JPH07101727A - Lithium manganese double oxide, its production and application - Google Patents

Lithium manganese double oxide, its production and application

Info

Publication number
JPH07101727A
JPH07101727A JP5265539A JP26553993A JPH07101727A JP H07101727 A JPH07101727 A JP H07101727A JP 5265539 A JP5265539 A JP 5265539A JP 26553993 A JP26553993 A JP 26553993A JP H07101727 A JPH07101727 A JP H07101727A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
manganese composite
lithium manganese
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5265539A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshio
真幸 芳尾
Hideyuki Noguchi
英行 野口
Takashi Mori
隆 毛利
Hidekazu Iwata
英一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP5265539A priority Critical patent/JPH07101727A/en
Publication of JPH07101727A publication Critical patent/JPH07101727A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a lithium manganese double oxide and the producing method for secondary battery having high working voltage range, large discharge capacity and cycle stability as a positive pole material for lithium secondary battery. CONSTITUTION:The lithium manganese double oxide >=3m<2>/g in BET specific surface area, acicular in particle shape and composed of a spinel type structure is selected. The oxide is obtained by heating (to 550-850 deg.C) a mixture of gamma- MnOOH with LiNO3. The lithium secondary battery is obtained by using the lithium manganese double oxide as the positive pole.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池用リチ
ウムマンガン複合酸化物およびその製造方法並びにその
用途に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium manganese composite oxide for a lithium secondary battery, a method for producing the same and its use.

【0002】マンガン酸化物は、電池活物質として、古
くから使用されている材料であり、マンガンとリチウム
の複合物質であるリチウムマンガン複合酸化物は、近
年、リチウム二次電池用活物質として注目されている材
料である。
Manganese oxide has been used as a battery active material for a long time, and lithium manganese composite oxide, which is a composite material of manganese and lithium, has recently attracted attention as an active material for lithium secondary batteries. It is a material.

【0003】また、リチウム二次電池は、高出力、高エ
ネルギー密度な電池として、その実用化が期待されてい
る新型二次電池である。
The lithium secondary battery is a new type secondary battery which is expected to be put into practical use as a battery having high output and high energy density.

【0004】[0004]

【従来の技術】リチウム二次電池用の正極材料は、その
実用化に当たり、電池として使用する場合に高い作動
電圧領域,多い放電容量およびサイクル安定性が求
められている。
2. Description of the Related Art In practical use, a positive electrode material for a lithium secondary battery is required to have a high operating voltage range, a large discharge capacity and a cycle stability when used as a battery.

【0005】リチウムマンガン複合酸化物の中でもスピ
ネル型構造を持つリチウムマンガン複合酸化物は、放電
時に4V付近および3V付近に平坦部分のある二段放電
を示すことが知られている。この4V付近の作動電圧領
域で可逆的にサイクルさせることができれば、高いエネ
ルギーを取り出すことが期待できる。結晶構造から考え
るとスピネル型リチウムマンガン酸化物は安定でかつ結
晶構造中にリチウムイオンが移動可能な通路があること
より、サイクル安定性が期待できるために、近年、リチ
ウム二次電池用の正極材料として注目され、実用化がは
かられている。例えば、特開昭63−187569号公
報ではMn23とLi2CO3をMn:Li=2:1(モ
ル比)で混合し、650℃で6時間,850℃で14時
間空気中で焼成する方法でLiMn24を得ている。
It is known that among the lithium-manganese composite oxides, the lithium-manganese composite oxide having a spinel structure exhibits a two-stage discharge having flat portions near 4V and 3V during discharge. If reversible cycling can be performed in this operating voltage region near 4 V, high energy can be expected to be taken out. Considering the crystal structure, spinel-type lithium manganese oxide is stable, and since there is a path through which lithium ions can move in the crystal structure, cycle stability can be expected, so in recent years, positive electrode materials for lithium secondary batteries have been developed. Has been attracting attention, and is being put to practical use. For example, in JP-A-63-187569, Mn 2 O 3 and Li 2 CO 3 are mixed at Mn: Li = 2: 1 (molar ratio), and the mixture is heated in air at 650 ° C. for 6 hours and 850 ° C. for 14 hours. LiMn 2 O 4 is obtained by the firing method.

【0006】また、特開平3−127453号公報では
二酸化マンガンと硝酸リチウムをMn:Li=2.2:
1.0〜1.8:1.0(モル比)で混合し、880℃
以上1000℃以下の温度範囲で焼成する方法でリチウ
ムとマンガンからなる酸化物を得ている。
Further, in JP-A-3-127453, manganese dioxide and lithium nitrate are mixed with Mn: Li = 2.2:
Mix at 1.0-1.8: 1.0 (molar ratio), 880 ° C
An oxide composed of lithium and manganese is obtained by a method of firing in a temperature range of 1000 ° C. or lower.

【0007】前記の両方法で得られたスピネル型リチウ
ムマンガン酸化物は、いずれも正極に用いた場合には、
本発明者らの検討によれば、焼成を高温で行っているた
めに粒子の焼結反応が進み、表面積が低くなり、放電容
量が少なくなるばかりでなく、さらには、結晶性が高く
なるために、充放電時のリチウムイオン挿入・脱離に伴
う結晶格子の膨張・収縮により結晶が崩壊しやすく、サ
イクル特性も悪くなりやすい。
The spinel type lithium manganese oxide obtained by both of the above-mentioned methods, when used in the positive electrode,
According to the study by the present inventors, since the sintering reaction of the particles proceeds because the firing is performed at a high temperature, the surface area becomes low, the discharge capacity decreases, and further, the crystallinity increases. In addition, the crystals are likely to collapse due to the expansion and contraction of the crystal lattice accompanying the insertion and desorption of lithium ions during charge and discharge, and the cycle characteristics are likely to deteriorate.

【0008】また、特開平2−109260号公報に
は、硝酸マンガンとリチウム塩を200から550℃で
加熱処理して、かさ密度が大きく、かつ結晶性の低いL
iMn24を得ているが、本発明者らが検討した結果、
結晶性が低いために、4V級の正極材料として使用でき
ない。
Further, in Japanese Patent Application Laid-Open No. 2-109260, manganese nitrate and a lithium salt are heat-treated at 200 to 550 ° C. to obtain L having a large bulk density and low crystallinity.
Although iMn 2 O 4 has been obtained, as a result of examination by the present inventors,
Due to its low crystallinity, it cannot be used as a 4V class positive electrode material.

【0009】さらに、特開平3−4445号公報では、
γ−MnOOHとリチウム塩を540〜950℃で加熱
処理して、スピネル構造の発達しているリチウムマンガ
ン酸化物を得ているが、この場合、焼成時に粒子の焼結
反応が進み、表面積が低くなるために、粉砕を行う必要
があり、工業的には有利ではなく、また、本発明者の検
討によれば、前記生成物を高電流密度で充放電を行った
場合、大きな放電容量を得にくい、または、サイクル劣
化が大きなりやすいなど、満足のいくものではなかっ
た。
Further, in Japanese Patent Laid-Open No. 3-4445,
[gamma] -MnOOH and a lithium salt are heat-treated at 540 to 950 [deg.] C. to obtain a lithium manganese oxide having a developed spinel structure. In this case, the sintering reaction of particles proceeds during firing and the surface area is low. Therefore, it is necessary to pulverize, which is not industrially advantageous, and according to the study of the present inventors, when the product is charged and discharged at a high current density, a large discharge capacity is obtained. It was not satisfactory, such as difficult or easy cycle deterioration.

【0010】以上のようにスピネル型リチウムマンガン
酸化物を合成する場合には、合成条件により、高温で熱
処理をした場合には、生成物の表面積が低下するために
高い放電容量を得るのが難しい、また、低温で熱処理し
た場合には、従来法によれば生成物の結晶性が低くまた
はMn23が副生するなどして、充放電サイクルの進行
にともなって、性能が低下しやすく、現在のところ、リ
チウム二次電池用の正極材料として、高い作動電圧領
域,多い放電容量およびサイクル安定性を全て満足する
ものはスピネル型リチウムマンガン酸化物系では得られ
ていない。
In the case of synthesizing the spinel type lithium manganese oxide as described above, it is difficult to obtain a high discharge capacity because the surface area of the product is reduced when the heat treatment is performed at a high temperature depending on the synthesis conditions. In addition, when heat treatment is performed at a low temperature, according to the conventional method, the crystallinity of the product is low or Mn 2 O 3 is produced as a by-product, so that the performance tends to decrease as the charge / discharge cycle progresses. At present, as a positive electrode material for a lithium secondary battery, a material satisfying all of a high operating voltage region, a large discharge capacity and cycle stability has not been obtained with a spinel type lithium manganese oxide system.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、リチ
ウム二次電池用の正極材料として、高い作動電圧領域,
多い放電容量およびサイクル安定性もつリチウム二次電
池用リチウムマンガン複合酸化物およびその製造方法を
提供することにある。
The object of the present invention is to provide a positive electrode material for a lithium secondary battery, which has a high operating voltage range,
An object of the present invention is to provide a lithium manganese composite oxide for a lithium secondary battery, which has a large discharge capacity and cycle stability, and a method for producing the same.

【0012】さらに、このリチウムマンガン複合酸化物
を正極に用いた、高出力、高エネルギー密度なリチウム
二次電池を提供することにある。
Another object of the present invention is to provide a high-output, high-energy-density lithium secondary battery using this lithium-manganese composite oxide as a positive electrode.

【0013】[0013]

【課題を解決するための手段】本発明者らは、鋭意検討
した結果、BET比表面積が3m2/g以上で粒子形態
が針状であることを特徴とするスピネル型構造からなる
リチウムマンガン複合酸化物およびγ−MnOOHとL
iNO3との混合物を加熱処理することを特徴とするリ
チウムマンガン複合酸化物の製造方法が前記課題を解決
することを見い出し、さらに該リチウムマンガン複合酸
化物を正極に用いることにより高性能なリチウム二次電
池が得られることを見い出し、本発明を完成した。
Means for Solving the Problems As a result of intensive studies, the present inventors have made a lithium manganese composite having a spinel structure characterized by having a BET specific surface area of 3 m 2 / g or more and having a needle-like particle shape. Oxide and γ-MnOOH and L
It has been found that a method for producing a lithium-manganese composite oxide, which is characterized in that a mixture with iNO 3 is heat-treated, solves the above-mentioned problems, and by using the lithium-manganese composite oxide for a positive electrode, high-performance lithium The present invention has been completed by finding that a secondary battery can be obtained.

【0014】[0014]

【作用】以下、本発明を具体的に説明する。The present invention will be described in detail below.

【0015】本発明のリチウムマンガン複合酸化物は、
スピネル構造であり、JCPDS:No.35−782
のLiMn24と同様のX線回折パターンを示すもので
ある。
The lithium manganese composite oxide of the present invention is
It has a spinel structure, and JCPDS: No. 35-782
Shows an X-ray diffraction pattern similar to that of LiMn 2 O 4 .

【0016】さらに、本発明のリチウムマンガン複合酸
化物は粒子構造が針状である。この針状粒子であること
は、原料のγ−MnOOHの粒子形態に起因するもので
あると考えられるが、この針状粒子であるということ
が、リチウム電池の正極材料として用いた場合に電解液
および導電材との適度な接触をもたらすために高性能で
あるのではないかと推定している。
Furthermore, the lithium manganese composite oxide of the present invention has a needle-like particle structure. The acicular particles are considered to be due to the particle morphology of the raw material γ-MnOOH. The acicular particles, when used as a positive electrode material of a lithium battery, are not suitable for the electrolyte solution. It is presumed that it has high performance to bring about proper contact with the conductive material.

【0017】また、本発明のリチウムマンガン複合酸化
物はそのBET比表面積が3m2/gで以上であること
を必須とする。該比表面積が3m2/g未満であると表
面での主にLiと電子の移動が悪くなり、放電容量が少
なくなる、高エネルギー密度放電をおこなった場合に構
造破壊の原因となるなど電池性能を低下させる恐れがあ
る。
It is essential that the lithium manganese composite oxide of the present invention has a BET specific surface area of 3 m 2 / g or more. If the specific surface area is less than 3 m 2 / g, the movement of Li and electrons mainly on the surface will be poor, the discharge capacity will be reduced, and the structure will be destroyed when high energy density discharge is performed. May decrease.

【0018】前述のような本発明のリチウムマンガン複
合酸化物は以下のようにして、製造できる。
The lithium manganese composite oxide of the present invention as described above can be manufactured as follows.

【0019】まず、本発明のリチウムマンガン複合酸化
物製造で用いるγ−MnOOHは、例えば、以下の方法
で得ることができる。
First, γ-MnOOH used in the production of the lithium manganese composite oxide of the present invention can be obtained, for example, by the following method.

【0020】水酸化マンガン(Mn(OH)2)を過
酸化水素(H22)で酸化する方法。
A method of oxidizing manganese hydroxide (Mn (OH) 2 ) with hydrogen peroxide (H 2 O 2 ).

【0021】(Owen Bricker, The
American Mineral−ogist, v
ol.50, p.1296(1965)) 20℃以下の温度で、硫酸マンガン(MnSO4)と
過酸化水素の混合液にアンモニア(NH4OH)を加え
る方法。
(Owen Bricker, The
American Mineral-ogist, v
ol. 50, p. 1296 (1965)) A method of adding ammonia (NH 4 OH) to a mixed liquid of manganese sulfate (MnSO 4 ) and hydrogen peroxide at a temperature of 20 ° C. or lower.

【0022】(K.Matsuki, Electro
chimica Acta, vol.31, p.1
3(1986))前記のγ−MnOOHは針状の粒子で
ある。
(K. Matsuki, Electro
chimica Acta, vol. 31, p. 1
3 (1986)) The γ-MnOOH is acicular particles.

【0023】本発明のリチウムマンガン複合酸化物製造
で用いるLi源は、硝酸リチウム(LiNO3)である
ことを必須とする。これは、硝酸リチウムが溶融温度が
264℃および分解温度が600℃と低温であるため後
述する熱処理に対して有効であるためである。
It is essential that the Li source used in the production of the lithium-manganese composite oxide of the present invention is lithium nitrate (LiNO 3 ). This is because lithium nitrate has a low melting temperature of 264 ° C. and a decomposition temperature of 600 ° C. and is effective for the heat treatment described later.

【0024】本発明のリチウムマンガン複合酸化物の製
造では、前述のγ−MnOOHとLiNO3を混合す
る。
In the production of the lithium manganese composite oxide of the present invention, the aforementioned γ-MnOOH and LiNO 3 are mixed.

【0025】混合の比率はモル比でMn:Li=2.
0:0.8〜2.0:1.2とするのが好ましく、M
n:Li=2.0:0.9〜2.0:1.1がさらに好
ましい。混合は通常の方法でよく、両原料を乾式混合す
る、または硝酸リチウム水溶液中にγ−MnOOHを懸
濁させた後、該懸濁液を乾燥するなど均一に混合できる
方法であればよい。
The mixing ratio is Mn: Li = 2.
The ratio is preferably 0: 0.8 to 2.0: 1.2, and M
It is more preferable that n: Li = 2.0: 0.9 to 2.0: 1.1. The mixing may be carried out by an ordinary method, such as dry mixing of the two raw materials, or by suspending γ-MnOOH in an aqueous lithium nitrate solution, and then drying the suspension, so long as it can be uniformly mixed.

【0026】前記混合物を加熱処理する。本発明のリチ
ウムマンガン複合酸化物の製造ではこの加熱処理によ
り、従来法では得ることの難しかった新規なリチウムマ
ンガン複合酸化物を得ることができる。
The mixture is heat treated. In the production of the lithium-manganese composite oxide of the present invention, this heat treatment makes it possible to obtain a novel lithium-manganese composite oxide which is difficult to obtain by the conventional method.

【0027】本発明の製造方法によれば、原料のγ−M
nOOHの粒子形態を維持しつつ、LiMn24を合成
可能であり、焼成に伴う表面積の低下が少ない。
According to the manufacturing method of the present invention, the raw material γ-M
LiMn 2 O 4 can be synthesized while maintaining the particle morphology of nOOH, and the decrease in surface area due to firing is small.

【0028】本発明の熱処理は、550〜850℃で行
う。
The heat treatment of the present invention is performed at 550 to 850 ° C.

【0029】該温度が850℃より高いとBET比表面
積が低くなり、さらに生成物の粒子の焼結反応が進み、
表面積が低く、放電容量が少なくなるなど生成物の電池
性能が低下する、さらに、該温度が550℃より低いと
生成物がスピネル型の結晶構造とならない、または、結
晶性が低くなり、生成物の電池性能が低下するなど好ま
しくない。
When the temperature is higher than 850 ° C., the BET specific surface area becomes low, and the sintering reaction of the product particles further proceeds,
When the temperature is lower than 550 ° C., the product does not have a spinel type crystal structure, or the crystallinity is low, resulting in a low surface area and a low discharge capacity. It is not preferable because the battery performance is deteriorated.

【0030】前記熱処理温度は650〜750℃である
のが好ましい。
The heat treatment temperature is preferably 650 to 750 ° C.

【0031】本発明では、前記熱処理温度で処理する途
中、最終処理温度より低い、次の温度で処理する多段熱
処理とするのが好ましい。
In the present invention, it is preferable to use a multi-step heat treatment in which the treatment is performed at the following temperature lower than the final treatment temperature during the treatment at the heat treatment temperature.

【0032】 1段目: 260±10℃ ,1〜50時間 2段目: 300〜500℃ ,1〜50時間 最 終: 550〜850℃ ,1〜50時間 前記各段階での温度については、以下のように推定して
いる。
First stage: 260 ± 10 ° C., 1 to 50 hours Second stage: 300 to 500 ° C., 1 to 50 hours Final stage: 550 to 850 ° C., 1 to 50 hours Regarding the temperature at each stage, It is estimated as follows.

【0033】すなわち、1段目の260±10℃,1〜
50時間の熱処理においてLi源であるLiNO3が融
解する。ついで、2段目の300〜500℃,1〜50
時間の熱処理でLi,MnおよびOからなる複合酸化物
を形成し、最終的に650〜850℃,1〜50時間の
熱処理でスピネル型リチウムマンガン複合酸化物が生成
するものと推定している。
That is, the first stage 260 ± 10 ° C., 1 to
LiNO 3, which is the Li source, melts during the heat treatment for 50 hours. Then, the second stage 300-500 ℃, 1-50
It is presumed that a complex oxide composed of Li, Mn, and O is formed by heat treatment for an hour, and finally a spinel-type lithium manganese complex oxide is formed by heat treatment at 650 to 850 ° C. for 1 to 50 hours.

【0034】前記多段熱処理は、連続して熱処理しても
よく、単独に各温度で行ってもよい。又、前記多段熱処
理を行う場合、各温度で熱処理後、混合するのが均一性
を向上させるために好ましく、連続して熱処理する場合
には、ロータリーキルンなどを用いればよい。
The multi-step heat treatment may be a continuous heat treatment or may be performed individually at each temperature. In the case of performing the multi-step heat treatment, it is preferable to mix after the heat treatment at each temperature in order to improve the uniformity, and in the case of continuously performing the heat treatment, a rotary kiln or the like may be used.

【0035】前記保持時間が1時間未満では、熱処理に
より均一のものを得ることが難しくなり、50時間より
長くするのは、効果がなく経済的ではない。
If the holding time is less than 1 hour, it becomes difficult to obtain a uniform product by heat treatment, and making it longer than 50 hours is not effective and economical.

【0036】本発明で熱処理を行う場合の昇降温速度は
1時間当たり10〜500℃程度から適時選択すれば良
い。
When the heat treatment is performed in the present invention, the temperature raising / lowering rate may be appropriately selected from about 10 to 500 ° C. per hour.

【0037】本発明では、上記熱処理をおこなった後も
粒子形状は変わらず、さらに粉砕などをおこなわなくて
も、BET比表面積は3m2/g以上である。このこと
は製造工程で生成物の結晶構造に歪または欠陥が生じ難
く、性能のよいリチウム二次電池用材料となると推定し
ている。
In the present invention, the particle shape does not change even after the above heat treatment, and the BET specific surface area is 3 m 2 / g or more without further pulverization. It is presumed that this is a material for lithium secondary batteries with which the crystal structure of the product is less likely to be distorted or defective in the manufacturing process and has good performance.

【0038】前記のようにして製造した該リチウムマン
ガン複合酸化物を用いてリチウム二次電池を作製する。
A lithium secondary battery is produced using the lithium manganese composite oxide produced as described above.

【0039】本発明のリチウム二次電池で用いる負極に
は、金属リチウム又はリチウムを吸蔵放出可能な物資を
用いる。例えば、金属リチウム、リチウム/アルミニウ
ム合金、リチウム/スズ合金、リチウム/鉛合金、電気
化学的にリチウムイオンをドープ脱ドープする炭素系材
料が例示される。
For the negative electrode used in the lithium secondary battery of the present invention, metallic lithium or a material capable of inserting and extracting lithium is used. Examples thereof include metallic lithium, lithium / aluminum alloys, lithium / tin alloys, lithium / lead alloys, and carbon-based materials that are electrochemically doped and dedoped with lithium ions.

【0040】また、本発明のリチウム二次電池で用いる
電解質としては、特に制限されないが、例えば、カーボ
ネート類、スルホラン類、ラクトン類、エーテル類等の
有機溶媒中にリチウム塩を溶解したものや、リチウムイ
オン導電性の固体電解質を用いることができる。
The electrolyte used in the lithium secondary battery of the present invention is not particularly limited, but for example, one obtained by dissolving a lithium salt in an organic solvent such as carbonates, sulfolanes, lactones and ethers, A lithium ion conductive solid electrolyte can be used.

【0041】本発明の、リチウムマンガン複合酸化物を
用いて、図1に示す3極式セルを構成した。
The lithium manganese composite oxide of the present invention was used to construct the three-electrode cell shown in FIG.

【0042】図中において、1:試験極ホルダー、2:
試験極、3:参照極、4:対極、5:容器を示す。
In the figure, 1: test pole holder, 2:
Test electrode, 3: reference electrode, 4: counter electrode, and 5: container.

【0043】[0043]

【実施例】以下実施例を述べるが、本発明はこれに限定
されるものではない。
EXAMPLES Examples will be described below, but the present invention is not limited thereto.

【0044】なお、本発明の実施例及び比較例における
X線回折パターンは、以下の条件で測定した。
The X-ray diffraction patterns in Examples and Comparative Examples of the present invention were measured under the following conditions.

【0045】 測定機種 :マックサイエンス社 MXP−3 照射X線 :Cu Kα線 測定モード :ステップスキャン スキャン条件:毎秒0.04度 計測時間 :3秒 測定範囲 :2θとして5度から80度 実施例1 『スピネル型リチウムマンガン複合酸化物の合成』実施
例1として、スピネル型リチウムマンガン複合酸化物を
以下の方法で合成した。
Measurement model: Mac Science MXP-3 irradiation X-ray: Cu Kα ray Measurement mode: Step scan Scan condition: 0.04 degrees per second Measurement time: 3 seconds Measurement range: 5 degrees to 80 degrees as 2θ Example 1 [Synthesis of Spinel Type Lithium Manganese Composite Oxide] As Example 1, a spinel type lithium manganese composite oxide was synthesized by the following method.

【0046】γ−MnOOH(東ソー株式会社製、以下
東ソー社製γ−MnOOHと略記す。)5.5gと硝酸
リチウム2.16gを乳鉢で混合した後、空気雰囲気で
以下の〜の条件で熱処理した。
After mixing 5.5 g of γ-MnOOH (manufactured by Tosoh Corporation, hereinafter abbreviated as γ-MnOOH manufactured by Tosoh Corporation) with 2.16 g of lithium nitrate in a mortar, heat treatment was performed in an air atmosphere under the following conditions. did.

【0047】 昇温:室温から260℃まで2.5時間 保持:260℃,24時間 昇温:260℃から450℃まで2.0時間 保持:450℃,24時間 昇温:450℃から650℃まで2.0時間 保持:650℃,24時間 降温:650℃から室温まで6.5時間 図2および表1に得られた化合物のX線回折パターンお
よび組成分析およびBET比表面積測定の結果を示し
た。
Temperature increase: 2.5 hours from room temperature to 260 ° C. Hold: 260 ° C., 24 hours Temperature increase: 2.0 hours from 260 ° C. to 450 ° C. Hold: 450 ° C., 24 hours Temperature increase: 450 ° C. to 650 ° C. Until 2.0 hours Hold: 650 ° C., 24 hours Cooling temperature: 650 ° C. to room temperature for 6.5 hours FIG. 2 and Table 1 show the results of X-ray diffraction pattern, composition analysis and BET specific surface area measurement of the obtained compounds. It was

【0048】[0048]

【表1】 [Table 1]

【0049】この結果より生成物は、スピネル構造であ
り、JCPDS:No.35−782のLiMn24
同様のX線回折パターンを示し、組成分析の結果より、
Li/Mn=0.5,Mnの酸化度は+3.5価であ
り、以上より生成物はスピネル構造のLiMn24であ
ると同定した。
From this result, the product has a spinel structure, and JCPDS: No. 35-782 shows an X-ray diffraction pattern similar to that of LiMn 2 O 4, and from the results of composition analysis,
Li / Mn = 0.5, the degree of oxidation of Mn was +3.5, and it was identified from the above that the product was LiMn 2 O 4 having a spinel structure.

【0050】また、BET比表面積は4.6m2/gで
あり、3m2/g以上であった。
The BET specific surface area was 4.6 m 2 / g, which was 3 m 2 / g or more.

【0051】図3に原料である東ソー社製γ−MnOO
Hおよび生成物のSEM写真を示した。この写真から明
らかな様に、原料東ソー社製γ−MnOOHおよび生成
物の粒子形状が針状であることが明かとなった。
FIG. 3 shows the raw material γ-MnOO manufactured by Tosoh Corporation.
S and SEM photographs of the product are shown. As is clear from this photograph, it was revealed that the raw material Tosoh γ-MnOOH and the product had a needle-like particle shape.

【0052】実施例2 熱処理条件を以下の〜のようにした以外は、実施例
1と同一の条件で合成した。
Example 2 Synthesis was carried out under the same conditions as in Example 1 except that the heat treatment conditions were as follows.

【0053】 昇温:室温から260℃まで2.5時間 保持:260℃,24時間 昇温:260℃から350℃まで1.0時間 保持:350℃,24時間 昇温:350℃から550℃まで2.0時間 保持:550℃,24時間 降温:550℃から室温まで5.5時間 得られた化合物は実施例1と同様にスピネル構造であっ
た。
Temperature increase: 2.5 hours from room temperature to 260 ° C Hold: 260 ° C, 24 hours Temperature increase: 1.0 hour from 260 ° C to 350 ° C Hold: 350 ° C, 24 hours Temperature increase: 350 ° C to 550 ° C Until 2.0 hours Hold: 550 ° C., 24 hours Temperature drop: 550 ° C. to room temperature for 5.5 hours The obtained compound had a spinel structure as in Example 1.

【0054】また、BET比表面積は5.5m2/gで
あり、3m2/g以上であった。
The BET specific surface area was 5.5 m 2 / g, which was 3 m 2 / g or more.

【0055】実施例3 熱処理条件の最終処理温度を700℃にする以外は、実
施例1と同一の条件で合成した。
Example 3 Synthesis was carried out under the same conditions as in Example 1 except that the final heat treatment condition was 700 ° C.

【0056】得られた化合物は実施例1と同様にスピネ
ル構造であった。
The obtained compound had a spinel structure as in Example 1.

【0057】BET比表面積は3.8m2/gであり、
3m2/g以上であった。
The BET specific surface area is 3.8 m 2 / g,
It was 3 m 2 / g or more.

【0058】比較例1 熱処理条件を以下の〜のようにした以外は、実施例
1と同一の条件で合成した。
Comparative Example 1 Synthesis was carried out under the same conditions as in Example 1 except that the heat treatment conditions were as follows.

【0059】熱処理条件 昇温:室温から900℃まで9.0時間 保持:900℃,24時間 降温:900℃から室温まで9.0時間 図2および表1に得られた化合物のX線回折パターンお
よび組成分析およびBET比表面積測定の結果を示し
た。この結果より生成物は、スピネル型リチウムマンガ
ン複合酸化物であった。
Heat treatment conditions Temperature rising: from room temperature to 900 ° C. for 9.0 hours Holding: 900 ° C., 24 hours Temperature falling: from 900 ° C. to room temperature 9.0 hours X-ray diffraction pattern of the compound obtained in FIG. 2 and Table 1. The results of composition analysis and BET specific surface area measurement are shown. From this result, the product was a spinel type lithium manganese composite oxide.

【0060】組成分析の結果より、Li/Mn=0.
5,Mnの酸化度は+3.5価であった。
From the results of the composition analysis, Li / Mn = 0.
The degree of oxidation of 5, Mn was +3.5.

【0061】また、BET比表面積は0.2m2/gで
あり、3m2/g未満であった。
The BET specific surface area was 0.2 m 2 / g, which was less than 3 m 2 / g.

【0062】実施例4 『電池性能評価』実施例1および比較例1で得られたリ
チウムマンガン複合酸化物を正極として使用し、以下の
ように3極セルを構成し、充放電特性を測定した。
Example 4 "Battery Performance Evaluation" Using the lithium manganese composite oxide obtained in Example 1 and Comparative Example 1 as a positive electrode, a three-electrode cell was constructed as follows, and the charge / discharge characteristics were measured. .

【0063】まず実施例1および比較例1の生成物と導
電剤のカーボン粉末及び結着剤のポリテトラフルオロエ
チレン粉末を、それぞれ重量比で88:7:5の割合で
混合した。この混合物75mgを2ton/cm2の圧
力で8mmφのペレットに成形した。このペレットを2
00℃で2時間減圧乾燥した後、図1の2の試験極とし
て用いて、図1の4の対極にはリチウム箔を、図1の3
の参照極には、リチウム箔から切り抜いたリチウム片を
用い、電解液には過塩素酸リチウムを1mol/dm3
濃度で溶解したプロピレンカーボネートを用いて、図1
の3極セルを構成した。
First, the products of Example 1 and Comparative Example 1, carbon powder as a conductive agent and polytetrafluoroethylene powder as a binder were mixed in a weight ratio of 88: 7: 5. 75 mg of this mixture was molded into 8 mmφ pellets at a pressure of 2 ton / cm 2 . 2 this pellet
After drying under reduced pressure at 00 ° C. for 2 hours, it was used as the test electrode of 2 in FIG. 1, and lithium foil was used as the counter electrode of 4 of FIG.
As a reference electrode, a lithium piece cut out from a lithium foil was used, and lithium perchlorate was used as an electrolyte at 1 mol / dm 3
Figure 1 using propylene carbonate dissolved at a concentration
A three-electrode cell was constructed.

【0064】上記方法で構成した3極セルについて、
0.5mAの一定電流で、参照極に対する試験極の電極
電位が、3.5Vから4.5Vの範囲で充放電を行っ
た。
Regarding the three-pole cell constructed by the above method,
Charging / discharging was performed at a constant current of 0.5 mA, with the electrode potential of the test electrode relative to the reference electrode being in the range of 3.5V to 4.5V.

【0065】図4に実施例1の1サイクル目の放電容量
を100とした場合の実施例1および比較例1の放電容
量維持率を示した。
FIG. 4 shows the discharge capacity retention ratios of Example 1 and Comparative Example 1 when the discharge capacity in the first cycle of Example 1 was 100.

【0066】実施例1では50サイクル目で1サイクル
目の80%以上の容量を保持したのに対して、比較例1
では、1サイクル目で実施例1より放電容量が少なく、
かつ放電容量維持率も実施例1より小さく、サイクル特
性が悪かった。
In Example 1, the capacity of 80% or more in the first cycle was maintained at the 50th cycle, whereas in Comparative Example 1
In the first cycle, the discharge capacity was smaller than that in Example 1,
Moreover, the discharge capacity retention ratio was smaller than that of Example 1, and the cycle characteristics were poor.

【0067】[0067]

【発明の効果】以上述べてきたとおり、本発明により、
リチウム二次電池用の正極材料として、高い作動領域,
多い放電容量およびサイクル安定性もつリチウム二次電
池用リチウムマンガン複合酸化物およびその製造方法を
提供することでき、さらに、このリチウムマンガン複合
酸化物を正極に用いた、高出力、高エネルギー密度なリ
チウム二次電池を構成可能になる。
As described above, according to the present invention,
As a positive electrode material for lithium secondary batteries, high operating range,
It is possible to provide a lithium-manganese composite oxide for a lithium secondary battery, which has a large discharge capacity and cycle stability, and a method for producing the same. A secondary battery can be configured.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例及び比較例で構成した電池の実施態様を
示す断面図である。図中、 1:正極用リード線 2:正極集電用メッシュ 3:正極 4:セパレーター 5:負極 6:負極集電用メッシュ 7:負極用リード線 8:容器 を示す。
FIG. 1 is a cross-sectional view showing an embodiment of a battery constituted by an example and a comparative example. In the figure, 1: lead wire for positive electrode 2: mesh for collecting positive electrode 3: positive electrode 4: separator 5: negative electrode 6: mesh for collecting negative electrode 7: lead wire for negative electrode 8: container

【図2】実施例1及び比較例1の生成物のX線回折図を
示す。
FIG. 2 shows X-ray diffraction patterns of the products of Example 1 and Comparative Example 1.

【図3】原料東ソー社製γ−MnOOH及び実施例1の
生成物の粒子構造を示す写真である。
FIG. 3 is a photograph showing the particle structure of the raw material Tosoh γ-MnOOH and the product of Example 1.

【図4】実施例1の1サイクル目の放電容量を100と
したときの実施例1及び比較例1の放電容量維持率を示
す。
FIG. 4 shows the discharge capacity retention ratios of Example 1 and Comparative Example 1 when the discharge capacity in the first cycle of Example 1 is 100.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】BET比表面積が3m2/g以上で粒子形
態が針状であることを特徴とするスピネル型構造からな
るリチウムマンガン複合酸化物。
1. A lithium-manganese composite oxide having a spinel structure, which has a BET specific surface area of 3 m 2 / g or more and an acicular particle shape.
【請求項2】γ−MnOOHとLiNO3との混合物を
加熱処理することを特徴とする請求項1に記載のリチウ
ムマンガン複合酸化物の製造方法。
2. The method for producing a lithium-manganese composite oxide according to claim 1, wherein a mixture of γ-MnOOH and LiNO 3 is heat-treated.
【請求項3】請求項2に記載のリチウムマンガン複合酸
化物の製造方法において、加熱処理温度が550℃〜8
50℃の範囲であることを特徴とするリチウムマンガン
複合酸化物の製造方法。
3. The method for producing a lithium-manganese composite oxide according to claim 2, wherein the heat treatment temperature is 550 ° C. to 8 ° C.
A method for producing a lithium-manganese composite oxide, which is in the range of 50 ° C.
【請求項4】請求項1に記載のリチウムマンガン複合酸
化物を正極に用いることを特徴とするリチウム二次電
池。
4. A lithium secondary battery, wherein the lithium manganese composite oxide according to claim 1 is used for a positive electrode.
JP5265539A 1993-09-30 1993-09-30 Lithium manganese double oxide, its production and application Pending JPH07101727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5265539A JPH07101727A (en) 1993-09-30 1993-09-30 Lithium manganese double oxide, its production and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5265539A JPH07101727A (en) 1993-09-30 1993-09-30 Lithium manganese double oxide, its production and application

Publications (1)

Publication Number Publication Date
JPH07101727A true JPH07101727A (en) 1995-04-18

Family

ID=17418535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5265539A Pending JPH07101727A (en) 1993-09-30 1993-09-30 Lithium manganese double oxide, its production and application

Country Status (1)

Country Link
JP (1) JPH07101727A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744381A1 (en) * 1995-05-24 1996-11-27 BASF Magnetics GmbH Lithium and manganese (III/IV) containing spinels
JPH11102703A (en) * 1997-09-26 1999-04-13 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JP2014205617A (en) * 2014-06-12 2014-10-30 東ソー株式会社 Manganese oxide and method for producing lithium manganate using the same
CN106276852A (en) * 2016-08-10 2017-01-04 玉灵华科技有限公司 A kind of electrochemical oxidation generator for preparing quantum carbon element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744381A1 (en) * 1995-05-24 1996-11-27 BASF Magnetics GmbH Lithium and manganese (III/IV) containing spinels
JPH11102703A (en) * 1997-09-26 1999-04-13 Asahi Chem Ind Co Ltd Nonaqueous secondary battery
JP2014205617A (en) * 2014-06-12 2014-10-30 東ソー株式会社 Manganese oxide and method for producing lithium manganate using the same
CN106276852A (en) * 2016-08-10 2017-01-04 玉灵华科技有限公司 A kind of electrochemical oxidation generator for preparing quantum carbon element

Similar Documents

Publication Publication Date Title
JP3181296B2 (en) Positive electrode active material and non-aqueous secondary battery containing the same
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
JP2000058059A (en) Positive-electrode active material for lithium secondary battery and its manufacture
JPH111324A (en) Platy nickel hydroxide particle, its production and production of lithium-nickel complex oxide particle using the nickel hydroxide particle as raw material
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2001114521A (en) Trimanganese tetraoxide and method for its production
JPH10324521A (en) Lithium-manganese multiple oxide, its production and its use
JP3651022B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JPH07101727A (en) Lithium manganese double oxide, its production and application
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JPH06275276A (en) Manufacture of spinel limn2o4 with high surface area and its application to nonaqueous battery
JPH0797216A (en) Lithium manganese compound oxide, its production and its use
JPH11317225A (en) Positive active material for lithium secondary battery and its manufacture
JP4320808B2 (en) Lithium manganese oxide having spinel structure, method for producing the same, and use thereof
JP2002231246A (en) Positive electrode active maerail for nonaqueous electrolyte secondary battery and method of manufacturing the same
JPH06295724A (en) Manufacture of lithium manganate for lithium secondary battery
JP2002343356A (en) Lithium manganese double oxide particle, its manufacturing method and secondary battery
JP2797526B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JPH1173960A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and the nonaquoues electrolyte secondary battery
JP3135545B2 (en) Lithium secondary battery and method of manufacturing the same
JP3818753B2 (en) Method for producing lithium manganese composite oxide for non-aqueous lithium secondary battery
JP2002338247A (en) Lithium manganese based compound oxide particle, manufacturing method therefor and secondary battery
JPH10130025A (en) Production of lithium-manganese double oxide having spinel structure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224