JPH038322A - Vapor growth apparatus and growth controlling method - Google Patents

Vapor growth apparatus and growth controlling method

Info

Publication number
JPH038322A
JPH038322A JP14209989A JP14209989A JPH038322A JP H038322 A JPH038322 A JP H038322A JP 14209989 A JP14209989 A JP 14209989A JP 14209989 A JP14209989 A JP 14209989A JP H038322 A JPH038322 A JP H038322A
Authority
JP
Japan
Prior art keywords
gas
pipe
reducer
tube
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14209989A
Other languages
Japanese (ja)
Inventor
Masaaki Takarada
正昭 宝田
Tomotaka Marui
智敬 丸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14209989A priority Critical patent/JPH038322A/en
Publication of JPH038322A publication Critical patent/JPH038322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate switching of material gas in contact with a crystalline board and to prevent generation of a vortex by connecting an upper end closed short straight tube to the vertical tube of a reactor through a reducer to couple a feed tube to the side obliquely upward, and partly providing a deformed part. CONSTITUTION:An upper end closed short straight tube 13 is connected to the vertical tube 15 of a reactor 1 through a reducer 14. A feed tube 11 is connected to the side of the tube 13 obliquely upward, and the part is pressed by a pressing unit 12 to be deformed. A crystalline board 2 is placed on a susceptor 3 in the reactor 1, gas is introduced from above, and the susceptor 3 is rotated while discharging it from a discharge port 5. When material gas 17 and carrier gas 18 are fed through a mixing chamber 16, gas flow in the tube 15 is spirally turned or straightly fed (layer flow). The introduced gas flow is straightened without vortex due to magnitude of the deformation of the tube 11, regulation of gas flowing speed, etc. When the gas is switched, front and rear gases are not mixed, and the switching is facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は、薄膜を成長させるため、特に化合物半導体の
気相成長装置および気相成長制御方法にf!llするも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention is particularly applicable to a compound semiconductor vapor phase growth apparatus and vapor phase growth control method for growing thin films. It is something that I will do.

〔従来の技術1 化合物半導体の気相成長装置(MOCVD装置)は、有
機金属と水素化合物との混合ガスを、所定温度に加熱し
た結晶基板上で反応1分解させ、薄膜結晶を成長させる
装置である。この装置は結晶の成長速度の制御性、操作
の単純性及び量産性等に優れている。
[Conventional technology 1 A compound semiconductor vapor phase growth device (MOCVD device) is a device that grows a thin film crystal by decomposing a mixed gas of an organic metal and a hydrogen compound on a crystal substrate heated to a predetermined temperature. be. This apparatus has excellent controllability of crystal growth rate, simplicity of operation, and mass productivity.

このような気相成長装置の一例を第6図に示した6反応
器l内に、結晶基板2を保持するサセプタ3が設置され
ている。サセプタ3は、回転自在に支持されている。反
応g31は上部に反応ガス供給口4を有し、下部に反応
ガス排出口5を有し、また反応器lの外周部には、結晶
基板2を加熱するための誘導加熱装置8が設けられてい
る。
An example of such a vapor phase growth apparatus is shown in FIG. 6, in which a susceptor 3 holding a crystal substrate 2 is installed in six reactors l. The susceptor 3 is rotatably supported. The reaction g31 has a reaction gas supply port 4 at the top and a reaction gas discharge port 5 at the bottom, and an induction heating device 8 for heating the crystal substrate 2 is provided on the outer periphery of the reactor l. ing.

結晶成長させるべき原料ガスを含む反応ガスは供給口4
から反応器l内に導入され、結晶基板2の表面で反応、
分解し結晶が成長する。
The reaction gas containing the raw material gas for crystal growth is supplied through the supply port 4.
is introduced into the reactor l, reacts on the surface of the crystal substrate 2,
It decomposes and crystals grow.

レーザや発光ダイオードなどの半導体装置を製造するに
は5組成の異なる複数の結晶を積層して成長させること
が必要である。この場合1組成の異なる結晶の界面にお
いて異なる材料の混在層を生じないようにしなければ、
良好な特性をもつ半導体を製造することができない、つ
まり、結晶基板に供給する異なる反応ガスが混合しない
ように切換えて結晶基板に供給しなければならない。
In order to manufacture semiconductor devices such as lasers and light emitting diodes, it is necessary to stack and grow a plurality of crystals having five different compositions. In this case, if we do not create a mixed layer of different materials at the interface of crystals with different compositions,
It is not possible to manufacture a semiconductor with good characteristics; in other words, the different reaction gases supplied to the crystal substrate must be switched and supplied to the crystal substrate so that they do not mix.

しかし、従来の装置では、ガス導入部に渦流を生じ、反
応器内のガスは不整流となる。この不整流のために、導
入ガスの神類を変更しても結晶基板上に供給されるガス
はシャープに切換えることができない。
However, in the conventional apparatus, a vortex is generated in the gas introduction part, and the gas in the reactor becomes irregularly flowed. Because of this non-rectification, even if the type of introduced gas is changed, the gas supplied onto the crystal substrate cannot be sharply switched.

特開昭63−318734はこの問題を解決するために
ガス導入部に切換ガスの供給口を別に設け、2F重のガ
スの混合を防止する工夫をしている。しかし、未だ完全
とはいえない。
In order to solve this problem, Japanese Patent Application Laid-Open No. 63-318734 provides a separate switching gas supply port in the gas inlet to prevent mixing of 2F heavy gases. However, it is still not perfect.

一方、本発明肖らはさきに管路に螺旋気流を生成させ、
かつこれを制御する装置(特開昭6l−184207)
を開示している。その装置は、管路の一端にレデューサ
を取付け、このレデューサの大径端に大径の円筒を連結
し、この円筒の末端を閉鎖し、この閉鎖端に向う方向に
ガスを流入させるように、その円筒の胴部に可撓性のガ
ス送入管を連結し、このガス送入管を部分的に外径側か
ら挟圧するごとによってその断面を偏平リング状または
繭形状にできる装置である。この装置によれば、管路に
螺旋気流を生成させると共にその流れを任意に制御する
ことができる。
On the other hand, the present invention first generates a spiral airflow in the pipe,
and a device for controlling this (Japanese Unexamined Patent Publication No. 61-184207)
is disclosed. The device includes a reducer attached to one end of the pipe, a large-diameter cylinder connected to the large-diameter end of the reducer, the end of the cylinder closed, and gas flowing in the direction toward the closed end. This is a device in which a flexible gas feed pipe is connected to the cylindrical body, and its cross section can be shaped into a flat ring shape or a cocoon shape by partially compressing the gas feed pipe from the outer diameter side. According to this device, it is possible to generate a spiral airflow in the pipe and to control the flow as desired.

〔発明が解決しようとする課題] 本発明は、上記特開昭61−184207の技術を応用
し、結晶基板に当る原料ガスの切換を迅速にかつ完全に
行うことができ、結晶界面に混合層を生じない良好な半
導体結晶を成長させることができる気相成長装置右よび
気相成長を適切に制tBする方法を提供することを目的
とするものである。
[Problems to be Solved by the Invention] The present invention applies the technology of the above-mentioned Japanese Patent Application Laid-Open No. 61-184207 to quickly and completely switch the raw material gas that hits the crystal substrate, and forms a mixed layer at the crystal interface. It is an object of the present invention to provide a vapor phase growth apparatus capable of growing a good semiconductor crystal that does not cause oxidation, and a method for appropriately controlling vapor phase growth.

[課題を解決するための手段] 本発明は、化合物半導体の気相成長装置において、上部
反応ガス導入口にレデューサの小径端を接続し、このレ
デューサの大径端に上端閉山立設短直管を連接し、この
上端閉止部に向けて斜め上向きにガスを送入する送気管
を上記短直管胴部に結合した。送気管には短直管との結
合部近傍に偏平リング状またはまゆ形状の変形管断面部
を設けた。またこの偏平リング状またはまゆ形状断面の
部分を可撓部とし、この可撓部の送気管軸と立設短直管
軸とを含む平面内の1つの直径を、その外径側から伸縮
める方向に可撓部を押圧する押圧装置を設けてもよい。
[Means for Solving the Problems] The present invention provides a compound semiconductor vapor phase growth apparatus in which a small diameter end of a reducer is connected to an upper reaction gas inlet, and a short straight pipe is connected to a large diameter end of the reducer with a closed top end. An air supply pipe for supplying gas diagonally upward toward the upper end closing part was connected to the short straight pipe body. The air supply pipe was provided with a deformed pipe cross section in the shape of a flat ring or cocoon near the joint with the short straight pipe. In addition, this flat ring-shaped or cocoon-shaped cross section is defined as a flexible part, and one diameter in a plane including the air supply pipe axis and the vertical short straight pipe axis of this flexible part can be expanded or contracted from its outer diameter side. A pressing device may be provided to press the flexible portion in the direction.

この装置ではレデューサの小径部から、この小径部に接
合した小径部と同径の直管を装置内に垂下すると一層好
ましい。
In this device, it is more preferable that a straight pipe having the same diameter as the small diameter portion joined to the small diameter portion is suspended into the device from the small diameter portion of the reducer.

また、立設短直管の軸心に上方からP′A?4ガスを導
入する導入直管を挿入しこれを垂下すると、乱流条件下
においても層流のガス流を得ることができる。さらにこ
の導入直管をレデューサを通ってその下方まで延長する
と、ガス流を一層安定化することができる。
Also, P'A? By inserting and hanging a straight introduction pipe for introducing four gases, a laminar gas flow can be obtained even under turbulent flow conditions. Furthermore, by extending this straight inlet pipe through the reducer and below it, the gas flow can be further stabilized.

以上の何れかの装置を用い、キャリヤガスおよび反応ガ
スを送気して結晶基板上の結晶を成長させるに当り、結
晶基板上の結晶成長反応状態を例えばレーザー等によっ
て測定し、この測定値に応じて可撓送気管の押圧装置を
制御することによって所定の、4膜を得ることができる
When using any of the above devices to grow a crystal on a crystal substrate by supplying a carrier gas and a reaction gas, the state of the crystal growth reaction on the crystal substrate is measured using, for example, a laser, and the measured value is By controlling the pressing device of the flexible air pipe accordingly, a predetermined four-layer membrane can be obtained.

[作用1 第1図に示すような管15にレデューサ14を介して短
い直管I3を連接し、この短い直管13のft!!端を
閉止し、この閉止端に向かって送気管11から流体を送
ると、垂下管15内に旋回流が発生する。このとき、送
気管11の短直管13に近接する部分を外部から押圧装
置12等によって押圧して変形させると、管15内の流
動は螺旋流ないし直線流(層流)となる、この変形の強
弱、ガスの流入速度の調整等によって、結晶基板上の結
晶の成長の促進、抑制が自由に制御できる。またこのよ
うにして導入される気流は渦流を生ずることなく整流と
なり、ガスの切替を行ったとき。
[Function 1] A short straight pipe I3 is connected to the pipe 15 as shown in FIG. ! When the end is closed and fluid is sent from the air supply pipe 11 toward this closed end, a swirling flow is generated in the hanging pipe 15. At this time, when the portion of the air supply pipe 11 close to the short straight pipe 13 is pressed and deformed from the outside by a pressing device 12 or the like, the flow inside the pipe 15 becomes a spiral flow or a straight flow (laminar flow). The promotion or suppression of crystal growth on the crystal substrate can be freely controlled by adjusting the strength of the gas flow rate and the gas inflow speed. Also, the airflow introduced in this way becomes rectified without creating a vortex, and when the gas is switched.

前後のガスが混合しない。The front and rear gases do not mix.

また、本発明者らは先に特願平1−050125におい
て次の発明を提供した。すなわち、管路にレデューサを
設け、このレデューサ内軸心位置および/またはこのレ
デューサ出側の管内軸心位置に管路を流れる流体と別異
の細長の異物を同心に固定すると、レイノルズ数230
0以上の領域でも管路的流体を層流とすることができる
Further, the present inventors previously provided the following invention in Japanese Patent Application No. 1-050125. In other words, if a reducer is provided in the pipe and a slender foreign object, which is different from the fluid flowing through the pipe, is fixed concentrically at the axial center position inside the reducer and/or at the axial center position inside the pipe on the outlet side of the reducer, the Reynolds number is 230.
Even in the region of 0 or more, the pipe-like fluid can be made into a laminar flow.

本発明はこのような技術を応用して気相成長装置の結晶
基板上の結晶の成長状況を測定し、所定の厚さ、速度、
成分等になるように制(卸することができる。
The present invention applies such technology to measure the growth status of crystals on a crystal substrate of a vapor phase growth apparatus, and to measure the growth status of crystals on a crystal substrate of a vapor phase growth apparatus,
The ingredients can be controlled (and sold wholesale).

[実施例] 第1図は本発明装置の実施例の縦断面を示した。気相成
長装置本体は結晶基板2を載せて回転するサセプタを備
え、上方からガスを導入し下方の排出口5から排出する
。一端を閉止した短直管I3にレデューサ14を連接し
、レデューサの短径例を気相成長装置のガス導入口側に
連結した。また、この短径と同径の垂下管15を取りつ
けた。
[Example] FIG. 1 shows a longitudinal section of an example of the device of the present invention. The main body of the vapor phase growth apparatus includes a rotating susceptor on which a crystal substrate 2 is placed, and gas is introduced from above and discharged from an exhaust port 5 below. The reducer 14 was connected to the short straight pipe I3 with one end closed, and the short diameter of the reducer was connected to the gas inlet side of the vapor growth apparatus. Further, a hanging pipe 15 having the same diameter as this short diameter was attached.

短直管13の胴部はその閉止端に向って導入ガスを吹込
む送気管11を斜めに取付けた。この送気管11の短直
管13との連結部の近傍に一部可撓部を設け、この可撓
部に押圧装置12を取りつけた。送気管の他端はガス混
合器16に結合した。ガス混合器16は原料ガス17と
キャリアガス18とを混合し、混合気体を送気管に送る
An air supply pipe 11 for blowing inlet gas is obliquely attached to the body of the short straight pipe 13 toward its closed end. A partially flexible portion was provided near the connecting portion of the air pipe 11 with the short straight pipe 13, and the pressing device 12 was attached to this flexible portion. The other end of the air pipe was connected to a gas mixer 16. The gas mixer 16 mixes the raw material gas 17 and the carrier gas 18, and sends the mixed gas to the air pipe.

ガス供装置、押圧装置の作動により、結晶基板に当接す
るガスの量および流れを任意に変更することができる。
By operating the gas supply device and the pressing device, the amount and flow of gas that comes into contact with the crystal substrate can be arbitrarily changed.

またガスの混合を生ずることなく層流状態でガスを流す
ことができる。
Further, the gas can flow in a laminar flow state without causing gas mixing.

従って、結晶基板2上の膜厚の調整、異種ガスの混合を
生じない切替を容易に行うことができる。
Therefore, it is possible to easily adjust the film thickness on the crystal substrate 2 and to easily perform switching that does not cause mixing of different gases.

策2図は本発明の別の実施例を示し、垂下管を欠除した
ものである。この場合も第1図の例と同様に、結晶基板
上に到達するガスを自由に調節することができる。
Solution 2 Figure 2 shows another embodiment of the invention, in which the depending tube is omitted. In this case as well, as in the example shown in FIG. 1, the gas reaching the crystal substrate can be freely adjusted.

第3図はレデューサ14の中またはレデューサ14を通
過してその下方まで短管I3、レデューサ14の軸心に
細い導入直管21を挿入した例を示した。この軸心に細
長い挿入物を挿入した管系では、高いレイノルズ数にお
いても乱流とならず整流となる。このとき、細い導入直
管を原料ガスの導入路とすることができる。導入直管か
ら供給されたガスは管路の流れの中心を層流で流れ乱れ
を生じない、この中心流を結晶基板上に到達させること
によって、薄膜の調整が容易にでき、また異種膜の境界
部に混合層を生じない。
FIG. 3 shows an example in which a short pipe I3 is inserted into or below the reducer 14, and a thin straight introduction pipe 21 is inserted into the axis of the reducer 14. In a pipe system in which an elongated insert is inserted into the axis, the flow is rectified without turbulence even at high Reynolds numbers. At this time, the thin straight introduction pipe can be used as the introduction path for the raw material gas. The gas supplied from the inlet straight pipe flows in a laminar flow through the center of the pipe without causing any turbulence.By allowing this central flow to reach the crystal substrate, thin films can be easily adjusted, and different types of films can be easily adjusted. No mixed layer is generated at the boundary.

第7図は75mmの管路に中心流速16.6m/s、R
e=7.89xlO’の流れを形成し、管15内半径に
沿うの流れの変動強さを測定して示したものである。曲
!!31は押圧装置をつけない場合、曲線32は押圧装
置を調節した場合を示す、管壁近くでは、変動が同程度
であるが、押圧装置の効果により変動が管中心付近では
2/3程度におさえられているのがわかる。
Figure 7 shows a center flow velocity of 16.6 m/s in a 75 mm pipe, R
A flow of e=7.89xlO' was formed, and the strength of the flow variation along the inner radius of the pipe 15 was measured and shown. song! ! Curve 31 shows the case when no pressing device is attached, and curve 32 shows the case when the pressing device is adjusted.The fluctuation is about the same near the pipe wall, but due to the effect of the pressing device, the fluctuation is reduced to about 2/3 near the center of the pipe. I can see that you are being held back.

第1図に示す気相成長装置を用い、該装置内に空気を導
入し、結晶基板上に到達する気流の渦の発生を調査した
結果、渦の発生は格段に減少した。
Using the vapor phase growth apparatus shown in FIG. 1, air was introduced into the apparatus and the generation of vortices in the airflow reaching the crystal substrate was investigated. As a result, the generation of vortices was significantly reduced.

〔発明の効果1 本発明によれば結晶基板上到達する異種のガスが混合し
ないので、結晶界面に混合層を生じない良好な半導体結
晶を成長させることができ、その有用性は絶大である。
[Effect of the Invention 1] According to the present invention, different gases reaching the crystal substrate do not mix, so it is possible to grow a good semiconductor crystal without forming a mixed layer at the crystal interface, and its usefulness is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の縦断面図、第2図は別の実施
例の縦断面図、第3図は他の実施例の縦断面図、第4図
は原理の説明図、第5図は供給管の一部を押圧するメカ
ニズムの説明図、第6図は従来の装置の縦断面図、第7
図は管内流動のばらつきを示すグラフである。 ■−・・反応器     2・−・結晶基板3・・・サ
セプタ    4・・・反応ガス供給口5・・・反応ガ
ス排出口
Fig. 1 is a longitudinal sectional view of an embodiment of the present invention, Fig. 2 is a longitudinal sectional view of another embodiment, Fig. 3 is a longitudinal sectional view of another embodiment, and Fig. 4 is an explanatory diagram of the principle. Figure 5 is an explanatory diagram of the mechanism that presses a part of the supply pipe, Figure 6 is a vertical sectional view of the conventional device, and Figure 7
The figure is a graph showing variations in flow within the pipe. ■--Reactor 2--Crystal substrate 3--Susceptor 4--Reactive gas supply port 5--Reactive gas outlet

Claims (1)

【特許請求の範囲】 1薄膜の気相成長装置において、上部反応ガス導入口に
レデューサのその小径端を接続 し、該レデューサの大径端に上端閉止立設短直管を連接
し、該上端閉止部に向けて斜め上向きにガスを送入する
送気管を該立設短直管胴部に結合し、該送気管には該結
合部近傍に偏平リング状またはまゆ形状の変形管断面部
を設けたことを特徴とする気相成長装置。 2該気相管の変形管断面部を可撓部とし、 該気相管軸と前記立設短直管軸とを含む平面内にある該
可撓部の直径をその外径側から押縮める押圧装置を設け
たことを特徴とする気相成長装置。 3レデューサの小径端から、該小径端と同径の直管を装
置内に垂下した請求項1記載の気相成長装置。 4立設短直管の軸心に原料ガスを導入するレデューサの
小径端の直径より細い導入直管を挿入垂下したことを特
徴とする請求項1または2記載の気相成長装置。 5導入直管をレデューサを通過してその下方まで延長し
た請求項3記載の気相成長装置。 6請求項1ないし4記載の何れかの装置を用い、キャリ
ヤガスおよび反応ガスを送気して結晶基板上の結晶を成
長させるに当り、結晶基板上の結晶成長反応状態を測定
し、該測定値に応じて送気管の押圧装置を制御すること
を特徴とする成長制御方法。
[Claims] In a vapor phase growth apparatus for one thin film, a small diameter end of a reducer is connected to an upper reaction gas inlet, a short straight pipe with an upper end closed is connected to a large diameter end of the reducer, and the upper end is connected to the large diameter end of the reducer. An air supply pipe for supplying gas diagonally upward toward the closing part is connected to the vertical short straight pipe body, and the air supply pipe has a deformed pipe cross section in the shape of a flat ring or cocoon near the joint part. A vapor phase growth apparatus characterized in that: 2. A deformed tube cross section of the gas phase tube is made into a flexible portion, and the diameter of the flexible portion in a plane including the gas phase tube axis and the erected short straight tube axis is compressed from its outer diameter side. A vapor phase growth apparatus characterized by being provided with a pressing device. 2. The vapor phase growth apparatus according to claim 1, wherein a straight pipe having the same diameter as the small diameter end is suspended into the apparatus from the small diameter end of the three reducers. 3. The vapor phase growth apparatus according to claim 1 or 2, wherein an introduction straight pipe having a diameter smaller than the diameter of the small diameter end of the reducer for introducing the raw material gas is inserted and suspended at the axis of the four vertically installed short straight pipes. 5. The vapor phase growth apparatus according to claim 3, wherein the straight introduction pipe extends through the reducer and extends below the reducer. 6. Using the apparatus according to any one of claims 1 to 4 to grow a crystal on a crystal substrate by supplying a carrier gas and a reaction gas, measuring the crystal growth reaction state on the crystal substrate, and measuring the crystal growth reaction state on the crystal substrate. A growth control method characterized by controlling a pressure device of an air pipe according to a value.
JP14209989A 1989-06-06 1989-06-06 Vapor growth apparatus and growth controlling method Pending JPH038322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14209989A JPH038322A (en) 1989-06-06 1989-06-06 Vapor growth apparatus and growth controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14209989A JPH038322A (en) 1989-06-06 1989-06-06 Vapor growth apparatus and growth controlling method

Publications (1)

Publication Number Publication Date
JPH038322A true JPH038322A (en) 1991-01-16

Family

ID=15307409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14209989A Pending JPH038322A (en) 1989-06-06 1989-06-06 Vapor growth apparatus and growth controlling method

Country Status (1)

Country Link
JP (1) JPH038322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342381A (en) * 2005-06-08 2006-12-21 Jfe Steel Kk Method for producing high-tensile steel sheet having excellent ssc resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342381A (en) * 2005-06-08 2006-12-21 Jfe Steel Kk Method for producing high-tensile steel sheet having excellent ssc resistance

Similar Documents

Publication Publication Date Title
JP3193716B2 (en) Primary flow chemical vapor deposition and its equipment.
CN110534456A (en) The manufacturing method of substrate board treatment and semiconductor device
JPH0517696B2 (en)
CN101896995A (en) Thermal reactor with air-flow distribution of improvement
JPH06277480A (en) Device and method for turbulent mixing of gas
JPH07193015A (en) Gas inlet for wafer processing chamber
JP2672261B2 (en) Liquid source gas emission device for vapor deposition
FI63259B (en) SAETTING OVER ANALYSIS FOR THE PURPOSE OF SUSPENSION STRUCTURES AV ETT PULVERFORMIGT AEMNE OCH REAKTIONSGAS
JPH038322A (en) Vapor growth apparatus and growth controlling method
JPH01125923A (en) Vapor growth apparatus
JP2709182B2 (en) Vapor phase growth apparatus and vapor phase growth control method
US8079838B2 (en) Pure particle generator
JPH05144753A (en) Thin film vapor-phase growth system
JPS63150500A (en) Double cylindrical coanda spiral flow device
JP2000044385A (en) Gas rectifier
KR920016858A (en) Manufacturing apparatus and manufacturing method of sealed coated optical fiber
JPH0766130A (en) Chemical vapor deposition system
JPS63262338A (en) Coanda spiral flow controller
JP2845105B2 (en) Thin film vapor deposition equipment
JPS61180424A (en) Vapor phase epitaxial growth equipment
RU222319U1 (en) Plasmatron with a system of multichannel reagent supply and plasma volume control
CN100352761C (en) Gas phase synthetic apparatus for preparing nanometer silicon nitride powder
JPS63154522A (en) Coanda spiral flow producing device
JPS63318734A (en) Vapor growth device
JPS6195510A (en) Cvd apparatus