JP3187130B2 - Method for producing rare earth element doped quartz glass - Google Patents

Method for producing rare earth element doped quartz glass

Info

Publication number
JP3187130B2
JP3187130B2 JP10925192A JP10925192A JP3187130B2 JP 3187130 B2 JP3187130 B2 JP 3187130B2 JP 10925192 A JP10925192 A JP 10925192A JP 10925192 A JP10925192 A JP 10925192A JP 3187130 B2 JP3187130 B2 JP 3187130B2
Authority
JP
Japan
Prior art keywords
rare earth
glass
earth element
quartz glass
doped quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10925192A
Other languages
Japanese (ja)
Other versions
JPH05279050A (en
Inventor
登 枝川
尚弘 吉田
和雄 神屋
実 田家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP10925192A priority Critical patent/JP3187130B2/en
Publication of JPH05279050A publication Critical patent/JPH05279050A/en
Application granted granted Critical
Publication of JP3187130B2 publication Critical patent/JP3187130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/26Multiple ports for glass precursor
    • C03B2207/28Multiple ports for glass precursor for different glass precursors, reactants or modifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F
    • C03B2207/32Non-halide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/80Feeding the burner or the burner-heated deposition site
    • C03B2207/90Feeding the burner or the burner-heated deposition site with vapour generated from solid glass precursors, i.e. by sublimation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/10Doped silica-based glasses containing boron or halide containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/28Doped silica-based glasses containing non-metals other than boron or halide containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/31Doped silica-based glasses containing metals containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は希土類元素ドープ石英ガ
ラスの製造方法、特には光ファイバレーザなどに使用さ
れる希土類元素ドープ石英ガラスの製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing rare earth element-doped quartz glass, and more particularly to a method for producing rare earth element-doped quartz glass used for optical fiber lasers and the like.

【0002】[0002]

【従来の技術】希土類元素ドープ石英ガラスは光機能を
有していることから、光ファイバレーザ、光増幅器およ
びセンサ素子などとして応用されており、この種の石英
ガラスの製造方法としてはMCVD法による方法が知ら
れている(特表昭63−501711号公報参照)が、
この方法には希土類元素塩化物原料を高温に加熱し蒸発
させて反応器に供給する必要があるために、供給量の制
御が困難であり、また大型の母材が得にくいという不利
がある。
2. Description of the Related Art Rare earth element-doped quartz glass has an optical function, and is therefore applied to optical fiber lasers, optical amplifiers, sensor elements, and the like. A method is known (see Japanese Patent Publication No. 63-501711).
In this method, it is necessary to heat the rare earth element chloride raw material to a high temperature, evaporate it, and supply it to the reactor. Therefore, it is difficult to control the supply amount, and it is difficult to obtain a large base material.

【0003】また、この希土類元素ドープ石英ガラスの
製造方法については、けい素化合物の火炎加水分解で生
成したシリカガラス微粒子を担体上に堆積して得た多孔
質ガラス母材に希土類元素を含む化合物を添加したのち
高温で焼結して透明ガラスとする方法も知られており
(特公昭53−3980号公報参照)、この方法は多孔
質ガラス母材を希土類元素化合物の溶液に浸漬させてか
ら焼結、ガラス化するものであることから、溶液の濃度
によってドープ量を制御できるし、蒸気圧の低い化合物
にも適用できるという利点があるけれども、これには多
孔質ガラス母材を希土類元素化合物の溶液に浸漬してか
ら乾燥させると、毛細管現象によって溶媒が多孔質ガラ
ス母材の表面を移動し、このときに溶質も同時に移動し
てこれが表面近くに蓄積されるために、得られるガラス
にドーパントの濃度分布ができてしまい、極端な場合に
は表面と内部との熱膨張率の差によって割れてしまう問
題があり、これにはまた焼結、ガラス化の際に希土類元
素化合物の一部が揮散してしまい、所定のドープ量が得
られなくなるという欠点もある。
[0003] In addition, the method for producing the rare earth element-doped quartz glass includes a method of depositing fine particles of silica glass formed by flame hydrolysis of a silicon compound on a carrier, and adding a compound containing a rare earth element to a porous glass base material. Is also known to obtain a transparent glass by sintering at a high temperature after adding (see Japanese Patent Publication No. 53-3980). In this method, a porous glass base material is immersed in a solution of a rare earth element compound. Since it sinters and vitrifies, the doping amount can be controlled by the concentration of the solution, and it has the advantage that it can be applied to compounds having a low vapor pressure. When immersed in the solution and dried, the solvent moves on the surface of the porous glass base material by capillary action, and at this time, the solute also moves at the same time, near the surface. The resulting glass has a dopant concentration distribution in the resulting glass, and in extreme cases there is a problem of cracking due to the difference in thermal expansion coefficient between the surface and the inside. There is also a disadvantage that a part of the rare earth element compound volatilizes at the time of formation, and a predetermined doping amount cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】そのため、これについ
てはドープ原料の融点以下の温度に保持された酸化雰囲
気において多孔質ガラス母材中のドープ原料を酸化する
工程を追加するということも提案されている(特開昭6
3−60121号公報参照)が、これには希土類元素塩
化物を酸化してこれを酸化物に完全に転換させることが
困難であり、酸化雰囲気で熱処理してもかなりの希土類
元素塩化物が残留し、これがガラス化工程で揮散し、揮
散せずにガラス中に取り込まれても塩化物の状態ではガ
ラスネットワーク中に入ることができず、微小結晶とし
て分離してしまうために、ガラスが白濁した状態とな
り、光伝送損失の原因となるし、レーザ発振効率も低い
ものになるという不利がある。
Therefore, it has been proposed to add a step of oxidizing the dope material in the porous glass base material in an oxidizing atmosphere maintained at a temperature lower than the melting point of the dope material. (Japanese
However, it is difficult to oxidize the rare earth element chloride to completely convert it to an oxide, and even after heat treatment in an oxidizing atmosphere, a considerable amount of the rare earth element chloride remains. However, this volatilized in the vitrification process, even if it was taken into the glass without volatilizing, it could not enter the glass network in the state of chloride and separated as fine crystals, so the glass became cloudy In such a case, the optical transmission loss is caused, and the laser oscillation efficiency becomes low.

【0005】なお、この希土類元素ドープ石英ガラスの
製造方法については、ガラス形成原料と共に、昇華性の
有機希土類元素化合物を気相で供給するという方法も提
案されている(特開平2−275724号公報参照)
が、ここで使用されるアセチルアセトナイト系錯体は不
活性雰囲気での高温では比較的安定であるけれども、水
分あるいはハロゲン化物の存在する雰囲気では速かに分
解して配管の途中、バーナーの内部あるいはノズル先端
部で反応して固形物を形成するために、閉塞の原因にな
るという問題があった。
As a method for producing this rare earth element-doped quartz glass, there has been proposed a method in which a sublimable organic rare earth element compound is supplied in a gas phase together with a glass forming raw material (Japanese Patent Laid-Open No. 2-275724). reference)
However, although the acetylacetonite complex used here is relatively stable at high temperatures in an inert atmosphere, it rapidly decomposes in an atmosphere in which moisture or halides are present, and in the middle of piping, inside a burner or There is a problem that blockage occurs due to the reaction at the nozzle tip to form a solid.

【0006】[0006]

【課題を解決するための手段】本発明はこのような問題
点を解決した希土類元素ドープ石英ガラスの製造方法に
関するものであり、これは同心多重管バーナに水素ガ
ス、酸素ガスを供給して酸水素火炎を形成し、この火炎
の中心部にドーパントを含むガラス形成原料ガスを供給
し火炎加水分解によって生成するシリカガラス微粒子を
堆積して得られる多孔質ガラス母材を高温で焼結して透
明ガラス化するドープ石英ガラスの製造方法において、
1本のノズルにケイ素のハロゲン化物よりなるガラス形
成原料ガスとドーパントとなる元素を含むハロゲン化物
を混合した状態で供給すると共に、別の1本のノズルに
希土類元素のシクロペンタジエン系錯体からなる昇華性
の有機希土類元素化合物を気相で供給することを特徴と
するものである。ドーパントとなる元素を含むハロゲン
化物がゲルマニウム、リン、ホウ素、アルミニウムのハ
ロゲン化物であることが好ましい。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a rare earth element-doped quartz glass which solves the above-mentioned problems, and supplies hydrogen gas and oxygen gas to a concentric multi-tube burner. A porous glass preform obtained by forming a hydrogen flame, supplying a glass-forming raw material gas containing a dopant to the center of the flame, and depositing silica glass fine particles generated by flame hydrolysis is sintered at a high temperature and transparent. In a method for producing doped quartz glass to be vitrified,
A glass-forming raw material gas comprising a silicon halide and a halide containing an element serving as a dopant are supplied to one nozzle in a mixed state, and a sublimation comprising a cyclopentadiene-based complex of a rare earth element is supplied to another nozzle. The organic rare earth element compound is supplied in a gas phase. The halide containing an element serving as a dopant is preferably a halide of germanium, phosphorus, boron, or aluminum.

【0007】すなわち、本発明者らは多孔質母材に対す
る希土類元素のドープ方法について種々検討した結果、
これについてはガラス形成原料ガスの火炎加水分解でシ
リカガラス微粒子を生成させる酸水素火炎バーナーを少
なくとも2本用意し、この一本にガラス形成原料ガスと
しての四塩化けい素などを供給し、その火炎加水分解で
発生したシリカガラス微粒子を担体上に堆積して多孔質
ガラス母材を作ると共に、他の一本の酸水素火炎バーナ
に昇華性の有機希土類元素化合物を供給し、この有機希
土類元素化合物の火炎加水分解で発生した希土類元素酸
化物を担体上に堆積させれば、この多孔質ガラス母材が
シリカガラス微粒子と希土類元素酸化物からなるものと
されるので、希土類元素が均一にドープされた多孔質ガ
ラス母材を容易に得ることができることを見出すと共
に、この場合には希土類元素化合物がガラス形成原料ガ
スとは別のバーナに供給されるので、これがハロゲンガ
スと反応しこの反応生成物によって配管の途中、バーナ
ー内部、ノズルの先端を閉塞することがないということ
を確認して本発明を完成させた。以下にこれをさらに詳
述する。
That is, the present inventors have conducted various studies on the method of doping a porous base material with a rare earth element.
In this regard, at least two oxyhydrogen flame burners for producing silica glass fine particles by flame hydrolysis of a glass forming raw material gas are prepared, and silicon tetrachloride or the like as a glass forming raw material gas is supplied to one of these burners. The silica glass fine particles generated by the hydrolysis are deposited on a carrier to form a porous glass base material, and a sublimable organic rare earth element compound is supplied to another single oxyhydrogen flame burner, and the organic rare earth element compound When the rare earth element oxide generated by the flame hydrolysis of the above is deposited on the carrier, the porous glass base material is made of silica glass fine particles and the rare earth element oxide, so that the rare earth element is uniformly doped. In this case, it is found that a porous glass base material can be easily obtained, and in this case, the rare earth element compound is transferred to a burner different from the glass forming raw material gas. Since the feed, which is the middle of the pipe by the reaction was the reaction product with a halogen gas, burner internal, confirmed to complete the present invention that is not to occlude the distal end of the nozzle. This will be described in more detail below.

【0008】[0008]

【作用】本発明は希土類元素ドープ石英ガラスの製造方
法に関するもので、これは酸水素火炎バーナーにガラス
形成原料ガスを供給し、その火炎加水分解で発生したシ
ラカガラス微粒子を担体に堆積して多孔質ガラス母材を
製造すると共に、他の酸水素火炎バーナーに昇華性の有
機希土類元素化合物を供給してその火炎加水分解で発生
した希土類元素酸化物を担体上に堆積させて希土類元素
でドープされた多孔質ガラス母材を作り、これを高温で
焼結しガラス化するものであるが、これによれば希土類
元素を均一にドープした目的とする希土類元素ドープ石
英ガラスを容易に得ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method for producing rare earth element-doped quartz glass, in which a glass-forming raw material gas is supplied to an oxyhydrogen flame burner, and fine silica glass particles generated by the flame hydrolysis are deposited on a carrier to form a porous material. While producing a glass base material, a sublimable organic rare earth element compound was supplied to another oxyhydrogen flame burner, and a rare earth element oxide generated by the flame hydrolysis was deposited on a carrier and doped with a rare earth element. A porous glass base material is produced and sintered at a high temperature to be vitrified. According to this, a desired rare earth element-doped quartz glass uniformly doped with a rare earth element can be easily obtained.

【0009】本発明による希土類元素ドープ石英ガラス
の製造方法は酸水素火炎バーナーの中心部にガラス形成
原料ガスを供給し、その火炎加水分解によって生成した
シリカガラス微粒子を担体上に堆積して多孔質ガラス母
材を作るときに、もう一本の酸水素火炎バーナーに昇華
性の有機希土類元素化合物を気相で供給するというもの
である。この酸水素火炎による多孔質ガラス母材の製造
は公知の方法で行えばよく、したがってこれは光ファイ
バ用母材の製造方法としてよく知られているVAD法や
OVD法などによって行えばよい。
In the method for producing rare earth element-doped quartz glass according to the present invention, a glass forming raw material gas is supplied to the center of an oxyhydrogen flame burner, and silica glass fine particles generated by the flame hydrolysis are deposited on a carrier to form a porous material. When producing a glass base material, a sublimable organic rare earth element compound is supplied in a gas phase to another oxyhydrogen flame burner. The production of the porous glass preform by the oxyhydrogen flame may be performed by a known method. Therefore, the production may be performed by a VAD method, an OVD method, or the like, which is well known as a production method of a preform for an optical fiber.

【0010】したがって、これは同心多重管バーナーに
水素ガスと酸素ガスを供給して酸水素火炎を形成させ、
この火炎中心部にガラス形成原料ガスとしての四塩化け
い素をキャリヤガスで供給し、その火炎加水分解で発生
したシリカガラス微粒子を合成石英ガラスなどで作った
耐熱性担体上に堆積させればよいが、この際、この四塩
化けい素にはドーパントとしてのゲルマニウム、りん、
ほう素、アルミニウムなどのハロゲン化物を添加しても
よく、このドーパントとしては屈折率の調整用としては
四塩化ゲルマニウムを、光増幅特性を向上させるために
は、オキシ塩化りん、三塩化アルミニウムなどを供給す
ればよい。
[0010] Therefore, this supplies hydrogen gas and oxygen gas to the concentric multi-tube burner to form an oxyhydrogen flame,
Silicon tetrachloride as a glass forming raw material gas is supplied to the center of the flame as a carrier gas, and silica glass fine particles generated by the flame hydrolysis may be deposited on a heat-resistant carrier made of synthetic quartz glass or the like. However, at this time, germanium, phosphorus,
A halide such as boron or aluminum may be added, and as the dopant, germanium tetrachloride for adjusting the refractive index, and phosphorus oxychloride, aluminum trichloride, etc. for improving the optical amplification characteristics. You only need to supply them.

【0011】また、ここに使用される希土類元素化合物
はネオジム、エルビウム、ユーロピウム、セリウムなど
の化合物とすればよいが、これらは希土類元素の塩化物
よりも低温度で気化可能な昇華性の有機希土類元素化合
物とされる。この昇華性の有機希土類元素化合物として
は高い蒸気圧を有し、熱的に高い安定性を有することか
ら、トリスシクロペンタジエニル・ネオジム錯体、トリ
スメチルシクロペンタジエニル・ネオジム錯体、トリス
シクロペンタジエニル・エルビウム錯体、トリスメチル
シクロペンタジエニル・エルビウム錯体などのシクロペ
ンタジエン系錯体が例示される。
The rare earth element compound used here may be a compound such as neodymium, erbium, europium, cerium, etc., which are sublimable organic rare earth elements which can be vaporized at a lower temperature than chlorides of rare earth elements. Elemental compounds. Since this sublimable organic rare earth element compound has a high vapor pressure and a high thermal stability, a triscyclopentadienyl-neodymium complex, a trismethylcyclopentadienyl-neodymium complex, a triscyclopentane Examples thereof include cyclopentadiene-based complexes such as a dienyl-erbium complex and a trismethylcyclopentadienyl-erbium complex.

【0012】しかして、本発明においては、この昇華性
の有機希土類元素化合物は前記した多孔質ガラス母材を
製造するためのガラス形成用原料が供給される酸水素火
炎バーナーとは別の他の酸水素火炎バーナーに供給する
ことが必要とされる。これは前記したように希土類元素
のアセチルアセトナイト系錯体は高温において塩化物と
反応してこの生成物がバーナー内にゲル状物として堆積
されて、管路を閉塞する傾向があるのであるが、これを
多孔質ガラス母材を製造する酸水素火炎バーナーと別個
の酸水素火炎バーナーを使用して行えばこの有機希土類
元素化合物が四塩化けい素のようなハロゲン化物と同伴
されないのでこれと反応することがなく、したがって管
路が閉塞されるおそれがなくなるからであるが、この他
のバーナーで火炎加水分解して得た希土類元素酸化物は
シリカガラス微粒子が堆積される担体上に堆積されるの
で、この担体上で希土類元素が均一にドープされた多孔
質ガラス母材が得られる。
Thus, in the present invention, the sublimable organic rare earth element compound is different from the oxyhydrogen flame burner to which the glass forming raw material for producing the porous glass base material is supplied. It is required to feed an oxyhydrogen flame burner. This is because, as described above, the acetylacetonite-based complex of the rare earth element reacts with chloride at a high temperature, and this product is deposited as a gel in the burner, which tends to block the conduit. If this is carried out using an oxyhydrogen flame burner that is different from the oxyhydrogen flame burner for producing the porous glass base material, the organic rare earth element compound reacts with the halogenated compound such as silicon tetrachloride because it is not entrained. This is because the rare earth element oxide obtained by flame hydrolysis with another burner is deposited on the carrier on which the silica glass fine particles are deposited. Thus, a porous glass base material in which the rare earth element is uniformly doped on the carrier is obtained.

【0013】なお、このようにして得られた希土類元素
ドープ多孔質ガラス母材は電気炉中で加熱処理し透明ガ
ラス化して希土類元素ドープ石英ガラスとされるのであ
るが、この加熱処理はヘリウムガス雰囲気下に1,50
0℃以上に加熱すればよく、これによれば目的とする希
土類元素ドープ石英ガラスを容易に得ることができる
が、この場合の雰囲気は脱水を目的としてハロゲンガス
を微量添加してもよく、また酸化物への転換を完全なも
のとするために酸素ガスを微量混合してもよい。
The rare earth element-doped porous glass base material thus obtained is heat-treated in an electric furnace to form a vitreous transparent glass to obtain rare earth element-doped quartz glass. This heat treatment is carried out using helium gas. 1,50 under the atmosphere
It may be heated to 0 ° C. or higher, whereby the desired rare earth element-doped quartz glass can be easily obtained, but in this case, a slight amount of a halogen gas may be added for the purpose of dehydration, A small amount of oxygen gas may be mixed to complete the conversion to the oxide.

【0014】[0014]

【実施例】つぎに本発明の実施例をあげる。 実施例1 石英製同心多重管バーナーに水素ガス5.5リットル/
分、酸素ガス8.0リットル/分を供給して酸水素火炎
を形成させ、この中心に四塩化けい素を酸素ガス0.1
7リットル/分のキャリアガスに同伴させて供給すると
共に、同じノズルに蒸発器で250℃に加熱した三塩化
アルミニウムを0.4リットル/分のキャリアガスに同
伴して供給した。
Next, examples of the present invention will be described. Example 1 A concentric multi-tube burner made of quartz was supplied with 5.5 liters of hydrogen gas.
Oxyhydrogen flame was formed by supplying 8.0 liters / minute of oxygen gas, and silicon tetrachloride was added to the center of the oxy-hydrogen flame by 0.1% oxygen gas.
Along with the carrier gas supplied at 7 L / min, aluminum trichloride heated to 250 ° C. by the evaporator was supplied to the same nozzle together with the carrier gas at 0.4 L / min.

【0015】また、この四塩化ケイ素を供給するノズル
のさらに内側のノズルと連結した蒸発器にトリスシクロ
ヘキサジエニル・エルビウム錯体を入れ、この蒸発器を
オイルバスで200℃に加熱しつつ、これにアルゴンガ
ス0.05リットル/分のキャリアガスを吹き込んでこ
れをバーナーに供給し、上記した四塩化けい素、三塩化
アルミニウム、トリスシクロヘキサジエニル・エルビウ
ム錯体の火炎加水分解で発生した微粒子を出発材の上の
軸方向に8時間堆積成長させたところ、外径45mm、
長さ300mmで重さ150g、平均かさ密度が0.3
2g/cm3である多孔質シリカガラス母材が得られ
た。
Further, a triscyclohexadienyl-erbium complex is put into an evaporator connected to a nozzle further inside the nozzle for supplying silicon tetrachloride, and the evaporator is heated to 200 ° C. in an oil bath, and the evaporator is heated to 200 ° C. A carrier gas of 0.05 liter / min of argon gas was blown into the burner and supplied to the burner. The fine particles generated by the flame hydrolysis of the above-described silicon tetrachloride, aluminum trichloride, and triscyclohexadienyl-erbium complexes were used as starting materials. 8 hours deposited and grown in the axial direction above the
300mm length, 150g weight, average bulk density 0.3
A porous silica glass base material having a weight of 2 g / cm 3 was obtained.

【0016】ついで、この多孔質シリカガラス母材を電
気炉内でヘリウムガス雰囲気下に1,600℃で加熱処
理して透明ガラス化し、得られた石英ガラスをICP法
で分析したところ、これには酸化エルビウムが600p
pm含有されていることが判った。つぎにこの石英ガラ
スをコアとし、フッ素ドープ石英ガラスをクラッドとし
て光ファイバ用プリフォームを作り、これを延伸して光
ファイバを作ってからその光増幅特性を測定したとこ
ろ、このものは1.48μmのポンプ光10mWで励起
し、1.55μmの信号光の増幅ゲインは28dBであ
った。
Next, the porous silica glass base material was heated at 1600 ° C. in a helium gas atmosphere in an electric furnace to form a transparent glass, and the obtained quartz glass was analyzed by an ICP method. Is 600p Erbium Oxide
pm. Next, a preform for an optical fiber was prepared using this quartz glass as a core and a fluorine-doped quartz glass as a clad, and an optical fiber was formed by stretching the preform. After that, the optical amplification characteristics were measured. , And the amplification gain of the signal light of 1.55 μm was 28 dB.

【0017】実施例2 1本のノズルに実施例1と同様に四塩化けい素と三塩化
アルミニウムおよび他のドーパントとしての四塩化ゲル
マニウムを0.37リットル/分のキャリアガスと同伴
して供給すると共に、他のノズルに蒸発器にトリスメチ
ルシクロペンタジエニル・エルビウム錯体を入れ、この
蒸発器を200℃に加熱しつつアルゴンガス0.05リ
ットル/分のキャリアガスを吹きこんで、これをバーナ
ーに供給し、生成する微粒子を出発材の軸方向に8時間
堆積成長させたところ、外径40mm、長さ300mm
で重さ120g、平均かさ密度が0.34g/cm3
ある多孔質シリカガラス母材が得られた。
Example 2 As in Example 1, silicon tetrachloride, aluminum trichloride and germanium tetrachloride as another dopant were supplied to one nozzle together with a carrier gas of 0.37 l / min. At the same time, a trismethylcyclopentadienyl-erbium complex is put into an evaporator in another nozzle, and while the evaporator is heated to 200 ° C., a carrier gas of 0.05 liter / min of argon gas is blown into the evaporator to burn it. And the resulting fine particles were deposited and grown in the axial direction of the starting material for 8 hours.
As a result, a porous silica glass base material having a weight of 120 g and an average bulk density of 0.34 g / cm 3 was obtained.

【0018】ついで、この多孔質シリカガラス母材を電
気炉内でヘリウムガス雰囲気下で1,600℃で加熱処
理して透明ガラス化し、得られた石英ガラスをICP法
で分析したところ、これには酸化エルビウムが1,00
0ppm含有されていることが判った。つぎにこの石英
ガラスをコアとし、フッ素ドープ石英ガラスをクラッド
として光ファイバ用プリフォームを作り、これを延伸し
て光ファイバを作ってから、その光増幅特性を測定した
ところ、このものは1.48μmのポンプ光10mWで
励起し、1.55μmの信号光の増幅ゲインは28dB
であった。
Next, this porous silica glass base material was heat-treated at 1600 ° C. in a helium gas atmosphere in an electric furnace to form a transparent glass, and the obtained quartz glass was analyzed by an ICP method. Is erbium oxide of 1,00
It was found that it was contained at 0 ppm. Next, a preform for an optical fiber was prepared by using this quartz glass as a core and a fluorine-doped quartz glass as a clad, and was stretched to form an optical fiber. The optical amplification characteristics were measured. Pumped by 48 m pump light of 10 mW, the amplification gain of 1.55 m signal light is 28 dB.
Met.

【0019】[0019]

【発明の効果】本発明は希土類元素ドープ石英ガラスの
製造方法に関するもので、これは前記したように酸水素
火炎中でのガラス形成原料の火炎加水分解で発生したシ
リカガラス微粒子を堆積して得た多孔質ガラス母材を高
温で焼結し透明ガラス化して石英ガラスとする方法にお
いて、1本のノズルにけい素ハロゲン化物とドーパント
を供給すると共に、別の1本のノズルに昇華性の有機希
土類元素化合物を気相で供給することを特徴とするもの
であり、これによれば希土類元素化合物を低温で気化さ
せることができるし、これとハロゲン化物との反応もな
いので、この反応生成物で管路が閉塞されることもなく
なり、希土類元素化合物を均一にドープした多孔質ガラ
ス母材を容易に得ることができ、したがってこれを透明
ガラス化すれば目的とする希土類元素ドープ石英ガラス
を容易に生産することができるという有利性が与えられ
るし、この方法で製造された石英ガラスから作られる光
ファイバは光増幅器用としてすぐれた特性をもつものに
なる。
The present invention relates to a method for producing rare earth element-doped quartz glass, which is obtained by depositing silica glass fine particles generated by flame hydrolysis of a glass forming raw material in an oxyhydrogen flame as described above. In a method of sintering a transparent porous glass base material at a high temperature and turning it into a transparent glass to form a quartz glass, a silicon halide and a dopant are supplied to one nozzle and a sublimable organic material is supplied to another nozzle. The method is characterized in that the rare earth element compound is supplied in a gaseous phase. According to this, the rare earth element compound can be vaporized at a low temperature, and there is no reaction between the rare earth element compound and a halide. Thus, the conduit is not blocked, and a porous glass preform uniformly doped with a rare earth element compound can be easily obtained. It is given advantage that it is possible to easily produce a rare earth element-doped quartz glass to an optical fiber made of quartz glass produced in this way becomes one with excellent characteristics for the optical amplifier.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神屋 和雄 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社 精密機能材料研究所 内 (72)発明者 田家 実 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社 精密機能材料研究所 内 (56)参考文献 特開 昭63−310744(JP,A) 特開 平2−275724(JP,A) 特開 平4−73717(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 8/04 C03B 37/018 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuo Kamiya 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd.Precision Functional Materials Laboratory (72) Inventor Minoru Taya Isobe, Annaka-shi, Gunma 2-13-1 Shin-Etsu Chemical Co., Ltd. Precision Functional Materials Laboratory (56) References JP-A-63-310744 (JP, A) JP-A-2-275724 (JP, A) JP-A-4-73717 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C03B 8/04 C03B 37/018

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 同心多重管バーナに水素ガス、酸素ガス
を供給して酸水素火炎を形成し、この火炎の中心部にド
ーパントを含むガラス形成原料ガスを供給し火炎加水分
解によって生成するシリカガラス微粒子を堆積して得ら
れる多孔質ガラス母材を高温で焼結して透明ガラス化す
るドープ石英ガラスの製造方法において、1本のノズル
にケイ素のハロゲン化物よりなるガラス形成原料ガスと
ドーパントとなる元素を含むハロゲン化物を混合した状
態で供給すると共に、別の1本のノズルに希土類元素の
シクロペンタジエン系錯体からなる昇華性の有機希土類
元素化合物を気相で供給することを特徴とする希土類元
素ドープ石英ガラスの製造方法。
1. Silica glass produced by supplying hydrogen gas and oxygen gas to a concentric multi-tube burner to form an oxyhydrogen flame, supplying a glass forming raw material gas containing a dopant to the center of the flame, and performing flame hydrolysis. In a method for producing doped quartz glass, in which a porous glass base material obtained by depositing fine particles is sintered at a high temperature to form a transparent vitrified glass, a single nozzle is used as a glass forming raw material gas comprising a silicon halide and a dopant. In addition to supplying the halide containing the element in a mixed state, the rare earth element
Method for producing a rare earth-doped quartz glass and supplying the cyclopentadiene system consisting complex sublimation of the organic rare earth compound in the gas phase.
【請求項2】 ドーパントとなる元素を含むハロゲン化
物がゲルマニウム、リン、ホウ素、アルミニウムのハロ
ゲン化物である請求項1に記載した希土類元素ドープ石
英ガラスの製造方法。
2. The method for producing rare earth element-doped quartz glass according to claim 1, wherein the halide containing an element serving as a dopant is a halide of germanium, phosphorus, boron, or aluminum.
JP10925192A 1992-04-02 1992-04-02 Method for producing rare earth element doped quartz glass Expired - Fee Related JP3187130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10925192A JP3187130B2 (en) 1992-04-02 1992-04-02 Method for producing rare earth element doped quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10925192A JP3187130B2 (en) 1992-04-02 1992-04-02 Method for producing rare earth element doped quartz glass

Publications (2)

Publication Number Publication Date
JPH05279050A JPH05279050A (en) 1993-10-26
JP3187130B2 true JP3187130B2 (en) 2001-07-11

Family

ID=14505446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10925192A Expired - Fee Related JP3187130B2 (en) 1992-04-02 1992-04-02 Method for producing rare earth element doped quartz glass

Country Status (1)

Country Link
JP (1) JP3187130B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005187254A (en) * 2003-12-25 2005-07-14 Sumitomo Electric Ind Ltd Manufacturing method of glass body

Also Published As

Publication number Publication date
JPH05279050A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
EP0556580B1 (en) Method of doping porous glass preforms
EP0565439B1 (en) Manufacturing method for erbium-doped silica glass optical fibre preforms
JP2599511B2 (en) Method for producing rare earth element doped quartz glass
EP0225884A1 (en) Multiconstituent optical fiber and method for producing same.
WO1991011401A1 (en) Quartz glass doped with rare earth element and production thereof
CN100503493C (en) Method for manufacturing a glass doped with a rare earth element and fiber for optical amplification using the same
JPH0585755A (en) Erbium-doped fiber for optical amplifier
JPH04300218A (en) Production of quartz glass doped with rare-earth element
JP3187130B2 (en) Method for producing rare earth element doped quartz glass
JP3163167B2 (en) Method for producing rare earth element doped quartz glass
EP1487751A1 (en) A method of fabricating rare earth doped optical fibre
JPH0791088B2 (en) Rare-earth element-doped silica glass optical fiber preform and method for producing the same
JP2604466B2 (en) Method for producing rare earth element doped quartz glass
JP3157000B2 (en) Optical waveguide
JPH03265537A (en) Rare-earth element-doped glass and its production
JP3188304B2 (en) Rare earth element doped silica glass based optical fiber preform and method of manufacturing the same
JP2710446B2 (en) Production method of rare earth doped glass
JPH0585759A (en) Manufacture of rare-earth-element-doped quartz glass
JPH01219034A (en) Production of optical fiber glass preform
JPH085684B2 (en) Quartz glass manufacturing method
JPS63310744A (en) Production of glass doped with rare earth element
JP2938605B2 (en) Method of manufacturing preform for single mode optical fiber
JPH03218947A (en) Rare-earth element and halogen element-doped quartz glass-based optical fiber preform and its production
JP2938604B2 (en) Method of manufacturing preform for single mode optical fiber
JPS6230146B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees