素
化合物とを必要に応じ添加されるドープ剤としてのゲル
マニウム、リン、はう素化合物と共に石英ガラス管内に
導入し、外側より酸水素火炎バーナーで加熱して化学反
応をさせ、生成したシリカガラス微粒子を石英ガラス管
内に堆積させるという内付けCVD法 (MCVD法)
による方法(特公表63−501711号公報参照)、
四塩化けい素などのけい素化合物を酸水素火炎バーナー
に送入し、ここでの火炎加水分解で生成したシリカガラ
ス微粒子を担体上に堆積させて多孔質ガラス母材を作り
、ついでこれに希土類元素を含む化合物を添加したのち
、高温で焼結し透明ガラス化する方法(特公昭53−3
980号公報参照)などが知られている。
Therefore, in the production of this rare earth element-doped quartz glass, silicon compounds such as silicon tetrachloride and rare earth element compounds are added to the quartz glass along with germanium, phosphorus, and boronate compounds as dopants, which are added as necessary. Internal CVD method (MCVD method) in which the silica glass particles are introduced into the tube and heated from the outside with an oxyhydrogen flame burner to cause a chemical reaction, and the generated silica glass particles are deposited inside the quartz glass tube.
method (see Japanese Patent Publication No. 63-501711),
A silicon compound such as silicon tetrachloride is fed into an oxyhydrogen flame burner, and the silica glass particles produced by flame hydrolysis here are deposited on a carrier to create a porous glass matrix, which is then injected with rare earth elements. A method in which a compound containing an element is added and then sintered at high temperature to form transparent glass (Special Publication Publication No. 53-3)
980) and the like are known.

(発明により解決されるべき課題) しかし、このMCVD法では希土類元素化合物の供給が
希土類元素塩化物の高温加熱での蒸発で行なわれるため
に、供給量の制御が困難であるし、大型の母材を得るこ
とが難しいという不利がある。
(Problems to be Solved by the Invention) However, in this MCVD method, the rare earth element compound is supplied by evaporating the rare earth element chloride by heating at high temperature, so it is difficult to control the supply amount, and it is difficult to control the supply amount. The disadvantage is that it is difficult to obtain wood.

一方、火炎加水分解法で得た多孔質ガラス母材に希土類
元素化合物を添加し、高温焼結するという方法には、こ
の希土類元素化合物の添加が多孔質ガラス母材を希土類
元素化合物の溶液に浸漬するという方法で行なわれるの
で、このドープ量の制御が容易であり、蒸気圧の低い化
合物にも適用することができるという利点があるものの
、これには焼結、ガラス化の際に希土類元素化合物の一
部が揮散するために所望のドープ量が得られなくなると
いう欠点がある。
On the other hand, in the method of adding a rare earth element compound to a porous glass base material obtained by flame hydrolysis method and sintering at high temperature, the addition of this rare earth element compound converts the porous glass base material into a solution of the rare earth element compound. Since it is carried out by dipping, it is easy to control the amount of dope, and it has the advantage that it can be applied to compounds with low vapor pressure. There is a drawback that a desired doping amount cannot be obtained because a part of the compound volatilizes.

そのため、この後者の問題点を解決する方法として、多
孔質ガラス母材中に添加される希土類元素化合物をその
融点以下の温度に保持された酸化雰囲気内において酸化
するという方法も提案されている(特開昭83−601
21号公報参照)が、この方法では希土類元素化合物が
完全には酸化されず、酸化されない希土類元素化合物、
例えば希土類元素塩化物はガラス工程でかなり揮散する
し、揮散せずにガラス中に残存するとこの塩化物はガラ
スネットワークの中に入ることができず、微小結晶とな
るので、目的とする石英ガラスが白濁した状態となって
光伝送損失を招くことになり、さらにはレーザー発振効
率も低いものになるという不利がある。
Therefore, as a method to solve this latter problem, a method has been proposed in which the rare earth element compound added to the porous glass base material is oxidized in an oxidizing atmosphere maintained at a temperature below its melting point ( Japanese Patent Publication No. 83-601
(Refer to Publication No. 21) However, in this method, the rare earth element compound is not completely oxidized, and the rare earth element compound that is not oxidized,
For example, rare earth element chlorides are considerably volatilized during the glass process, and if they remain in the glass without being volatilized, these chlorides cannot enter the glass network and become microcrystals. This has the disadvantage that it becomes cloudy, causing optical transmission loss, and furthermore, the laser oscillation efficiency becomes low.

(課題を解決するための手段) 本発明はこのような不利、欠点を解決した希土類元素ド
ープ石英ガラス系光ファイバ用母材およびその製造方法
に関するもので、これは希土類元素とフッ素を含有する
フッ素でドープした石英ガラスをコアとし、コアを形成
する石英ガラスに含有されるフッ素よりも多くのフッ素
を含有する石英ガラスをクラッドとしてなることを特徴
とする希土類元素ドープ石英ガラス系光ファイバ用母材
および火炎加水分解によって生成するシリカガラス微粒
子を堆積して得られる多孔質ガラス母材に希土類元素を
含む化合物を添加した後、高1里で焼結して透明ガラス
化する方法において、焼結工程の前に、該多孔質ガラス
母材をフッ素化合物の存在下に熱処理して希土類元素化
合物をフッ素化合物として固定することを特徴とする希
土類元素ドープ石英ガラス系光ファイバ母材の製造方法
に関するものである。
(Means for Solving the Problems) The present invention relates to a base material for a rare earth element-doped silica glass optical fiber that solves the above-mentioned disadvantages and drawbacks, and a method for manufacturing the same. A base material for a rare earth element-doped silica glass optical fiber, characterized in that the core is quartz glass doped with silica, and the cladding is silica glass containing more fluorine than the fluorine contained in the quartz glass forming the core. A method in which a compound containing a rare earth element is added to a porous glass base material obtained by depositing fine silica glass particles produced by flame hydrolysis, and then sintered at a high temperature to produce transparent glass. The present invention relates to a method for producing a rare earth element-doped silica glass optical fiber base material, which comprises heat-treating the porous glass base material in the presence of a fluorine compound to fix the rare earth element compound as a fluorine compound. be.

すなわち、本発明者らは希土類元素化合物をドープした
石英ガラスにおける希土類元素化合物の移動、揮散に伴
なう不利を解決しな希土類元素トープ石英ガラス系光フ
ァイバ母材およびその製造方法について種々検討した結
果、火炎加水分解法で製造した多孔質ガラス母材に希土
類元素を含む化合物を添加した後、高温で焼結して透明
ガラス化する前に、この希土類元素を含有する多孔質ガ
ラス母材をフッ素化合物の存在下に熱処理して希土類元
素化合物をフッ素化すると、この希土類元素化合物、例
えば通常この希土類元素化合物として使用される希土類
元素塩化物がこの塩化物よりも沸点の高い希土類元素フ
ッ化物として固定されると共にこの多孔質ガラス母材が
フッ素でドープされたものとなって軟化点が低下するこ
と、またこの希土類元素フッ化物は前記した希土類元素
塩化物がガラスネットワーク中に入りこめないのに対し
、シロキサン結合の中に入って安定化しガラス中に均一
に分散するということを見出し、このように処理した多
孔質ガラス母材を高温で焼結して透明ガラス化すると希
土類元素化合物は沸点の高い希土類元素フッ化物として
固定されており、これが移動したり、揮散することがな
いので、得られる石英ガラスはドーパントの濃度分布が
不均一になることもないし、したがって割れることもな
く、ドープ量の制御も容易になるということを見出した
。目的と、する光ファイバ用母材はこの方法で作った希
土類元素フッ化物を含有するフッ素でドープした石英ガ
ラスをコアとし、このコアを形成する石英ガラスよりも
多量のフッ素を含有する石英ガラスをクラッドとするこ
とにより導波路構造をなし、コアに希土類元素が均一に
ドープされた光ファイバが製造できるという利点の与え
られることを見出して本発明を完成させた。
That is, the present inventors have conducted various studies on rare earth element-topped silica glass-based optical fiber base materials and methods for manufacturing the same, which do not solve the disadvantages associated with the movement and volatilization of rare earth element compounds in quartz glass doped with rare earth element compounds. As a result, after adding a compound containing a rare earth element to a porous glass base material manufactured by flame hydrolysis method, the porous glass base material containing this rare earth element was added before being sintered at high temperature to make it transparent. When a rare earth element compound is fluorinated by heat treatment in the presence of a fluorine compound, this rare earth element compound, for example, a rare earth element chloride which is usually used as this rare earth element compound, becomes a rare earth element fluoride having a boiling point higher than this chloride. When fixed, this porous glass base material becomes doped with fluorine, lowering its softening point, and this rare earth element fluoride does not allow the above-mentioned rare earth element chloride to enter the glass network. On the other hand, we discovered that the rare earth element compound enters into siloxane bonds, stabilizes it, and disperses uniformly in the glass, and when the porous glass base material treated in this way is sintered at high temperature to become transparent glass, the rare earth element compound becomes Since it is fixed as a high rare earth element fluoride and does not move or volatilize, the resulting quartz glass will not have a non-uniform dopant concentration distribution, will not crack, and will not have a high doping amount. It has been found that control is also easier. For this purpose, the base material for the optical fiber has a core made of quartz glass doped with fluorine containing rare earth element fluoride, and the quartz glass containing a larger amount of fluorine than the quartz glass forming this core. The present invention was completed by discovering that the use of a cladding provides the advantage that an optical fiber having a waveguide structure and a core uniformly doped with a rare earth element can be manufactured.

(作用) 本発明の希土類元素ドープ石英ガラス系光ファイバ用母
材は前記したように希土類元素とフッ素を含有するフッ
素でドープした石英ガラスをコアとし、このコアを形成
する石英ガラスに含有されるフッ素よりも多くのフッ素
を含有する石英ガラスをクラッド部とすることを特徴と
するものであり、この希土類元素フッ化物を含有するフ
ッ素ドープした石英ガラスは火炎加水分解法で作られた
多孔質ガラス母材に希土類元素を含む化合物を添加した
のち、フッ素化合物の存在下に熱処理して希土類元素を
フッ素化合物として固定化すると共にフッ素ドープする
ことによって得ることができる。
(Function) As described above, the rare earth element-doped quartz glass optical fiber base material of the present invention has a core of fluorine-doped quartz glass containing a rare earth element and fluorine, and the quartz glass that forms this core contains It is characterized by having a cladding part of quartz glass that contains more fluorine than fluorine, and this fluorine-doped quartz glass containing rare earth element fluoride is a porous glass made by flame hydrolysis method. It can be obtained by adding a compound containing a rare earth element to a base material and then heat-treating it in the presence of a fluorine compound to fix the rare earth element as a fluorine compound and doping it with fluorine.

この火炎加水分解法による多孔質ガラス母材の製造は公
知の方法、例えば光ファイバ用母材の製造法としてよく
知られているCVD法、VAD法で行えばよい。したが
ってこれは公知の酸水素火炎バーナーに四塩化けい素な
どのけい素化合物を必要に応じドーパントとなる四塩化
ゲルマニウムなどのゲルマニウム化合物と共に供給し、
ここでの加水分解で生成したシリカガラス微粒子または
シリカ微粒子と酸化ゲルマニウム微粒子とからなるガラ
ス微粒子を石英ガラス棒なとの担体上に堆積させること
によって作ればよい。しかし、このようにして得られる
多孔質ガラス母材はこれを希土類元素化合物を含む溶液
に浸漬したときに、微粒子間の凝集力が失なわれて破壊
しないだけの機械的強度をもつものとする必要があるの
で平均かき密度が0.3g/cm3より大きいものとす
ることがよいし、これはまたこの多孔質ガラス母材を希
土類元素化合物溶液に浸漬したときにこの溶液が多孔質
ガラス母材の中を容易に拡散8勤することが必要とされ
るということから平均かさ密度が1.0g/cm’より
小さいものとすることがよい。
The production of the porous glass preform by this flame hydrolysis method may be carried out by a known method, such as the CVD method or VAD method, which are well known as methods for producing preforms for optical fibers. Therefore, this involves supplying a silicon compound such as silicon tetrachloride to a known oxyhydrogen flame burner, optionally together with a germanium compound such as germanium tetrachloride as a dopant.
It may be produced by depositing silica glass particles or glass particles consisting of silica particles and germanium oxide particles produced by the hydrolysis on a carrier such as a quartz glass rod. However, the porous glass base material obtained in this way must have enough mechanical strength to not break due to loss of cohesive force between fine particles when immersed in a solution containing a rare earth element compound. Therefore, it is better to set the average scraping density to be greater than 0.3 g/cm3, and this also means that when this porous glass base material is immersed in a rare earth element compound solution, the solution will not dissolve into the porous glass base material. It is preferable that the average bulk density is less than 1.0 g/cm' because it is necessary to easily diffuse through the air.

このようにして得られた多孔質ガラス母材はついで希土
類元素を含む化合物溶液に浸漬されて、この内部にまで
希土類元素化合物が浸透させられる。この希土類元素を
含む化合物としてはネオジム、エルビウム、ユーロピウ
ム、セリウムなどの希土類元素の塩化物、硝酸塩、硫酸
塩などが例示され、これは溶剤に対して十分な溶解度を
有するものであれば特に限定する必要はないが、一般に
は入手が容易であり、十分な溶解度を有する塩化物とす
ることが好ましい。また、この溶剤も多孔質ガラス母材
と化学的に反応しないものであればよいので特に限定さ
れるものではないが、水は多孔質ガラス母材の微粒子間
の凝集力を弱める作用が強いので好ましいものではなく
、これには上記した希土類元素化合物の溶解度、多孔質
ガラス母材への作用および乾燥速度が早いということか
らメタノール、エタノールのような低級アルコールとす
ることがよい。なお、この希土類元素化合物によるドー
プは二種以上の化合物を使用して共ド−プとしてもよい
が、この場合にクロムのような遷移金属を光増感剤とし
て添加することは任意とされる。
The porous glass base material thus obtained is then immersed in a compound solution containing a rare earth element, so that the rare earth element compound penetrates into the inside thereof. Examples of compounds containing rare earth elements include chlorides, nitrates, and sulfates of rare earth elements such as neodymium, erbium, europium, and cerium, and these are particularly limited as long as they have sufficient solubility in solvents. Although not required, it is generally preferred to use a chloride that is easily available and has sufficient solubility. Also, this solvent is not particularly limited as long as it does not chemically react with the porous glass base material, but water has a strong effect of weakening the cohesive force between fine particles of the porous glass base material. It is not preferable to use a lower alcohol such as methanol or ethanol because of the solubility of the above-mentioned rare earth element compound, its effect on the porous glass base material, and its quick drying rate. Note that this doping with a rare earth element compound may be co-doped using two or more compounds, but in this case it is optional to add a transition metal such as chromium as a photosensitizer. .

本発明ではこの希土類元素化合物をドープした多孔質ガ
ラス母材をついでフッ素化合物の存在下に加熱するので
あるが、これによれば多孔質ガラス母材に添加されてい
る希土類元素化合物がフッ素化合物と反応して、上記し
た希土類元素を含む化合物、例えば希土類元素塩化物が
これよりも沸点の高い希土類元素フッ化物として固定さ
れると共に、多孔質ガラス母材がフッ素でドープされて
軟化点の低いものになる。ここに使用されるフッ素化合
物としてフッ化炭素、フッ化塩化炭素、フッ化イオウ、
フッ化けい素、フッ化ホウ素、フッ化りん、オキシフッ
化イオウ、オキシフッ化けい素が例示され、具体的には
C2Fa、 CI、j! 2F2. ChCj2 。
In the present invention, the porous glass base material doped with this rare earth element compound is then heated in the presence of a fluorine compound, but according to this method, the rare earth element compound added to the porous glass base material is combined with the fluorine compound. Through the reaction, the above-mentioned rare earth element-containing compound, such as rare earth element chloride, is fixed as rare earth element fluoride, which has a higher boiling point than this, and the porous glass base material is doped with fluorine and has a lower softening point. become. Fluorine compounds used here include fluorocarbon, fluorochloride, sulfur fluoride,
Examples include silicon fluoride, boron fluoride, phosphorus fluoride, sulfur oxyfluoride, and silicon oxyfluoride, specifically C2Fa, CI, j! 2F2. ChCj2.

CCj2 F!、SF4、SF6、SiF4、Si2F
6、BF3、PF、、POF3.5OFs、 502F
2.5i20F、、Si、、0.F6などがあげられる
。このフッ素化合物の存在下における熱処理によって、
多孔質ガラス母材に添加された希土類元素化合物、例え
ば希土類元素塩化物は次式3式% (Lは希土類元素を示す) によって希土類元素フッ化物として固定され、この多孔
質ガラス母材を構成しているシリカも次式3式% によってフッ素ドープされたものとなるが、この多孔質
ガラス母材に水分が残留しているとこのフッ素化合物が
フッ化イオウであるときには、このフッ化イオウが次式 %式% によってフッ化水素となり、これがシリカガラス微粒子
を侵食するので多孔質ガラス母材が割れるということが
ある。そのためこの処理温度は多孔質ガラス母材中の吸
着水分を無くすということから200℃以上とすること
がよいし、200℃以上とすれば反応速度を早くするこ
とができるどう有利性が与えられるが、これは1 、2
0.0℃以上とすると多孔質ガラス母材の収縮が著しく
なってフ・ン素のドーピングが妨げられるので、これは
200−Vl 200℃の温度範囲とする必要があるし
、これはまた多孔質ガラス母材中に存在している希土類
元素化合物がこの加熱によって揮散してはいけないので
、この希土類元素化合物の揮散が開始される温度以下と
することが必要とされる。
CCj2 F! , SF4, SF6, SiF4, Si2F
6, BF3, PF, POF3.5OFs, 502F
2.5i20F,,Si,,0. Examples include F6. By heat treatment in the presence of this fluorine compound,
A rare earth element compound, such as a rare earth element chloride, added to the porous glass base material is fixed as a rare earth element fluoride by the following formula 3 (L represents a rare earth element), and constitutes this porous glass base material. The silica contained in the glass is also fluorine-doped according to the following formula 3. However, if moisture remains in this porous glass matrix and the fluorine compound is sulfur fluoride, this sulfur fluoride The formula % formula % turns into hydrogen fluoride, which corrodes the silica glass particles, causing the porous glass base material to crack. Therefore, it is preferable to set the treatment temperature to 200°C or higher to eliminate adsorbed moisture in the porous glass matrix, and if it is set to 200°C or higher, the reaction rate can be increased, which is advantageous. , this is 1, 2
If the temperature is higher than 0.0°C, the shrinkage of the porous glass base material will become significant and the doping of fluorine elements will be hindered. Since the rare earth element compound present in the glass base material must not be volatilized by this heating, it is necessary to keep the temperature below the temperature at which the rare earth element compound starts volatilizing.

なお、この方法で得られる希土類元素フッ化物はり、、
lF3で示されるものであり、フッ素原子は希土類元素
1モルに対し3モル結合し得るものであることから、重
量比では希土類元素1に対し計算上フッ素は0.33〜
0.41となるが、目的とする石英ガラスに光機能を与
えるためには希土類元素が少なくとも0.01重量%必
要とされることからフッ素も0.003 重量%以上と
する必要があるが、このフッ素でドープした石英ガラス
はガラス軟化点が低下するので、この軟化点低下によっ
てガラス化を容易にするということからはこのフッ素量
は少なくとも0.1皿量%とする必要がある。
In addition, the rare earth element fluoride beam obtained by this method,
It is represented by lF3, and since 3 moles of fluorine atoms can be bonded to 1 mole of rare earth elements, the weight ratio of fluorine to 1 mole of rare earth elements is calculated to be 0.33 to 1.
However, in order to provide the desired optical function to the quartz glass, at least 0.01% by weight of rare earth elements is required, so fluorine must also be at least 0.003% by weight. Since the fluorine-doped silica glass has a lower glass softening point, the amount of fluorine needs to be at least 0.1% by volume in order to facilitate vitrification by lowering the softening point.

このフッ素化合物の存在下での熱処理によって得られた
希土類元素フッ化物を含有すると共にフッ素でドープさ
れた多孔質ガラス母材はついで高温で焼結して透明ガラ
ス化するのであるが、これは電気炉中でヘリウムなどの
不活性ガス罪囲気下に1,500℃以上に加熱して行え
ばよいし、この際必要に応じ脱水のためにハロゲンガス
を微量混合してもよく、また上記したフッ化工程をより
完全にするということから前記フッ素化合物を微量混合
してもよい。このようにして得られる石英カラスは透明
であり、このガラスネットワークには希土類元素フッ化
物が均一に分散されているのでこのものは光機能をもつ
ものとなるし、これはまたフッ素でドープされているの
で、光ファイバ用母材として有用とされる。
The porous glass matrix containing rare earth element fluoride and doped with fluorine obtained by heat treatment in the presence of the fluorine compound is then sintered at high temperature to become transparent glass. This can be carried out by heating to 1,500°C or higher in a furnace surrounded by an inert gas such as helium, and at this time, a small amount of halogen gas may be mixed for dehydration if necessary. A trace amount of the above-mentioned fluorine compound may be mixed in order to make the oxidation process more complete. The quartz glass thus obtained is transparent, the rare earth fluoride is evenly distributed in the glass network, giving it optical functionality, and it is also doped with fluorine. Therefore, it is considered useful as a base material for optical fibers.

本発明の希土類元素ドープ石英ガラス系光ファイバ用母
材は上記の方法で得た希土類元素とフッ素を含有するフ
ッ素でドープされた石英ガラスをコアとして使用するも
のであるが、このクラッドはコア部より屈折率を下げ光
ファイバ導波路構造を形成するため、このコアを形成す
る石英ガラスに含有されているフッ素量よりも多くのフ
ッ素を含有する石英ガラスとする必要がある。このよう
に構成された光ファイバ用母材はコアがフッ素で熱処理
された希土類元素がガラスネットワーク中に均一に分散
されており、光機能性にすぐれた希土類元素ドープ石英
系光ファイバ用母材を有利に得ることができるという有
利性を得ることができるという工業用有用性が与えられ
る。
The rare earth element-doped silica glass optical fiber base material of the present invention uses fluorine-doped quartz glass containing a rare earth element and fluorine obtained by the above method as a core, and this cladding is used as a core part. In order to further lower the refractive index and form an optical fiber waveguide structure, it is necessary to use silica glass that contains more fluorine than the amount of fluorine contained in the silica glass that forms this core. The optical fiber base material constructed in this way has a fluorine core and a heat-treated rare earth element that is uniformly dispersed in the glass network, making it a rare earth element-doped silica optical fiber base material with excellent optical functionality. Industrial utility is afforded, which can be advantageously obtained.

(実施例) つきに本発明の実施例、比較例をあげる。(Example) Examples of the present invention and comparative examples will be given below.

実施例 石英製同心多重管バーナーに水素ガス5.17分、酸素
ガス81/分を供給し、着火して酸水素火炎を形成させ
、このバーナーの中心に酸素ガスをキャリアガスとして
四塩化けい素0.17J27分を供給し、この火炎加水
分解で発生したシリカガラス微粒子を担体としての石英
ガラスロッドの軸方向に8時間堆積、成長させて、外径
45mm、長さ300mm、 mさ170gで平均かさ
密度が0.356g/cm3である多孔質ガラス母材を
作った。
Example 5.17 minutes of hydrogen gas and 81 minutes of oxygen gas were supplied to a quartz concentric multi-tube burner, ignited to form an oxyhydrogen flame, and silicon tetrachloride was placed in the center of the burner using oxygen gas as a carrier gas. 0.17J for 27 minutes, and the silica glass fine particles generated by this flame hydrolysis were deposited and grown in the axial direction of the quartz glass rod as a carrier for 8 hours, and the outer diameter was 45 mm, the length was 300 mm, and the average length was 170 g. A porous glass preform having a bulk density of 0.356 g/cm3 was prepared.

ついでこの多孔質ガラス母材を塩化エルビウムの0.1
00重量%メタノール溶液に浸漬してその内部にまで塩
化エルビウムを浸透させ、これを25℃の室温で、36
時間放置してメタノールを蒸発させたのち、焼結炉に入
れて700℃まで昇温し、ここに四フッ化けい素(Si
F4)0.03IL/分、ヘリウム(He)3.O11
1分の混合ガスを流しながら3時間処理してエルビウム
のフッ化と多孔質ガラス母材のフッ素ドープを行なった
Next, this porous glass matrix was coated with 0.1 erbium chloride.
Erbium chloride was immersed in a 00 wt% methanol solution to penetrate into the inside of the solution, and then heated at a room temperature of 25°C at 36°C.
After leaving it for a while to evaporate the methanol, it was placed in a sintering furnace and heated to 700°C, where silicon tetrafluoride (Si
F4) 0.03IL/min, helium (He) 3. O11
The mixture was treated for 3 hours while flowing a mixed gas for 1 minute to fluorinate erbium and dope the porous glass base material with fluorine.

つぎにこの多孔質ガラス母材を電気炉中においてヘリウ
ムガス霊囲気下で1,500℃に加熱焼結して透明ガラ
ス化したところ、外観が全体にピンク色を示した透明体
で、表面にはヒビ割れなども見られない外径25mrb
、長さ155m1!+の石英ガラスロットが得られ、こ
のものは化学分析の結果、フッ素を0.67重量%、エ
ルビウムを0.102重量%含有するもので、屈折率は
純石英ガラスに対して0.18%低下したものであった
が、このもののドープ量をEPMAで測定したところ、
第1図に示したとおりの結果が得られ、これは半径方向
にほぼ均一にドープされたものであることが確認され、
このエルビウム固定率は90%でありた。
Next, this porous glass base material was heated and sintered at 1,500°C in an electric furnace under a helium gas atmosphere to become transparent glass. Has an outer diameter of 25 mrb with no cracks or the like.
, length 155m1! A + quartz glass lot was obtained, and as a result of chemical analysis, this lot contained 0.67% by weight of fluorine and 0.102% by weight of erbium, and the refractive index was 0.18% with respect to pure silica glass. However, when the doping amount of this material was measured using EPMA, it was found that
The results shown in Figure 1 were obtained, and it was confirmed that the doping was almost uniform in the radial direction.
The erbium fixation rate was 90%.

また、このようにして得た石英ガラスロッドを延伸して
コアとし、この外周に多孔質シリカガラスを堆積し焼結
時にフッ素をドープしてクラッドとしたところ、このク
ラッドを構成する石英ガラスの屈折率差は石英ガラスに
対して0.48%低く、コア、クラッドの屈折率差は0
.3%であったので、このクラッド/コア比をL2.9
に調整して外径24mm、長さ250mmのシングルモ
ードファイバ用プリフォームを製造し、これを外径12
5μmのファイバに紡糸してその吸収波長特性をしらべ
たところ、第2図に示したとおりの結果が得られ、この
ものは0.68μm、0.8μm、0.98 μo、1
.54 μva、にエルビウム特有の吸収ピークが見ら
れた以外は散乱による損失増加はなかった。
In addition, when the quartz glass rod obtained in this way was stretched to form a core, porous silica glass was deposited on the outer periphery of the core, and fluorine was doped during sintering to form a cladding. The index difference is 0.48% lower than that of silica glass, and the refractive index difference between the core and cladding is 0.
.. 3%, this clad/core ratio was set to L2.9.
A single mode fiber preform with an outer diameter of 24 mm and a length of 250 mm was manufactured by adjusting the outer diameter of 12 mm.
When we spun it into a 5 μm fiber and examined its absorption wavelength characteristics, we obtained the results shown in Figure 2.
.. There was no increase in loss due to scattering, except that an absorption peak peculiar to erbium was observed at 54 μva.

比較例 上記した実施例の方法において塩化エルビウムを含浸さ
せた多孔質ガラス母材を四フッ化けい素の存在下で加熱
処理するフッ化工程を行なわず、これを直ちに電気炉中
においてヘリウムガス霊囲気下で1,800℃に加熱し
て透明ガラス化したほかは実施例と同じように処理して
石英ガラスロッドを作ってこれをコアとした。このコア
外周に多孔質シリカガラスを堆積し、焼結時にフッ素を
ドープしてこのクラッドの屈折率低下を0.3%となる
ようにして光ファイバ用母材を作ったところ、このコア
部の石英ガラスにおけるエルビウムの平均濃度は0.0
Fr2重量%であり、このエルビウムのドープ量をEP
MAで測定したところ、第3図に示したとおりの結果か
得られ、これはエルビウムがロットの外周部に多く偏在
している傾向にあり、ガラスロッドの表層にはエルビウ
ムの析出によって薄いすし状のクラックが生じているこ
とが確認された。焼結時の蒸発によりエルビウムの固定
率が55%と低くなり、また、これから作られた光ファ
イバの吸収波長特性もエルビウムの吸収ピーク以外はコ
ア表面の荒れによって広い波長領域にわたって散乱損失
が見られた。
Comparative Example In the method of the above-described example, the porous glass base material impregnated with erbium chloride was not subjected to the fluoridation step of heat treatment in the presence of silicon tetrafluoride, but was immediately heated in an electric furnace under a helium gas atmosphere. A quartz glass rod was made and used as a core in the same manner as in the example except that it was heated to 1,800° C. in an ambient atmosphere to make it transparent. An optical fiber base material was prepared by depositing porous silica glass on the outer periphery of this core and doping it with fluorine during sintering so that the refractive index of this cladding decreased by 0.3%. The average concentration of erbium in quartz glass is 0.0
Fr is 2% by weight, and this erbium doping amount is EP
When measured with MA, the results shown in Figure 3 were obtained, and this is because erbium tends to be unevenly distributed in the outer periphery of the lot, and a thin sushi-like shape is formed on the surface layer of the glass rod due to the precipitation of erbium. It was confirmed that cracks had occurred. Due to evaporation during sintering, the fixation rate of erbium is as low as 55%, and the absorption wavelength characteristics of the optical fiber made from this also show scattering loss over a wide wavelength range due to the roughness of the core surface, except for the absorption peak of erbium. Ta.

(発明の効果) 本発明の希土類元素ドープ石英系光ファイバ用母材は前
記したように、希土類系元素とフッ素を含有し、フッ素
でドープした石英ガラスをコアとし、このコアを形成す
る石英ガラスに含有されるフッ素よりも多くのフッ素を
含有する石英ガラスをクラッドとしてなるものであり、
このコアを形成する石英ガラスは火炎加水分解法で得た
多孔質ガラス母材に希土類元素化合物を添加後、フッ素
化合物の存在下に熱処理して希土類元素化合物をフッ化
物として固定すると共に多孔質ガラス母材をフッ素でド
ープするという方法で製造するというものであり、これ
によれば希土類元素化合物の8’!l]、揮散がなくな
るので高濃度にしかも均一にドープされた希土類ドープ
石英ガラスを容易に得ることができるし、ここに得られ
だ希土類元素フッ化物はガラスネットワーク中に安定に
存在するので、この石英ガラスを使用した光ファイバ用
母材には光機能性のすぐれたものになるという有利性が
与えられる。
(Effects of the Invention) As described above, the rare earth element-doped silica-based optical fiber base material of the present invention contains a rare earth element and fluorine, and has a core made of quartz glass doped with fluorine. The cladding is made of quartz glass that contains more fluorine than that contained in
The quartz glass that forms this core is made by adding a rare earth element compound to a porous glass base material obtained by flame hydrolysis, and then heat-treating it in the presence of a fluorine compound to fix the rare earth element compound as a fluoride and create a porous glass. It is manufactured by doping the base material with fluorine, and according to this method, 8'! l], since volatilization is eliminated, it is possible to easily obtain highly concentrated and uniformly doped rare earth element fluoride, and since the rare earth element fluoride stably exists in the glass network, this Optical fiber preforms using quartz glass have the advantage of superior optical functionality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で得られたエルビウムドープ石
英ガラスのエルビウムの濃度分布のEPMA測定グラフ
、第2図はこの実施例で得られたエルビウムトープ石英
ガラスをコアとし、フッ素ドープ石英ガラスをクラッド
とした光ファイバの分光特性図、第3図は比較例で得ら
れたエルビウムドープ石英ガラスのエルビウムの濃度分
布のEP)、lA測定グラフを示したものである。 o0〇− 第 図 第3凶 第 図
Fig. 1 is an EPMA measurement graph of the erbium concentration distribution of the erbium-doped quartz glass obtained in the example of the present invention, and Fig. 2 is a fluorine-doped quartz glass with the erbium-topped quartz glass obtained in this example as the core. FIG. 3 shows a graph of the erbium concentration distribution (EP) and 1A measurement of the erbium-doped quartz glass obtained in the comparative example. o0〇- Figure 3

Claims (1)

【特許請求の範囲】 1、希土類元素とフッ素を含有する石英ガラスをコアと
し、コアを形成する石英ガラスに含有されるフッ素より
も多くのフッ素を含有する石英ガラスをクラッドとして
なることを特徴とする希土類元素ドープ石英ガラス系光
ファイバ用母材。 2、コアを形成する石英ガラスが希土類元素を0.01
重量%以上含有し、フッ素を希土類元素の3倍モル%以
上含有するものである請求項1に記載の希土類元素ドー
プ石英ガラス系光ファイバ用母材。 3、火炎加水分解によって生成するシリカガラス微粒子
を堆積して得られる多孔質ガラス母材に希土類元素を含
む化合物を添加した後、高温で焼結して透明ガラス化す
る方法において、焼結工程の前に、該多孔質ガラス母材
をフッ素化合物の存在下に熱処理して希土類元素化合物
をフッ素化合物として固定することを特徴とする請求項
1または2に記載の希土類元素ドープ石英ガラス系光フ
ァイバ用母材の製造方法。 4、フッ素化合物の存在下での熱処理を希土類元素化合
物の揮発が開始される温度以下の温度領域で行なう請求
項3に記載の希土類元素ドープ石英ガラス系光ファイバ
用母材の製造方法。 5、フッ素化合物の存在下での熱処理温度が200〜1
,200℃の温度領域とされる請求項3に記載の希土類
元素ドープ石英ガラス系光ファイバ用母材の製造方法。 6、多孔質ガラス母材が平均かさ密度0.3〜1.0g
/cm^3ものである請求項3に記載の希土類元素ドー
プ石英ガラス系光ファイバ用母材の製造方法。
[Claims] 1. The core is quartz glass containing rare earth elements and fluorine, and the cladding is quartz glass containing more fluorine than the fluorine contained in the quartz glass forming the core. Rare earth element-doped silica glass base material for optical fiber. 2. The quartz glass that forms the core contains 0.01 rare earth elements.
2. The rare earth element-doped silica glass optical fiber base material according to claim 1, which contains fluorine in an amount of 3 times the mole % or more of the rare earth element. 3. In a method in which a compound containing a rare earth element is added to a porous glass base material obtained by depositing silica glass particles produced by flame hydrolysis, and then sintered at high temperature to become transparent glass, the sintering step is 3. The rare earth element-doped silica glass optical fiber according to claim 1, wherein the porous glass base material is first heat-treated in the presence of a fluorine compound to fix the rare earth element compound as a fluorine compound. Method of manufacturing base material. 4. The method for producing a rare earth element-doped silica glass optical fiber base material according to claim 3, wherein the heat treatment in the presence of a fluorine compound is performed in a temperature range below the temperature at which volatilization of the rare earth element compound starts. 5. The heat treatment temperature in the presence of a fluorine compound is 200-1
4. The method for producing a rare earth element-doped quartz glass optical fiber base material according to claim 3, wherein the temperature range is 200°C. 6. Porous glass base material has an average bulk density of 0.3 to 1.0 g
4. The method for producing a base material for a rare earth element-doped quartz glass optical fiber according to claim 3, wherein the base material has a diameter of /cm^3.
JP1143271A 1989-06-06 1989-06-06 Rare-earth element-doped silica glass optical fiber preform and method for producing the same Expired - Fee Related JPH0791088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143271A JPH0791088B2 (en) 1989-06-06 1989-06-06 Rare-earth element-doped silica glass optical fiber preform and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143271A JPH0791088B2 (en) 1989-06-06 1989-06-06 Rare-earth element-doped silica glass optical fiber preform and method for producing the same

Publications (2)

Publication Number Publication Date
JPH038744A true JPH038744A (en) 1991-01-16
JPH0791088B2 JPH0791088B2 (en) 1995-10-04

Family

ID=15334870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143271A Expired - Fee Related JPH0791088B2 (en) 1989-06-06 1989-06-06 Rare-earth element-doped silica glass optical fiber preform and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0791088B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691715A1 (en) * 1994-06-10 1996-01-10 Alcatel SEL Aktiengesellschaft Optical waveguide for fibre-optic amplifier for wavelengths around 1550 nm
WO2001097492A1 (en) * 2000-06-15 2001-12-20 Japan Communications Inc. Cradle for mobile communication terminal
JP2002356347A (en) * 2001-06-01 2002-12-13 Tosoh Corp Quarts glass capable of uniformly dispersing zirconium therein, production method therefor and member and apparatus using the same
JP2003056164A (en) * 2001-08-10 2003-02-26 Joto Techno Co Ltd Fixture for floor post
JP2010186868A (en) * 2009-02-12 2010-08-26 Mitsubishi Cable Ind Ltd Rare earth element doped-fiber with bf3 added therein, and method of manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0691715A1 (en) * 1994-06-10 1996-01-10 Alcatel SEL Aktiengesellschaft Optical waveguide for fibre-optic amplifier for wavelengths around 1550 nm
US5710852A (en) * 1994-06-10 1998-01-20 Alcatel Nv Optical waveguide for fiber-optic amplifiers for the wavelength region around 1550 nm
WO2001097492A1 (en) * 2000-06-15 2001-12-20 Japan Communications Inc. Cradle for mobile communication terminal
JP2002356347A (en) * 2001-06-01 2002-12-13 Tosoh Corp Quarts glass capable of uniformly dispersing zirconium therein, production method therefor and member and apparatus using the same
JP2003056164A (en) * 2001-08-10 2003-02-26 Joto Techno Co Ltd Fixture for floor post
JP2010186868A (en) * 2009-02-12 2010-08-26 Mitsubishi Cable Ind Ltd Rare earth element doped-fiber with bf3 added therein, and method of manufacturing same

Also Published As

Publication number Publication date
JPH0791088B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
CA1327845C (en) Optical fibre with fluorescent additive
JP2599511B2 (en) Method for producing rare earth element doped quartz glass
US4799946A (en) Preparation of glass fibre
US4643751A (en) Method for manufacturing optical waveguide
JPS60257408A (en) Optical fiber and its production
KR940004209B1 (en) Optical fiber component optical coupler and method of producing thereof
JPH038744A (en) Rare earth element-doped quartz glass fiber preform and preparation thereof
CA2481204C (en) A method of fabricating rare earth doped optical fibre
JP2000191336A (en) Production of optical fiber preform and production of optical fiber
JP2931026B2 (en) Method for producing rare earth element doped glass
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JP2677871B2 (en) Manufacturing method of quartz-based doped glass
JP3157000B2 (en) Optical waveguide
JP2604466B2 (en) Method for producing rare earth element doped quartz glass
JP3027075B2 (en) Method for producing rare earth element-doped quartz glass fiber preform
JPH0813689B2 (en) Manufacturing method of optical fiber preform
JPH03218947A (en) Rare-earth element and halogen element-doped quartz glass-based optical fiber preform and its production
JP3187130B2 (en) Method for producing rare earth element doped quartz glass
JPH0585759A (en) Manufacture of rare-earth-element-doped quartz glass
JP2628944B2 (en) Manufacturing method of rare earth element doped optical fiber
JPH0421536A (en) Preparation of rare earth element-doped glass
JPH03218936A (en) Rare earth element-doped quartz glass and its production
JPH03218935A (en) Rare earth element-doped quartz glass and its production
JPH0412031A (en) Production of rare earth element-doped glass
JPS63248731A (en) Production of optical fiber base material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees