JP4558229B2 - Lithium titanate, method for producing the same, and use thereof - Google Patents

Lithium titanate, method for producing the same, and use thereof Download PDF

Info

Publication number
JP4558229B2
JP4558229B2 JP2001076288A JP2001076288A JP4558229B2 JP 4558229 B2 JP4558229 B2 JP 4558229B2 JP 2001076288 A JP2001076288 A JP 2001076288A JP 2001076288 A JP2001076288 A JP 2001076288A JP 4558229 B2 JP4558229 B2 JP 4558229B2
Authority
JP
Japan
Prior art keywords
lithium titanate
mass
lithium
content
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001076288A
Other languages
Japanese (ja)
Other versions
JP2002274849A (en
Inventor
宏 真嶋
守 久保田
清 中原
良介 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP2001076288A priority Critical patent/JP4558229B2/en
Publication of JP2002274849A publication Critical patent/JP2002274849A/en
Application granted granted Critical
Publication of JP4558229B2 publication Critical patent/JP4558229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池の活物質として有用なチタン酸リチウム及びその製造方法に関するものである。
【0002】
【従来の技術】
リチウムチタン複合酸化物であるチタン酸リチウムは代表的なものにLi4Ti512があり、二次電池の活物質として使用した場合、リチウム基準で1.5Vの電圧を有し、長寿命であることが特徴である。また、時計用リチウムイオン電池活物質として実績を持つ材料であり、充放電に際しての膨張・収縮が無視できるという特徴から、電池の大型化に際して注目される電極材料である。この材料は正極としての利用の他、負極活物質としての利用面も開けており、電池の正極・負極活物質としてその将来が期待されるものである。
【0003】
第3成分を添加したチタン酸リチウムを合成し、活物質として使用したリチウム二次電池の電池特性の改良が試みられている。例えば、A.D.Robertson,Journal of the Electrochemical Society,146(11)3985-3962(1991)ではFeを含有するLi1+xFe1-3xTi1+2x4(0.0≦x≦0.33)が、T.Ohzuku,Journal of the Electrochemical Society,147(10)3592-3597(2000)ではCrを含有するLi[CrTi]O4が提案されている。特開2000−277116では組成がLi4xTi5x12(式中MはV、Nb、Mo及びPの少なくとも1種であり、Xは0<X≦0.45)のものが提案されている。これらはチタン酸リチウム中のTiの一部を上記金属で置換したチタン酸リチウムである。
【0004】
また、特開平10−251020では金属置換チタン酸リチウムおよびその製造方法ならびにそれを用いてなるリチウム電池として、Li成分の一部が2以上の原子価を有する金属で置換されていることを特徴とし、2以上の原子価を有する金属としてはコバルト、ニッケル、マンガン、バナジウム、鉄、ホウ素、アルミニウム、珪素、ジルコニウム、ストロンチウム、マグネシウム及び錫からなる群より選ばれる少なくとも1種の金属であるチタン酸リチウムが提案されている。
【0005】
また、第3成分を含有しないチタン酸リチウムの合成法としては例えば特開2000−302547公報に示されているように原料に高純度の酸化チタンを使用した、不純物の少ないチタン酸リチウムが合成されている。このように第3成分を含有したり、高純度であるチタン酸リチウムの合成検討は各種なされているが、特定量のK2OとP25を含有するチタン酸リチウムの二次電池特性に及ぼす影響は未だに報告がなされていない。
【0006】
【発明が解決しようとする課題】
本発明はチタン酸リチウムのリチウム二次電池特性を改良する為に、特定量のK2O及びP25を含有したチタン酸リチウムを合成すること、及びその製造方法、並びに該チタン酸リチウムを用いたリチウム二次電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、特定の方法で製造した特定量のK2O及びP25を含有するチタン酸リチウムを活物質として使用したリチウム二次電池は、優れた充放電特性を示すことを見い出し、本発明を完成させた。
【0008】
すなわち、本発明のチタン酸リチウムは、KO含有量が0.10〜0.25質量%で、かつP含有量が0.10〜0.50質量%であり、LiTi12を主成分とすることを特徴とする。
【0009】
本発明のチタン酸リチウムの製造方法は、KO含有量が0.10〜0.30質量%で、かつP含有量が0.10〜0.60質量%の酸化チタンと、水溶性のリチウム塩とを、LiとTiとの原子比が4:5となるように水中で均一に混合する工程と、該混合物を乾燥させて球状粒子を形成する工程と、該球状粒子を大気中で熱処理する工程とからなることを特徴とする。
【0010】
前記チタン酸リチウムを正極活物質として用いて電池用正極とすることができる。
【0011】
また、前記チタン酸リチウムを負極活物質として用いて電池用負極とすることもできる。
【0012】
また、前記の電池用正極、または前記の電池用負極を用いてリチウム二次電池を形成することができる。
【0013】
さらに、前記チタン酸リチウムを正極活物質とし、金属Liを負極として作製したリチウム二次電池であって、充・放電試験を行った結果が1.4〜1.6Vの充・放電電圧及び150mAh/g以上の初期放電容量を有するリチウム二次電池を形成することができる。
【0014】
【発明の実施の形態】
本発明のチタン酸リチウムは、K O含有量が0.10〜0.25質量%で、かつP含有量が0.10〜0.50質量%である。また主成分がLiTi12であることを特徴とするが、これは例えば、粉末を使用したX線回折図においてLiTi12のメインピークである4.83Åのピーク強度を100とした時に、ルチル型二酸化チタンのメインピークである3.25Å及びLiTiOの生成を示す2.07Åの各々のピーク強度は5以下であることが好ましく、より好ましくは3以下である。
【0015】
本発明のチタン酸リチウムの製造方法は、代表的には原料を水中で均一に混合する工程、該混合物を乾燥させて球状粒子を形成する工程及び該球状粒子を大気中で熱処理する工程を特徴とし、洗浄の工程を含まない為、排水の環境への影響を考慮することなく、目的物が製造できる。
【0016】
本発明のチタン酸リチウムの製造方法では、まず、リチウム塩として水酸化リチウム、水酸化リチウム・1水和物、酸化リチウム、炭酸水素リチウムまたは炭酸リチウム等を水と混合または溶解する。この液にLiとTiの原子比が4:5となる酸化チタンを混合する。混合液のスラリー濃度は、Li原料が0.48〜4.8モル/L、酸化チタンが0.60〜6.00モル/Lであると良い。前記範囲より濃度が高いと均一混合に強い攪拌力が必要となる。また乾燥時の配管閉塞等のトラブルの原因となり好ましくない。上記範囲より濃度が低いと蒸発水分量が増加し、乾燥コストがあがり好ましくない。混合液を攪拌しながら乾燥させて球状粒子とする。前記乾燥させて球状粒子とする方法は、噴霧乾燥、流動層乾燥、転動造粒乾燥、あるいは凍結乾燥を単独または組み合わせて使用できる。乾燥物を大気中において、熱処理する。
【0017】
熱処理温度は700〜1000℃で1〜10時間であるが、800〜900℃で5〜10時間が好ましい。700℃未満では酸化チタンとリチウム化合物の反応が十分でない。1000℃を超えた場合、チタン酸リチウムの焼結が起こるため、電池特性の悪いものになってしまう。
【0018】
製造原料として使用する酸化チタンはO含有量が0.10〜0.30質量%で、かつP含有量が0.10〜0.60質量%である。本製造方法においては、KO含有量及びP含有量が前記範囲より少ないと、後述の比較例のように得られたチタン酸リチウムの二次電池特性が悪くなり好ましくない。また、KO含有量及びP含有量が前記範囲を超えるとリチウム塩水溶液との混合時に粘土が上昇し、均一混合に強い撹拌力が必要となる。又、乾燥時の配管閉塞等のトラブルの原因となり好ましくない。
【0019】
前記の原料となる酸化チタンは、代表的には含水酸化チタンにK2O及びP25を前記の含有量となるように添加した後、焼成、粉砕して製造する。
【0020】
上記により合成したチタン酸リチウムを正極活物質として使用し、負極にLi金属を使用したコイン型二次電池を作成し、電池特性評価を行った。本発明によるチタン酸リチウムは充・放電試験を行った結果が1.4〜1.6Vの充・放電電圧を満足し、K2O及びP25を含有しないLi4Ti512よりも初期放電容量が大きいことを見い出した。また、本発明のチタン酸リチウムを負極活物質として用いる場合、正極にはLiCoO2、LiNiO2、LiMn22、LiFeO2等のLi含有複合酸化物を用いてリチウムイオン電池が提供され、その充放電特性の向上に寄与する。
【0021】
【実施例】
本発明の実施例及び比較例を図面を参照にしながら説明するが、本発明はこれらの実施例に限定されるものではない。
【0022】
【実施例1】
水酸化リチウム(LiOH・H2O)を12%濃度で水に溶解した。該溶解液にK2O含有量0.26質量%、P25含有量0.51質量%である酸化チタンをLiとTiの原子比が4:5となる量を添加後、30分以上撹拌する。混合物を110℃で噴霧乾燥する。乾燥物を大気中875℃で6時間熱処理し、チタン酸リチウムを作製した。
【0023】
この試料に対しCuをターゲットとしたX線回折、比表面積の測定、及び平均粒径の測定を行った。図1はX線回折図を示す。図1より合成物はLi4Ti512であることを確認した。得られた試料の比表面積は2.7m2/gで平均粒径(メジアン径)は23.9μmであった。ICP分析による合成物中のK2O含有量及びP25含有量はそれぞれ0.230質量%及び0.439質量%であった。また、合成物のLi/Tiモル比は0.80であった。
【0024】
次に上記チタン酸リチウムを活物質として正極電極合剤を作製した。活物質として得られたチタン酸リチウム82重量部と、導電助剤としてアセチレンブラック9重量部と、結着剤としてフッ素樹脂9重量部を、溶剤としてn−メチル−2−ピロリドンを用い混合した。上記電極合剤をドクターブレード法でアルミ箔へ乾燥後の厚さが0.01g/cm2となるように塗布した。150℃で真空乾燥後、初期電極合剤の厚みに対し80%にロールプレスした。1cm2の面積で打ち抜き後、図2に示すコイン電池の正極4とした。
【0025】
図2において、負極5は金属Li板を、電解液はエチレンカーボネートとジメチルカーボネートの等容量混合物にLiPF6を1mol/Lで溶解したものを、セパレーターはポリプロピレン多孔膜を、それぞれ使用した。
【0026】
上記により作製したコイン電池を用いて電流密度0.2mA/cm2の定電流で1.0Vまで放電し、その後、3.0Vまで充電し、このサイクルを10回繰り返した。図3は本実施例のチタン酸リチウムを正極活物質とし、Li金属を負極としたコイン電池の放電曲線を示す。3サイクル目の放電容量は164mAh/gで10サイクル目の放電容量は163mAh/gであった。
【0027】
【実施例2】
2O含有量0.27質量%、P25含有量0.50質量%である酸化チタンを使用した以外は実施例1と同様の手法で乾燥物をえた。乾燥物を大気中、800℃で6時間熱処理した。実施例1と同様にX線回折定性、比表面積及び平均粒径の測定及びK2O、P25とLi/Tiモル比の分析を行った。また、コイン電池評価も実施例1と同様に行った。X線回折結果は実施例1と同じで合成物はLi4Ti512であることを確認した。比表面積は2.8m2/gで平均粒径(メジアン径)は8.7μmであった。合成物中のK2O及びP25量はそれぞれ0.232質量%及び0.432質量%であった。また、Li/Tiモル比は0.82であった。コイン電池評価の結果3サイクル目の放電容量は164mAh/gで、10サイクル目の放電容量は162mAh/gであった。
【0028】
【実施例3】
2O含有量0.20質量%、P25含有量0.13質量%である酸化チタンを使用した以外は実施例1と同様に合成並びに評価を行った。X線回折結果より合成物はLi4Ti512であることを確認した。比表面積は2.3m2/gで平均粒径(メジアン径)は24.7μmであった。ICP分析による合成物中のK2O及びP25量はそれぞれ0.170質量%及び0.109質量%であった。また、Li/Tiモル比は0.83であった。コイン電池評価の結果3サイクル目の放電容量は160mAh/gで、10サイクル目の放電容量は158mAh/gであった。
【0029】
【実施例4】
2O含有量0.16質量%、P25含有量0.27質量%である酸化チタンを使用した以外は実施例1と同様に合成並びに評価を行った。X線回折結果より合成物はLi4Ti512であることを確認した。比表面積は2.2m2/gで平均粒径(メジアン径)は20.1μmであった。ICP分析による合成物中のK2O及びP25量はそれぞれ0.139質量%及び0.235質量%であった。また、Li/Tiモル比は0.83であった。コイン電池評価の結果3サイクル目の放電容量は159mAh/gで、10サイクル目の放電容量は157mAh/gであった。
【0030】
【実施例5】
2O含有量0.28質量%、P25含有量0.33質量%である酸化チタンを使用した以外は実施例1と同様に合成並びに評価を行った。X線回折結果より合成物はLi4Ti512であることを確認した。比表面積は1.6m2/gで平均粒径(メジアン径)は15.1μmであった。ICP分析による合成物中のK2O及びP25量はそれぞれ0.243質量%及び0.284質量%であった。また、Li/Tiモル比は0.83であった。コイン電池評価の結果3サイクル目の放電容量は156mAh/gで、10サイクル目の放電容量は154mAh/gであった。
【0031】
【比較例1】
2O含有量0.01質量%未満、P25含有量0.01質量%未満である酸化チタンを使用した以外は実施例1と同様に合成並びに評価を行った。X線回折結果より合成物はLi4Ti512であることを確認した。比表面積は2.2m2/gで平均粒径(メジアン径)は22.1μmであった。ICP分析による合成物中のK2O及びP25量はいずれも0.001質量%以下であった。また、Li/Tiモル比は0.83であった。コイン電池評価の結果3サイクル目の放電容量は146mAh/gで、10サイクル目の放電容量は136mAh/gであった。
【0032】
以上のように本発明の製造方法においてはKOを0.10〜0.30質量%かつP0.10〜0.60質量%含有するチタン酸リチウムは、KO及びPを含有しないチタン酸リチウムよりも初期放電容量が大きい。
【0033】
【発明の効果】
以上のように本発明のチタン酸リチウムはKOを0.10〜0.25質量%かつP0.10〜0.50質量%含有することを特徴とし、前述した合成法においてはKO及びPを含有しないチタン酸リチウムよりも初期放電容量の大きいチタン酸リチウムを得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例1のチタン酸リチウムのX線回折図である。
【図2】本発明の実施例のチタン酸リチウムを正極に使用したコイン電池の断面図である。
【図3】本発明の実施例1のチタン酸リチウム及び比較例1のチタン酸リチウムを正極に使用したコイン電池の放電曲線を示すグラフである。
【符号の説明】
4 正極
5 負極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to lithium titanate useful as an active material for a lithium secondary battery and a method for producing the same.
[0002]
[Prior art]
Lithium titanate, which is a lithium-titanium composite oxide, is representatively Li 4 Ti 5 O 12 , and has a voltage of 1.5 V based on lithium when used as an active material for a secondary battery, and has a long life. It is a feature. In addition, it is a material that has a proven track record as a lithium-ion battery active material for watches, and it is an electrode material that attracts attention when the battery is enlarged due to the fact that expansion and contraction during charging and discharging can be ignored. This material is used not only as a positive electrode but also as a negative electrode active material, and the future is expected as a positive electrode / negative electrode active material of a battery.
[0003]
An attempt has been made to improve the battery characteristics of a lithium secondary battery in which lithium titanate added with a third component is synthesized and used as an active material. For example, A. D. In Robertson, Journal of the Electrochemical Society, 146 (11) 3985-3962 (1991), Fe 1 containing Li 1 + x Fe 1-3x Ti 1 + 2x O 4 (0.0 ≦ x ≦ 0.33) T. In Ohzuku, Journal of the Electrochemical Society, 147 (10) 3592-3597 (2000), Li [CrTi] O 4 containing Cr is proposed. In JP 2000-277116 A, the composition is Li 4 M x Ti 5x O 12 (wherein M is at least one of V, Nb, Mo and P, and X is 0 <X ≦ 0.45). Proposed. These are lithium titanates obtained by substituting a part of Ti in lithium titanate with the above metal.
[0004]
Japanese Patent Laid-Open No. 10-251020 is characterized in that, as a metal-substituted lithium titanate, a method for producing the same, and a lithium battery using the same, a part of the Li component is substituted with a metal having a valence of 2 or more. The metal having two or more valences is at least one metal selected from the group consisting of cobalt, nickel, manganese, vanadium, iron, boron, aluminum, silicon, zirconium, strontium, magnesium and tin, lithium titanate Has been proposed.
[0005]
As a method for synthesizing lithium titanate not containing the third component, for example, as shown in Japanese Patent Laid-Open No. 2000-302547, lithium titanate with low impurities using high-purity titanium oxide is synthesized. ing. Various studies have been made on the synthesis of lithium titanate containing the third component or high purity as described above, but the characteristics of the secondary battery of lithium titanate containing specific amounts of K 2 O and P 2 O 5 The impact on stagnation has not yet been reported.
[0006]
[Problems to be solved by the invention]
In order to improve lithium secondary battery characteristics of lithium titanate, the present invention synthesizes lithium titanate containing specific amounts of K 2 O and P 2 O 5 , a method for producing the same, and the lithium titanate. An object of the present invention is to provide a lithium secondary battery using.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have made a lithium secondary using lithium titanate containing a specific amount of K 2 O and P 2 O 5 produced by a specific method as an active material. The battery was found to exhibit excellent charge / discharge characteristics, and the present invention was completed.
[0008]
That is, the lithium titanate of the present invention has a K 2 O content of 0.10 to 0.25 % by mass and a P 2 O 5 content of 0.10 to 0.50 % by mass, and Li 4 Ti 5 O 12 is a main component.
[0009]
The method for producing lithium titanate of the present invention comprises a titanium oxide having a K 2 O content of 0.10 to 0.30 mass% and a P 2 O 5 content of 0.10 to 0.60 mass%, A step of uniformly mixing a water-soluble lithium salt in water such that the atomic ratio of Li and Ti is 4: 5, a step of drying the mixture to form spherical particles, and And a step of heat treatment in the atmosphere .
[0010]
The lithium titanate can be used as a positive electrode active material to form a positive electrode for a battery.
[0011]
Moreover, it can also be set as the negative electrode for batteries using the said lithium titanate as a negative electrode active material.
[0012]
Moreover, a lithium secondary battery can be formed using the battery positive electrode or the battery negative electrode.
[0013]
Furthermore, the lithium secondary battery was prepared using the lithium titanate as a positive electrode active material and a metal Li as a negative electrode, and the charge / discharge test results were a charge / discharge voltage of 1.4 to 1.6 V and 150 mAh. A lithium secondary battery having an initial discharge capacity of / g or more can be formed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The lithium titanate of the present invention has a K 2 O content of 0.10 to 0.25% by mass and a P 2 O 5 content of 0.10 to 0.50% by mass. In addition, the main component is Li 4 Ti 5 O 12 , which is, for example, an X-ray diffraction diagram using powder having a peak intensity of 4.83Å which is the main peak of Li 4 Ti 5 O 12. When 100 is set, the peak intensity of 3.25% which is the main peak of rutile titanium dioxide and 2.07% which indicates the formation of Li 2 TiO 3 is preferably 5 or less, more preferably 3 or less. .
[0015]
The method for producing lithium titanate according to the present invention typically includes a step of uniformly mixing raw materials in water, a step of drying the mixture to form spherical particles, and a step of heat-treating the spherical particles in the air. Since the washing process is not included, the target product can be manufactured without considering the environmental impact of the drainage.
[0016]
In the method for producing lithium titanate of the present invention, lithium hydroxide, lithium hydroxide monohydrate, lithium oxide, lithium hydrogen carbonate, lithium carbonate or the like is first mixed or dissolved in water as a lithium salt. Titanium oxide having an atomic ratio of Li and Ti of 4: 5 is mixed with this liquid. The slurry concentration of the mixed solution is preferably 0.48 to 4.8 mol / L for the Li raw material and 0.60 to 6.00 mol / L for the titanium oxide. When the concentration is higher than the above range, a strong stirring force is required for uniform mixing. Moreover, it becomes a cause of trouble, such as piping blockage at the time of drying, and is not preferable. If the concentration is lower than the above range, the amount of evaporated water increases, and the drying cost increases, which is not preferable. The mixture is dried with stirring to give spherical particles. As the method of drying into spherical particles, spray drying, fluidized bed drying, rolling granulation drying, or freeze drying can be used alone or in combination. The dried product is heat-treated in the atmosphere.
[0017]
The heat treatment temperature is 700 to 1000 ° C. for 1 to 10 hours, but preferably 800 to 900 ° C. for 5 to 10 hours. If it is less than 700 degreeC, reaction of a titanium oxide and a lithium compound is not enough. When the temperature exceeds 1000 ° C., sintering of lithium titanate occurs, resulting in poor battery characteristics.
[0018]
The titanium oxide used as the production raw material has a K 2 O content of 0.10 to 0.30 mass% and a P 2 O 5 content of 0.10 to 0.60 mass%. In the present production method, if the K 2 O content and the P 2 O 5 content are less than the above ranges, the secondary battery characteristics of lithium titanate obtained as in the comparative example described later are unfavorable. Also, the clay increases upon mixing with an aqueous lithium salt solution content of K 2 O and P 2 O 5 content exceeds the above range, a strong stirring force to the uniform mixing is required. Moreover, it causes troubles such as piping blockage during drying, which is not preferable.
[0019]
The titanium oxide as the raw material is typically produced by adding K 2 O and P 2 O 5 to hydrous titanium oxide so as to have the above content, followed by firing and pulverization.
[0020]
A coin type secondary battery using the lithium titanate synthesized as described above as a positive electrode active material and using Li metal as a negative electrode was prepared, and battery characteristics were evaluated. According to the lithium titanate of the present invention, the result of the charge / discharge test satisfies a charge / discharge voltage of 1.4 to 1.6 V, and Li 4 Ti 5 O 12 does not contain K 2 O and P 2 O 5. Also found a large initial discharge capacity. When the lithium titanate of the present invention is used as a negative electrode active material, a lithium ion battery is provided using a Li-containing composite oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 2 , LiFeO 2 for the positive electrode, Contributes to the improvement of charge / discharge characteristics.
[0021]
【Example】
Examples and Comparative Examples of the present invention will be described with reference to the drawings, but the present invention is not limited to these Examples.
[0022]
[Example 1]
Lithium hydroxide (LiOH.H 2 O) was dissolved in water at a concentration of 12%. Titanium oxide having a K 2 O content of 0.26% by mass and a P 2 O 5 content of 0.51% by mass was added to the solution for 30 minutes after adding an amount of an atomic ratio of Li to Ti of 4: 5. Stir above. The mixture is spray dried at 110 ° C. The dried product was heat treated in the atmosphere at 875 ° C. for 6 hours to produce lithium titanate.
[0023]
This sample was subjected to X-ray diffraction using Cu as a target, measurement of specific surface area, and measurement of average particle diameter. FIG. 1 shows an X-ray diffraction diagram. From FIG. 1, it was confirmed that the synthesized product was Li 4 Ti 5 O 12 . The obtained sample had a specific surface area of 2.7 m 2 / g and an average particle diameter (median diameter) of 23.9 μm. The K 2 O content and the P 2 O 5 content in the composite by ICP analysis were 0.230% by mass and 0.439% by mass, respectively. Further, the Li / Ti molar ratio of the composite was 0.80.
[0024]
Next, a positive electrode mixture was prepared using the lithium titanate as an active material. 82 parts by weight of lithium titanate obtained as an active material, 9 parts by weight of acetylene black as a conductive additive, 9 parts by weight of a fluororesin as a binder, and n-methyl-2-pyrrolidone as a solvent were mixed. The electrode mixture was applied to an aluminum foil by a doctor blade method so that the thickness after drying was 0.01 g / cm 2 . After vacuum drying at 150 ° C., roll pressing was performed to 80% of the thickness of the initial electrode mixture. After punching out with an area of 1 cm 2, the positive electrode 4 of the coin battery shown in FIG. 2 was obtained.
[0025]
In FIG. 2, the negative electrode 5 was a metal Li plate, the electrolyte was a solution of LiPF 6 dissolved in an equal volume mixture of ethylene carbonate and dimethyl carbonate at 1 mol / L, and the separator was a polypropylene porous film.
[0026]
Using the coin battery produced as described above, the battery was discharged to 1.0 V with a constant current of 0.2 mA / cm 2 and then charged to 3.0 V, and this cycle was repeated 10 times. FIG. 3 shows a discharge curve of a coin battery in which lithium titanate of this example is used as a positive electrode active material and Li metal is used as a negative electrode. The discharge capacity at the third cycle was 164 mAh / g, and the discharge capacity at the 10th cycle was 163 mAh / g.
[0027]
[Example 2]
A dried product was obtained in the same manner as in Example 1 except that titanium oxide having a K 2 O content of 0.27% by mass and a P 2 O 5 content of 0.50% by mass was used. The dried product was heat-treated at 800 ° C. for 6 hours in the atmosphere. In the same manner as in Example 1, the X-ray diffraction qualities, the specific surface area and the average particle diameter were measured, and the K 2 O, P 2 O 5 and Li / Ti molar ratios were analyzed. Coin battery evaluation was also performed in the same manner as in Example 1. The X-ray diffraction result was the same as in Example 1, and it was confirmed that the synthesized product was Li 4 Ti 5 O 12 . The specific surface area was 2.8 m 2 / g and the average particle diameter (median diameter) was 8.7 μm. The amounts of K 2 O and P 2 O 5 in the composite were 0.232% by mass and 0.432% by mass, respectively. The Li / Ti molar ratio was 0.82. As a result of the coin battery evaluation, the discharge capacity at the third cycle was 164 mAh / g, and the discharge capacity at the 10th cycle was 162 mAh / g.
[0028]
[Example 3]
Synthesis and evaluation were performed in the same manner as in Example 1 except that titanium oxide having a K 2 O content of 0.20% by mass and a P 2 O 5 content of 0.13% by mass was used. From the X-ray diffraction result, it was confirmed that the synthesized product was Li 4 Ti 5 O 12 . The specific surface area was 2.3 m 2 / g and the average particle diameter (median diameter) was 24.7 μm. The amounts of K 2 O and P 2 O 5 in the synthesized product by ICP analysis were 0.170% by mass and 0.109% by mass, respectively. The Li / Ti molar ratio was 0.83. As a result of the coin battery evaluation, the discharge capacity at the third cycle was 160 mAh / g, and the discharge capacity at the 10th cycle was 158 mAh / g.
[0029]
[Example 4]
Synthesis and evaluation were performed in the same manner as in Example 1 except that titanium oxide having a K 2 O content of 0.16% by mass and a P 2 O 5 content of 0.27% by mass was used. From the X-ray diffraction result, it was confirmed that the synthesized product was Li 4 Ti 5 O 12 . The specific surface area was 2.2 m 2 / g and the average particle diameter (median diameter) was 20.1 μm. The amounts of K 2 O and P 2 O 5 in the synthesized product by ICP analysis were 0.139% by mass and 0.235% by mass, respectively. The Li / Ti molar ratio was 0.83. As a result of the coin battery evaluation, the discharge capacity at the third cycle was 159 mAh / g, and the discharge capacity at the 10th cycle was 157 mAh / g.
[0030]
[Example 5]
Synthesis and evaluation were performed in the same manner as in Example 1 except that titanium oxide having a K 2 O content of 0.28 mass% and a P 2 O 5 content of 0.33 mass% was used. From the X-ray diffraction result, it was confirmed that the synthesized product was Li 4 Ti 5 O 12 . The specific surface area was 1.6 m 2 / g and the average particle diameter (median diameter) was 15.1 μm. The amounts of K 2 O and P 2 O 5 in the synthesized product by ICP analysis were 0.243% by mass and 0.284% by mass, respectively. The Li / Ti molar ratio was 0.83. As a result of the coin battery evaluation, the discharge capacity at the third cycle was 156 mAh / g, and the discharge capacity at the 10th cycle was 154 mAh / g.
[0031]
[Comparative Example 1]
Synthesis and evaluation were performed in the same manner as in Example 1 except that titanium oxide having a K 2 O content of less than 0.01% by mass and a P 2 O 5 content of less than 0.01% by mass was used. From the X-ray diffraction result, it was confirmed that the synthesized product was Li 4 Ti 5 O 12 . The specific surface area was 2.2 m 2 / g and the average particle diameter (median diameter) was 22.1 μm. The amounts of K 2 O and P 2 O 5 in the synthesized product by ICP analysis were both 0.001% by mass or less. The Li / Ti molar ratio was 0.83. As a result of the coin battery evaluation, the discharge capacity at the third cycle was 146 mAh / g, and the discharge capacity at the 10th cycle was 136 mAh / g.
[0032]
As described above, in the production method of the present invention, lithium titanate containing 0.10 to 0.30 % by mass of K 2 O and 0.10 to 0.60 % by mass of P 2 O 5 is K 2 O and The initial discharge capacity is larger than that of lithium titanate not containing P 2 O 5 .
[0033]
【The invention's effect】
As described above, the lithium titanate of the present invention contains 0.10 to 0.25 % by mass of K 2 O and 0.10 to 0.50 % by mass of P 2 O 5. Can obtain lithium titanate having a larger initial discharge capacity than lithium titanate not containing K 2 O and P 2 O 5 .
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of lithium titanate of Example 1 of the present invention.
FIG. 2 is a cross-sectional view of a coin battery using lithium titanate according to an embodiment of the present invention as a positive electrode.
FIG. 3 is a graph showing a discharge curve of a coin battery using lithium titanate of Example 1 of the present invention and lithium titanate of Comparative Example 1 as positive electrodes.
[Explanation of symbols]
4 Positive electrode 5 Negative electrode

Claims (6)

O含有量が0.10〜0.25質量%で、かつP含有量が0.10〜0.50質量%であり、LiTi12を主成分とすることを特徴とするチタン酸リチウム。K 2 O content is 0.10 to 0.25% by mass, P 2 O 5 content is 0.10 to 0.50% by mass, and Li 4 Ti 5 O 12 is the main component. Features lithium titanate. O含有量が0.10〜0.30質量%で、かつP含有量が0.10〜0.60質量%の酸化チタンと、水溶性のリチウム塩とを、LiとTiとの原子比が4:5となるように水中で均一に混合する工程と、該混合物を乾燥させて球状粒子を形成する工程と、該球状粒子を大気中で熱処理する工程とからなることを特徴とするチタン酸リチウムの製造方法。Titanium oxide having a K 2 O content of 0.10 to 0.30% by mass and a P 2 O 5 content of 0.10 to 0.60% by mass, a water-soluble lithium salt, Li and Ti A step of uniformly mixing in water such that the atomic ratio is 4: 5, a step of drying the mixture to form spherical particles, and a step of heat-treating the spherical particles in the air. A method for producing lithium titanate. 請求項1に記載のチタン酸リチウムを正極活物質として用いた電池用正極。  A positive electrode for a battery using the lithium titanate according to claim 1 as a positive electrode active material. 請求項1に記載のチタン酸リチウムを負極活物質として用いた電池用負極。  A negative electrode for a battery using the lithium titanate according to claim 1 as a negative electrode active material. 請求項3に記載の電池用正極、又は請求項4に記載の電池用負極を用いたリチウム二次電池。  A lithium secondary battery using the battery positive electrode according to claim 3 or the battery negative electrode according to claim 4. 請求項1に記載のチタン酸リチウムを正極活物質とし、金属Liを負極として作製したリチウム二次電池であって、充・放電試験を行った結果が1.4〜1.6Vの充・放電電圧及び150mAh/g以上の初期放電容量を有することを特徴とするリチウム二次電池。A lithium secondary battery manufactured using the lithium titanate according to claim 1 as a positive electrode active material and a metal Li as a negative electrode, and a charge / discharge test result of 1.4 to 1.6 V A lithium secondary battery having a voltage and an initial discharge capacity of 150 mAh / g or more.
JP2001076288A 2001-03-16 2001-03-16 Lithium titanate, method for producing the same, and use thereof Expired - Lifetime JP4558229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001076288A JP4558229B2 (en) 2001-03-16 2001-03-16 Lithium titanate, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001076288A JP4558229B2 (en) 2001-03-16 2001-03-16 Lithium titanate, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2002274849A JP2002274849A (en) 2002-09-25
JP4558229B2 true JP4558229B2 (en) 2010-10-06

Family

ID=18933250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001076288A Expired - Lifetime JP4558229B2 (en) 2001-03-16 2001-03-16 Lithium titanate, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4558229B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084517A (en) * 2011-10-12 2013-05-09 Taiyo Yuden Co Ltd Ceramic material, battery electrode including the same, and lithium ion secondary battery
US10759673B2 (en) 2015-03-04 2020-09-01 Ube Industries, Ltd. Lithium titanate powder including phosphorous, active material, electrode sheet, and energy storage device using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202552A (en) * 2005-01-19 2006-08-03 Sii Micro Parts Ltd Lithium cell and its manufacturing method
JP2007227072A (en) * 2006-02-22 2007-09-06 Sii Micro Parts Ltd Electrochemical cell
JP5095179B2 (en) 2006-11-10 2012-12-12 株式会社東芝 Nonaqueous electrolyte battery, lithium titanium composite oxide and battery pack
JP5644083B2 (en) * 2009-10-14 2014-12-24 株式会社豊田中央研究所 Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and method for producing negative electrode active material for lithium secondary battery
WO2011145443A1 (en) * 2010-05-18 2011-11-24 株式会社 村田製作所 Electrode active material, process for production of same, and non-aqueous electrolyte secondary battery involving same
TWI441779B (en) * 2010-12-20 2014-06-21 Ind Tech Res Inst Material of phosphorus-doped lithium titanium oxide with spinel structure and method of manufacturing the same
KR101312271B1 (en) * 2011-03-25 2013-09-25 삼성에스디아이 주식회사 Lithium titanate, negative electrode comprising the same and lithium secondary battery containing the electrode
JP5698052B2 (en) * 2011-03-30 2015-04-08 株式会社クボタ Method for producing lithium titanate, electrode, and lithium ion secondary battery
KR20120140396A (en) * 2011-06-21 2012-12-31 삼성정밀화학 주식회사 Method of preparation of electrode active materials for enhancing performance of lithium secondary batteries and lithium secondary batteries containing electrode active materials prepared by the same
JP5569980B2 (en) * 2011-12-26 2014-08-13 太陽誘電株式会社 Lithium titanium composite oxide, battery electrode using the same, and lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275263A (en) * 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of its negative electrode
JPH0714579A (en) * 1993-06-25 1995-01-17 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH0729601A (en) * 1993-07-12 1995-01-31 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2000277116A (en) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd Lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275263A (en) * 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture of its negative electrode
JPH0714579A (en) * 1993-06-25 1995-01-17 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH0729601A (en) * 1993-07-12 1995-01-31 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2000277116A (en) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084517A (en) * 2011-10-12 2013-05-09 Taiyo Yuden Co Ltd Ceramic material, battery electrode including the same, and lithium ion secondary battery
US10759673B2 (en) 2015-03-04 2020-09-01 Ube Industries, Ltd. Lithium titanate powder including phosphorous, active material, electrode sheet, and energy storage device using the same

Also Published As

Publication number Publication date
JP2002274849A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP4768901B2 (en) Lithium titanium composite oxide, method for producing the same, and use thereof
US8546018B2 (en) Li—Ni-based composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery
EP2104163B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP3691279B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4574877B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
US6045771A (en) Lithium-nickel complex oxide, a process for preparing the same and a positive electrode active material for a secondary battery
JP3130813B2 (en) Lithium nickel composite oxide, method for producing the same, and positive electrode active material for secondary battery
JP5199522B2 (en) Spinel-type lithium / manganese composite oxide, its production method and use
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JP4435926B2 (en) High crystalline lithium titanate
JP2003068305A (en) Negative material for secondary lithium battery and its manufacturing method
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
JPWO2012032709A1 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
KR101384197B1 (en) Positive active material for rechargeable, method of preparing same, and rechargeable lithium battery comprising same
JP2002313337A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery and method for manufacturing it
JPH10134811A (en) Manufacture of positive electrode material for lithium cell
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP4362004B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JP2003054952A (en) Method of producing lithium-manganese complex oxide and lithium battery obtained by using the lithium- manganese complex oxide
JP2021057226A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100721

R150 Certificate of patent or registration of utility model

Ref document number: 4558229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term