JPH0384873A - Manufacture of lithium secondary cell - Google Patents

Manufacture of lithium secondary cell

Info

Publication number
JPH0384873A
JPH0384873A JP1221187A JP22118789A JPH0384873A JP H0384873 A JPH0384873 A JP H0384873A JP 1221187 A JP1221187 A JP 1221187A JP 22118789 A JP22118789 A JP 22118789A JP H0384873 A JPH0384873 A JP H0384873A
Authority
JP
Japan
Prior art keywords
lithium
manganese oxide
lithium salt
manganese
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1221187A
Other languages
Japanese (ja)
Inventor
Kazunobu Matsumoto
和伸 松本
Akira Kawakami
章 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1221187A priority Critical patent/JPH0384873A/en
Publication of JPH0384873A publication Critical patent/JPH0384873A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the charge and discharge property by using a manganese oxide including a lithium-manganese oxide which is obtained by heat-treating a lithium salt water solution and a manganese oxide as a positive electrode active substance. CONSTITUTION:When a manganese oxide including a lithium-manganese oxide used as a positive electrode active substance is compounded, a water-soluble lithium salt is used, the water-soluble lithium salt is solved in the water to make a water solution, a manganese oxide is soaked in the lithium salt water solution, and a heat treatment is applied in such a condition. As a result, in the process to evaporate the moisture from the water solution, microparticles of the lithium salt are separated on the surface or in the pores of the manganese dioxide particles, and thereby the contact area between the lithium salt and the manganese dioxide is increased extensively compared in case of powdering and mixing in a glass mortar or the like, promoting the reaction of both members perfectly, and the reversibility is improved. A lithium secondary cell of an excellent charge and discharge property can be obtained consequently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウム二次電池の製造方法に係わり、さら
に詳しくはその正極活物質の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a lithium secondary battery, and more particularly to improvement of a positive electrode active material thereof.

〔従来の技術〕[Conventional technology]

リチウム二次電池の正極活物質としては、二硫化チタン
、五酸化バナジウム、マンガン酸化物などが提案されて
きたが、最近は、資源的に豊富で安価なマンガン酸化物
が特に注目されている。
Titanium disulfide, vanadium pentoxide, manganese oxide, and the like have been proposed as positive electrode active materials for lithium secondary batteries, but recently, manganese oxide, which is an abundant resource and is inexpensive, has received particular attention.

このマンガン酸化物の場合、マンガンと酸素のみで構成
された二酸化マンガンなどは、可逆性に問題があり、充
放電特性が悪くなるため、たとえばLtMnzoa(米
国特許第4,507,371号明細書)や、Li、Mn
O,を含有するMnO,(特開昭63−114064号
公報)などのように、マンガン酸化物にリチウムを導入
したリチウムマンガン酸化物の状態や、あるいはリチウ
ムマンガン酸化物を含有した状態で使用することが提案
されている。
In the case of this manganese oxide, manganese dioxide, which is composed only of manganese and oxygen, has a problem with reversibility and has poor charge/discharge characteristics. Ya, Li, Mn
It is used in the state of lithium manganese oxide in which lithium is introduced into manganese oxide, such as MnO containing O, (Japanese Patent Application Laid-Open No. 114064/1983), or in the state containing lithium manganese oxide. It is proposed that.

これらは、いずれもリチウム塩とマンガン酸化物とを熱
処理することによって合成されるが、リチウム塩とマン
ガン酸化物とを充分に反応させるためには、それぞれ微
粉末の原料を用いたり、あるいは充分に粉砕してから混
合したり、さらには粉砕−加熱を数回繰り返すなどの手
間のいる工程が必要な上に、特性面でも可逆性が充分と
はいえず、そのため、充放電特性の良好なリチウム二次
電池を得ることができないという問題があった。
All of these are synthesized by heat treating lithium salt and manganese oxide, but in order to sufficiently react the lithium salt and manganese oxide, it is necessary to use fine powder raw materials or In addition to requiring laborious processes such as pulverizing and then mixing, and repeating pulverization and heating several times, the reversibility of the properties is not sufficient. There was a problem that secondary batteries could not be obtained.

〔発明が解決しようとする課題] 本発明は、従来のリチウム二次電池におけるマンガン酸
化物系の正極活′@IJ質が、その合成にあたって手間
を要し、しかも特性面で劣っていたという問題点を解決
し、可逆性の良好なマンガン酸化物系正極活物質を容易
な方法で合成して、充放電特性の優れたリチウム二次電
池を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention solves the problem that the manganese oxide-based positive electrode active '@IJ quality in conventional lithium secondary batteries requires time and effort to synthesize and has poor characteristics. The purpose of the present invention is to solve this problem, synthesize a manganese oxide-based positive electrode active material with good reversibility by a simple method, and provide a lithium secondary battery with excellent charge-discharge characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、リチウム塩水溶液と二酸化マンガンとを熱処
理することによってリチウムマンガン酸化物を含有した
マンガン酸化物を合成し、これをリチウム二次電池の正
極活物質として用いることにより、上記目的を達成した
ものである。
The present invention has achieved the above object by synthesizing a manganese oxide containing lithium manganese oxide by heat-treating an aqueous lithium salt solution and manganese dioxide, and using this as a positive electrode active material of a lithium secondary battery. It is something.

本発明における正極活物質の合成方法ならびにその特性
を、本発明の場合と同様にリチウム塩と二酸化マンガン
とを熱処理することによって合成する特開昭63−11
4064号公報に記載のLizMnO,を含有したMn
0zと対比しつつ、説明すると、次のとおりである。
JP-A No. 63-11 discloses a method for synthesizing the positive electrode active material of the present invention and its characteristics by heat-treating lithium salt and manganese dioxide in the same manner as in the present invention.
Mn containing LizMnO described in Publication No. 4064
The explanation will be as follows while comparing it with 0z.

すなわち、特開昭63−114064号公報に記載の方
法では、二酸化マンガンとリチウム塩とを乳鉢で充分に
粉砕して混合したのち、空気中、375°Cで20時間
熱処理することによって5、LizMnO,Iを含有し
たMnO,を得ている。この場合において、二酸化マン
ガンとリチウム塩とを充分に粉砕して混合するのは、両
物質の反応がそれらの接触面を介して進行するので、接
触面積を大きくし、反応しやすくするためである。
That is, in the method described in JP-A-63-114064, manganese dioxide and lithium salt are thoroughly ground and mixed in a mortar, and then heat treated in air at 375°C for 20 hours to form 5, LizMnO. , I was obtained. In this case, the reason why manganese dioxide and lithium salt are sufficiently ground and mixed is to increase the contact area and facilitate the reaction, since the reaction between the two substances proceeds through their contact surfaces. .

これに対し、本発明では、正極活物質として用いるリチ
ウムマンガン酸化物を含有したマンガン酸化物を合成す
るにあたり、水溶性のリチウム塩を用い、この水溶性リ
チウム塩を水に溶解して水溶液にし、このリチウム塩水
溶液に二酸化マンガンを浸漬し、この状態で熱処理して
いる。それ故1、水溶液中から水分が蒸発する過程でリ
チウム塩の微細な粒子が二酸化マンガン粒子の表面や細
孔内に析出するため、乳鉢などで粉砕して混合していた
場合に比べて、リチウム塩と二酸化マンガンとの接触面
積が非常に大きくなり、両者の反応がより完全に進行し
て、可逆性の良好なものが得られるようになる。また、
リチウム塩や二酸化マンガンを粉砕する工程が不要であ
り、合成時の作業性が改善され、生産性が向上する。
In contrast, in the present invention, when synthesizing manganese oxide containing lithium manganese oxide to be used as a positive electrode active material, a water-soluble lithium salt is used, and the water-soluble lithium salt is dissolved in water to form an aqueous solution. Manganese dioxide is immersed in this lithium salt aqueous solution and heat-treated in this state. Therefore, 1. During the process of evaporation of water from an aqueous solution, fine particles of lithium salt precipitate on the surface and within the pores of manganese dioxide particles, so lithium The contact area between the salt and manganese dioxide becomes very large, allowing the reaction between the two to proceed more completely, resulting in a product with good reversibility. Also,
There is no need for the process of crushing lithium salt or manganese dioxide, improving workability during synthesis and increasing productivity.

本発明において、正極活物質として用いるリチウムマン
ガン酸化物を含有したマンガン酸化物を合成するにあた
り、リチウム塩としては、たとえば水酸化リチウム−水
和物(L i OH−HzO)、水酸化リチウム(f、
10H)、硝酸リチウム(LiNOs)などが用いられ
る。
In the present invention, when synthesizing manganese oxide containing lithium manganese oxide to be used as a positive electrode active material, lithium salts include, for example, lithium hydroxide-hydrate (L i OH-HzO), lithium hydroxide (f ,
10H), lithium nitrate (LiNOs), etc. are used.

熱処理は、リチウム塩水溶液が炭酸ガスを吸収し、てL
1□C0ffとなるのを防止するため、空気中は避け、
通常、アルゴン−酸素混合ガス中で行われる。
In the heat treatment, the lithium salt aqueous solution absorbs carbon dioxide gas and
1□To prevent C0ff, avoid in air.
Usually, it is carried out in an argon-oxygen mixed gas.

熱処理時の温度は、合成する物質によっても異なるが、
通常は、250〜450℃程度であり、また熱処理時間
は、通常、2〜40時間程度量水る。
The temperature during heat treatment varies depending on the substance being synthesized, but
The temperature is usually about 250 to 450°C, and the heat treatment time is usually about 2 to 40 hours.

上記リチウム塩水溶液と二酸化マンガンとの熱処理によ
って得られるリチウムマンガン酸化物を含有したマンガ
ン酸化物は、通常、LitMnOiを含有した二酸化マ
ンガンであるが、熱処理温度やリチウム塩の種類によっ
てはリチウムマンガン酸化物として、たとえばLiMn
zO4などのように、Li、MnO,以外のものも合成
されるし、また熱処理する際のリチウムとマンガンとの
モル比によって、全体がLjMn、O,などのリチウム
マンガン酸化物になる場合もあり、この場合も本発明の
範囲内に含まれる。
The manganese oxide containing lithium manganese oxide obtained by heat treatment of the above lithium salt aqueous solution and manganese dioxide is usually manganese dioxide containing LitMnOi, but depending on the heat treatment temperature and the type of lithium salt, lithium manganese oxide may be formed. For example, LiMn
Things other than Li and MnO, such as zO4, are also synthesized, and depending on the molar ratio of lithium and manganese during heat treatment, the whole may become lithium manganese oxides such as LjMn, O, etc. , this case is also included within the scope of the present invention.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 水酸化リチウム−水和物(LiOH−H,○)水溶液と
化学二酸化マンガン(MnOz)とを熱処理して、リチ
ウムマンガン酸化物を含有したマンガン酸化物を合成し
た。上記の熱処理は以下のように行った。
Example 1 A lithium hydroxide hydrate (LiOH-H, O) aqueous solution and chemical manganese dioxide (MnOz) were heat-treated to synthesize a manganese oxide containing lithium manganese oxide. The above heat treatment was performed as follows.

水酸化ナトリウム−水和物4.2gを水30ccに溶解
した。この水溶液に化学二酸化マンガン20gを浸漬し
た。これをアルミナを主成分とする容器に入れて、A 
r / Oz −80/ 20のアルゴン−酸素混合ガ
ス中において、90〜110°Cで2時間、続いて37
5°Cで20時間熱処理した。使用した水酸化リチウム
−水和物と二酸化マンガンのリチウムとマンガンとのモ
ル比は30 : 70であった。
4.2 g of sodium hydroxide hydrate was dissolved in 30 cc of water. 20 g of chemical manganese dioxide was immersed in this aqueous solution. Put this into a container whose main component is alumina, and
r/Oz -80/20 for 2 h at 90-110 °C, followed by 37
Heat treatment was performed at 5°C for 20 hours. The molar ratio of lithium to manganese in the lithium hydroxide hydrate and manganese dioxide used was 30:70.

熱処理後の生成物のX線回折パターンを測定したところ
、水酸化リチウム−水和物(LtOH・H、O)や水酸
化リチウム(LiOH)などのリチウム塩のピークは観
察されず、リチウム塩は二酸化マンガンと完全に反応し
たものと考えられる。
When the X-ray diffraction pattern of the product after heat treatment was measured, no peaks of lithium salts such as lithium hydroxide-hydrate (LtOH・H, O) or lithium hydroxide (LiOH) were observed; It is thought that it completely reacted with manganese dioxide.

上記のように熱処理することによって得られたリチウム
マンガン酸化物を含有したマンガン酸化物を正極活物質
として用い、これに電子伝導助剤としてりん状黒鉛、結
着剤としてポリテトラフルオロエチレンをioo:2o
:sc重量比)の割合で混合して正極合剤を調製した。
A manganese oxide containing lithium manganese oxide obtained by heat treatment as described above is used as a positive electrode active material, and phosphorous graphite is used as an electron conduction aid and polytetrafluoroethylene is used as a binder. 2o
:sc weight ratio) to prepare a positive electrode mixture.

この正極合剤を金型内に充填し、1t、/Cm”で直径
101II11の円板状に加圧成形したのち、250″
Cで熱処理して正極とした。
This positive electrode mixture was filled into a mold and pressure-molded into a disc shape with a diameter of 101II11 at 1t,/Cm", and then 250"
It was heat-treated with C to obtain a positive electrode.

この正極を用い、第1図に示すボタン形のリチウム二次
電池を作製した。
Using this positive electrode, a button-shaped lithium secondary battery shown in FIG. 1 was produced.

第1図において、(1)は上記の正極であり、(2)は
直径14mmの円板状のリチウムからなる負極である。
In FIG. 1, (1) is the above-mentioned positive electrode, and (2) is a disk-shaped negative electrode made of lithium with a diameter of 14 mm.

(3)は微孔性ポリプロピレンフィルムからなるセパレ
ータで、(4)はポリプロピレン不織布からなる電解液
吸収体である。(5)はステンレス鋼製の正極缶であり
、(6)はステンレス鋼製網からなる正極集電体で、(
7)はステンレス鋼製で表面にニッケルメッキを施した
負極缶である。(8)はステンレス鋼製網からなる負極
集電体で、上記負極缶(7)の、内面にスポット溶接さ
れていて、前記の負極(2)は、このステンレス鋼製網
からなる負極S電体(8)に圧着されている。(9)は
ポリプロピレン製の環状ガスケットであり、この電池に
はブOピレン>’+−ボネートと1.2−ジメトキシエ
タンとの容量比i:1の混合溶媒にL i CF、SO
xを0.6 mol、/’ Q溶解した電解液が注入さ
れている。
(3) is a separator made of microporous polypropylene film, and (4) is an electrolyte absorber made of polypropylene nonwoven fabric. (5) is a positive electrode can made of stainless steel, (6) is a positive electrode current collector made of a stainless steel mesh, and (
7) is a negative electrode can made of stainless steel with nickel plating on the surface. (8) is a negative electrode current collector made of a stainless steel mesh, which is spot welded to the inner surface of the negative electrode can (7), and the negative electrode (2) is a negative electrode S current collector made of this stainless steel mesh. It is crimped onto the body (8). (9) is an annular gasket made of polypropylene, and this battery contains Li CF, SO in a mixed solvent of buOpyrene>'+-bonate and 1,2-dimethoxyethane in a volume ratio of i:1.
An electrolytic solution in which 0.6 mol/'Q of x is dissolved is injected.

比較例1 水酸化リチウム−水和物(L i 0H−Hid)粉末
と化学二酸化マンガン(MnO,)とを熱処理して、リ
チウムマンガン酸化物を含有したマンガン酸化物を合成
した。上記の熱処理は以下のように行った。
Comparative Example 1 A manganese oxide containing lithium manganese oxide was synthesized by heat-treating lithium hydroxide-hydrate (L i OH-Hid) powder and chemical manganese dioxide (MnO). The above heat treatment was performed as follows.

水酸化リチウム−水和物4.2gをメノウ製の乳鉢で粉
砕したのち、化学二酸化マンガン20gと混合し、再び
粉砕した。これをアルミナを主成分とする容器に入れて
実施例1と同様に熱処理した。
After 4.2 g of lithium hydroxide hydrate was ground in an agate mortar, it was mixed with 20 g of chemical manganese dioxide and ground again. This was placed in a container containing alumina as a main component and heat treated in the same manner as in Example 1.

熱処理後の生成物のX線回折パターンを測定したところ
、二酸化マンガンと未反応のリチウム塩のピークが観察
され、リチウム塩と二酸化マンガンとの反応が完全でな
いことが明らかとなった。
When the X-ray diffraction pattern of the product after heat treatment was measured, a peak of unreacted lithium salt with manganese dioxide was observed, and it became clear that the reaction between lithium salt and manganese dioxide was not complete.

なお、観察された未反応のリチウム塩は、水酸化リチウ
ム−水和物(L t 0H−H!O)が加熱により脱水
した水酸化リチウム(L i OH)のピークであった
Note that the observed unreacted lithium salt was a peak of lithium hydroxide (L i OH) obtained by dehydrating lithium hydroxide-hydrate (L t 0H-H!O) by heating.

上記のように熱処理することによって得られたリチウム
マンガン酸化物を含有したマンガン酸化物を正極活物質
として用い、それ以外は実施例1と同様にして、ボタン
形のリチウム二次電池を作製した。
A button-shaped lithium secondary battery was produced in the same manner as in Example 1 except that the manganese oxide containing lithium manganese oxide obtained by heat treatment as described above was used as the positive electrode active material.

つぎに、L記実施例1および比較例1の電池を充ta流
0.392m A、放電電流0.785mAで、3゜5
v〜2.OVの電圧間で充放電した。
Next, the batteries of Example 1 and Comparative Example 1 were charged at a current of 0.392 mA and a discharge current of 0.785 mA at a rate of 3°5.
v~2. The battery was charged and discharged between voltages of OV.

第1表に上記実施例1および比較例1の電池の充放電サ
イクル数と充放電容量との関係を示す。
Table 1 shows the relationship between the number of charge/discharge cycles and the charge/discharge capacity of the batteries of Example 1 and Comparative Example 1.

第  1  表 第1表に示すように、いずれのサイクル数においても、
実施例1の電池は比較例1の電池より大きな充放電容量
を示し、本発明で用いた正極活物質が好ましいものであ
ることを示していた。これは、前述したように、リチウ
ム塩水溶液と二酸化マンガンとを反応させるための熱処
理で、水溶液から水が蒸発する過程でリチウム塩の微細
な粒子が二酸化マンガン粒子の表面や細孔内に析出し、
リチウム塩と二酸化マンガンとの接触が良好になり、両
者の反応がより完全に進行したことによるものと考えら
れる。
Table 1 As shown in Table 1, at any number of cycles,
The battery of Example 1 exhibited a larger charge/discharge capacity than the battery of Comparative Example 1, indicating that the positive electrode active material used in the present invention was preferable. As mentioned above, this is a heat treatment to cause the lithium salt aqueous solution and manganese dioxide to react, and in the process of evaporating water from the aqueous solution, fine particles of lithium salt are precipitated on the surface and within the pores of the manganese dioxide particles. ,
It is thought that this is because the contact between the lithium salt and manganese dioxide became better, and the reaction between the two proceeded more completely.

なお、実施例では、リチウム塩として水酸化ナトリウム
−水和物(LiOH−Hz○)を用いたが、それに代え
て、水酸化リチウム(LiOH)、硝酸リチウム(Li
NOz)などを用いてもよい。
In the examples, sodium hydroxide hydrate (LiOH-Hz○) was used as the lithium salt, but lithium hydroxide (LiOH) and lithium nitrate (LiOH) were used instead.
NOz) etc. may also be used.

また、実施例では、二酸化マンガンとして、化学二酸化
マンガンを用いたが、それに代えて、電解二酸化マンガ
ンを用いてもよい、また、実施例では、負極にリチウム
を用いたが、リチウムに代えて、リチウム−アルミニウ
ム合金などのリチウム合金を用いてもよい、さらに、電
解液にも、実施例で用いたちの以外に、たとえば、Li
C104L i P F h 、 L i B F a
などの電解質の1種または2種以上を、1,2−ジメト
キシエタン、1.2−ジェトキシエタン、プロピレンカ
ーボネート、エチレンカーボネート、γ−ブチロラクト
ン、テトラヒドロフラン、1.3−ジオキソランなどの
単独または2種以上の混合溶媒に溶解した有機電解液を
用いてもよい。
Further, in the examples, chemical manganese dioxide was used as manganese dioxide, but electrolytic manganese dioxide may be used instead.Also, in the examples, lithium was used for the negative electrode, but instead of lithium, A lithium alloy such as a lithium-aluminum alloy may be used.Furthermore, the electrolyte may also contain, for example, Li, in addition to those used in the examples.
C104L i P F h , L i B Fa
One or more electrolytes such as 1,2-dimethoxyethane, 1,2-jethoxyethane, propylene carbonate, ethylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolane, etc. An organic electrolyte dissolved in a mixed solvent may also be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、リチウム塩水溶液と
マンガン酸化物とを熱処理して得られるリチウムマンガ
ン酸化物を含有したマンガン酸化物を正極活物質として
用いることにより、充放電特性の優れたリチウム二次電
池を提供することができた。
As explained above, in the present invention, by using a manganese oxide containing lithium manganese oxide obtained by heat-treating a lithium salt aqueous solution and manganese oxide as a positive electrode active material, lithium oxide with excellent charge and discharge characteristics can be obtained. We were able to provide secondary batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のリチウム二次電池の一例を示す断面図
で娶る。
FIG. 1 is a sectional view showing an example of the lithium secondary battery of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)リチウムまたはリチウム合金を負極に用いるリチ
ウム二次電池を製造するにあたり、 正極活物質として、リチウム塩水溶液と二酸化マンガン
とを熱処理して得られるリチウムマンガン酸化物を含有
したマンガン酸化物を用いることを特徴とするリチウム
二次電池の製造方法。
(1) In manufacturing a lithium secondary battery that uses lithium or a lithium alloy as a negative electrode, a manganese oxide containing lithium manganese oxide obtained by heat treating a lithium salt aqueous solution and manganese dioxide is used as a positive electrode active material. A method for manufacturing a lithium secondary battery, characterized by:
JP1221187A 1989-08-28 1989-08-28 Manufacture of lithium secondary cell Pending JPH0384873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1221187A JPH0384873A (en) 1989-08-28 1989-08-28 Manufacture of lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1221187A JPH0384873A (en) 1989-08-28 1989-08-28 Manufacture of lithium secondary cell

Publications (1)

Publication Number Publication Date
JPH0384873A true JPH0384873A (en) 1991-04-10

Family

ID=16762842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1221187A Pending JPH0384873A (en) 1989-08-28 1989-08-28 Manufacture of lithium secondary cell

Country Status (1)

Country Link
JP (1) JPH0384873A (en)

Similar Documents

Publication Publication Date Title
JP2003017057A (en) Lithium-vanadium compound oxide for negative electrode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery using the same
JPH0227660A (en) Nonaqueous secondary battery
JPS63187569A (en) Nonaqueous secondary battery
JPH09320588A (en) Manufacture of lithium battery positive electrode active material, and lithium battery
JPH01209663A (en) Nonaqueous secondary battery
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPH01235158A (en) Nonaqueous secondary battery
JPH0260056A (en) Manufacture of nonaqueous secondary battery and its positive electrode active mateiral
JPS63148550A (en) Nonaqueous secondary battery
JPH0384873A (en) Manufacture of lithium secondary cell
JP2797526B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP2003054952A (en) Method of producing lithium-manganese complex oxide and lithium battery obtained by using the lithium- manganese complex oxide
JP2714092B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JPH0393163A (en) Nonaqueous system secondary battery
JPH07101727A (en) Lithium manganese double oxide, its production and application
JPH0475267A (en) Nonaqueous secondary battery
JP2001180939A (en) Method of manufacturing spinel type lithium manganate
JP2797528B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3552167B2 (en) Lithium secondary battery
JP3387876B2 (en) Method for producing spinel type lithium manganate
JPH03219556A (en) Lithium secondary battery and manufacture thereof