JPH0376193B2 - - Google Patents

Info

Publication number
JPH0376193B2
JPH0376193B2 JP60081266A JP8126685A JPH0376193B2 JP H0376193 B2 JPH0376193 B2 JP H0376193B2 JP 60081266 A JP60081266 A JP 60081266A JP 8126685 A JP8126685 A JP 8126685A JP H0376193 B2 JPH0376193 B2 JP H0376193B2
Authority
JP
Japan
Prior art keywords
particles
classification
particle size
solid particles
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60081266A
Other languages
Japanese (ja)
Other versions
JPS61242674A (en
Inventor
Hitoshi Kanda
Takeo Meguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60081266A priority Critical patent/JPS61242674A/en
Priority to GB08609394A priority patent/GB2174621B/en
Priority to FR868605538A priority patent/FR2580831B1/en
Publication of JPS61242674A publication Critical patent/JPS61242674A/en
Priority to US07/173,046 priority patent/US4782001A/en
Priority to SG62/91A priority patent/SG6291G/en
Priority to HK713/91A priority patent/HK71391A/en
Publication of JPH0376193B2 publication Critical patent/JPH0376193B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、効率よく固体粒子の分級・粉砕を行
つて、所定の粒度を有する製品を得るための分級
粉砕装置システムに関し、特に、静電荷現像用ト
ナーを効率良く製造するための分級粉砕システム
に関する。
Detailed Description of the Invention [Technical Field to Which the Invention Pertains] The present invention relates to a classification and pulverization system for efficiently classifying and pulverizing solid particles to obtain products having a predetermined particle size. This invention relates to a classification and pulverization system for efficiently producing toner for development.

〔従来の技術〕[Conventional technology]

最終製品が微細粒子であることが要求される静
電荷像現像用トナー、粉体塗料、磁性材料、高分
子材料等の製造における原料固体粒子を粉砕、分
級して最終製品を得る工程については、従来、第
2図のフローチヤートにより示される方法が一般
に採用されている。その方法は、例えば溶融混練
され、冷却後粉砕された溶融混合物の固体粒子群
を原料とした場合、固体粒子は、第1分級機に供
給されて分級され、分級された規定粒度以上の粒
子群は粉砕機に送つて粉砕された後、再度第1分
級機に循環され、この操作を繰り返し行い、ある
粒度以上の粗粉は除去し、他は第2分級機に送ら
れ、規定粒度を有する粒子群と規定粒度以下の粒
子群とに分級される、というものである。
Regarding the process of pulverizing and classifying raw material solid particles to obtain the final product in the production of electrostatic image developing toner, powder coating, magnetic material, polymeric material, etc. where the final product is required to be fine particles, Conventionally, the method shown in the flowchart of FIG. 2 has been generally adopted. In this method, for example, when solid particles of a molten mixture that has been melt-kneaded, cooled, and pulverized are used as a raw material, the solid particles are supplied to a first classifier and classified, and the classified particles having a specified particle size or more are collected. After being sent to a crusher and crushed, it is circulated again to the first classifier, and this operation is repeated to remove coarse powder of a certain particle size or more, and the others are sent to the second classifier to have a specified particle size. It is classified into a particle group and a particle group with a specified particle size or less.

そして、この従来方法の下での具体例として、
2mm以下の粒子径の固体粒子群から、所定の重量
平均粒子径(粒子径について、例えばコールタエ
レクトロニクス社(米国)製のコールタカウンタ
ーによる測定結果の表現方法であつて、重量平均
粒子径cm2表現される。以下これを単に「平均粒
径」という。)を有していて、微粉域を除いたも
の、即ち、例えば平均粒径が10〜15μmであり且
つ5μm以下の粒子の重量分布が1%以下である粒
子群を得るについては、粗粉域を除去するための
分級機構を備えた衝撃式粉砕機或いはジエツト粉
砕機等で所定の平均粉径まで粉砕し、粗粉域を除
去した後の粉砕物を分級機にかけ、今度は品粉域
を除去して所望のものを得ている。
As a specific example under this conventional method,
From a group of solid particles with a particle size of 2 mm or less, a predetermined weight average particle size (particle size is a method of expressing measurement results using a Coulter Counter manufactured by Coulter Electronics Co., Ltd. (USA), and the weight average particle size cm (hereinafter simply referred to as "average particle size"), excluding the fine powder region, that is, for example, the weight distribution of particles with an average particle size of 10 to 15 μm and 5 μm or less. In order to obtain a group of particles with a particle size of 1% or less, the particles are ground to a predetermined average diameter using an impact pulverizer or jet pulverizer equipped with a classification mechanism for removing the coarse powder region, and the coarse powder region is removed. The pulverized product is then passed through a classifier to remove the powder area to obtain the desired product.

このような従来の方法については、問題点とし
て、粗粉を除去する分級機構を備えた粉砕機によ
る処理と、微粉を除去する分級機による処理とが
別工程で行われることから工程の数が多く、操作
が複雑であることの他、長時間運転の場合は発熱
を伴つたり、粉体に避けがたい付着等が生じてし
まうことがある。また、微粉を除去する目的の分
級機については、極微粒子で成される凝集物が生
じることがあり、その除去は困難であり、その場
合かかる凝集物は最終製品に混入するところとな
り、その結果精級緻な粒度分布の製品を得ること
が難しくなるという問題もある。例えば、製品が
トナーの場合は、極微粒子の凝集物を含むトナー
はカブリ現象が発生しやすいという問題を有す
る。こうしたことから従来方式の下で精緻な粒度
分布を有する所望の製品を得ることができたにし
ても工程が繁雑になり結局コスト高のものになる
ことがけられないという問題がある。こうしたこ
とから、静電荷像現像用トナーを製造するための
装置システムにおいては、特に改善が切望されて
いる。
The problem with such conventional methods is that the process using a crusher equipped with a classification mechanism to remove coarse powder and the process using a classifier to remove fine powder are performed in separate steps, resulting in a large number of steps. In many cases, the operation is complicated, and when operated for a long time, heat may be generated and unavoidable adhesion to the powder may occur. In addition, for classifiers intended to remove fine powder, agglomerates made up of extremely fine particles may be formed, which is difficult to remove, and in such cases, such agglomerates may be mixed into the final product, resulting in Another problem is that it becomes difficult to obtain a product with a fine particle size distribution. For example, when the product is a toner, there is a problem in that a toner containing aggregates of ultrafine particles is likely to cause fogging. For this reason, even if it is possible to obtain a desired product with a precise particle size distribution using the conventional method, there is a problem in that the process becomes complicated and the cost ends up being high. For these reasons, improvements are particularly desired in the apparatus system for producing toner for developing electrostatic images.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の微細粒子製品製造方における
前述の各種問題点を解決してなるものであつて、
その目的は、精緻な粒度分布の静電荷像現像用ト
ナーを製造するための分級粉砕装置システムを提
供することにある。
The present invention solves the various problems mentioned above in the conventional method of manufacturing fine particle products, and includes:
The purpose is to provide a classification and pulverization device system for producing toner for developing electrostatic images with a precise particle size distribution.

〔発明の構成・効果〕[Structure and effects of the invention]

本発明は、溶融混合物を冷却後、粉砕により生
成した固体粒子群から、精緻な所定の粒度分布を
有する微細粒子製品(トナー)を短時間に効率的
に製造するための分級粉砕装置システムに関する
ものである。
The present invention relates to a classification and pulverization device system for efficiently producing a fine particle product (toner) having a precise, predetermined particle size distribution in a short time from solid particles produced by cooling and pulverizing a molten mixture. It is.

具体的には、本発明は、粉砕により生成した粒
径2mm以下の固体粒子群から所定粒径範囲の粒子
群を分級採取して静電荷像現像用トナーを製造す
るための分級粉砕装置システムにおいて、分級フ
エンスにより少なくと3つに分画されてなる多分
割分級域に原料供給ノズルから前記固体粒子群を
圧力導入または吸引導入して湾曲線的にコアンダ
効果により降下せしめて、第1分画域に粗粒子群
を分割捕集し、第2分画域に所定粒径範囲の粒子
群を分割捕集し、第3分画域に所定粒径以下の粒
子群を分割捕集するための多分割分級手段を具備
し、分級された粗粒子群を捕集するためのサイク
ロンを具備し、該サイクロンからの粗粒子群を粉
砕するための衝撃式粉砕手段またはジエツトを利
用した粉砕手段を具備し、該固粒子群及び粉砕さ
れた粗粒子群を該多分割分級手段に供給するため
の供給手段を具備していることを特徴とする静電
荷像現像用トナーを製造するための分級粉砕装置
システムに関するものである。
Specifically, the present invention provides a classification and pulverization device system for producing toner for developing electrostatic images by classifying and collecting particles within a predetermined particle size range from solid particles having a particle size of 2 mm or less produced by pulverization. , the solid particles are introduced under pressure or by suction from the raw material supply nozzle into a multi-division classification zone which is divided into at least three parts by a classification fence, and are caused to descend in a curved manner due to the Coanda effect, thereby forming the first fraction. A coarse particle group is divided and collected in a second division area, a particle group in a predetermined particle size range is divided and collected in a second division area, and a particle group with a predetermined particle size or less is divided and collected in a third division area. It is equipped with a multi-division classification means, a cyclone for collecting the classified coarse particles, and an impact crushing means or a crushing means using a jet for crushing the coarse particles from the cyclone. A classification and pulverization device for producing a toner for developing an electrostatic image, comprising a supply means for supplying the solid particles and the pulverized coarse particles to the multi-division classification means. It's about systems.

本発明の装置システムは、粒径2mm以下の粒子
群を原料とするものであつて、第1図はその装置
システムの概要を示すフローチヤートである。即
ち、本発明の装置システムは、原料を多分割分級
域に送つて少なくとも3種の粒径区分即ち、大粒
径区分(粗粒子群)、中粒径区分(規定内粒径の
粒子群)、そして小粒径区分(規定粒径以下の粒
子群)に分級し、大粒径区分の粒子群はサイクロ
ンで捕集し、次いで衝撃式粉砕手段またはジエツ
トを利用した粉砕手段にり粉砕し、新たに導入さ
れる原料と共に前記多分割分級域に再循環せしめ
て前記と同の分級処理にかける。中粒径区分の規
定内粒径の粒子群と小粒径区分の規定粒径以下の
粒子群は、前記多分割分級域から適宜の取り出し
手段により各個に取り出す。取り出される中粒径
区分からの粒子群は至適な粒度分布のものであつ
て、そのままトナー製品として成立するものであ
る。他方取り出される小粒径区分の粒子群は、溶
融工程に循環して再利用してもよい。
The apparatus system of the present invention uses particles having a particle size of 2 mm or less as a raw material, and FIG. 1 is a flowchart showing an overview of the apparatus system. That is, the apparatus system of the present invention sends the raw material to a multi-division classification zone and classifies it into at least three types of particle sizes, namely, a large particle size category (coarse particle group), and a medium particle size category (particle group with a specified particle size). Then, the particles are classified into small particle size categories (particle groups with a specified particle size or less), and particles in the large particle size category are collected in a cyclone, and then pulverized by an impact type pulverization means or a pulverization means using a jet. Together with the newly introduced raw material, it is recycled to the multiple classification zone and subjected to the same classification process as described above. Particle groups having particle diameters within the specified range in the medium particle size category and particles having a particle size below the specified particle size in the small particle size category are individually taken out from the multi-divided classification area by appropriate removal means. The particles from the medium particle size category that are taken out have an optimal particle size distribution and can be used as a toner product as is. On the other hand, the particles in the small particle size category that are taken out may be recycled to the melting process and reused.

前記多分割分級域を提供する手段としては、例
えば第3図又は第4図に2で全体像を示す形式の
ものを具体例の1つとして例示し得る。第3図及
び第4図において、側壁断面は51,32で示さ
れる形状を成し、底面は、長方形であつて、長手
方向に底部を底面に所定間隔で平行に固着又は嵌
着したナイフエツヂ27(または39),28
(または40)により3分画されている。湾曲壁
51のほぼ直立始点に対向する垂直壁32上の部
分に分級室に開放する原料供給ノズル26を設
け、該ノズルの底部接線を延長し下方に折り曲げ
長楕円弧を描した形のコアンダブロツク30を垂
直側壁32上に突設し、分級室上部は直立角筒形
を成し、頂壁中央に長手方向にナイフエツヂ型の
入気エツヂ29(または41)を設け、更に前記
頂壁には分級室に開口する入気管24,25を設
ける。分級エツヂ27(または39),28(ま
たは40)の位置は、多分割分級域の室の規模に
より、又、被処理原料の種類により異なる。ま
た、室底面には、それぞれの分画域に対応させて
開閉自在の手段例えばバルブ手段で室内に開口す
る排出管21,22,23を設ける。
As a specific example of the means for providing the multi-divided classification area, for example, one of the type shown as an overall image by 2 in FIG. 3 or FIG. 4 can be exemplified. In FIGS. 3 and 4, the side wall cross section has the shape shown by 51, 32, and the bottom surface is rectangular. Knife edges 27 are fixed or fitted in parallel to the bottom surface at predetermined intervals in the longitudinal direction. (or 39), 28
(or 40) and is divided into 3 fractions. A raw material supply nozzle 26 that opens into the classification chamber is provided on a portion of the vertical wall 32 opposite to the substantially upright starting point of the curved wall 51, and a Coanda block 30 is formed by extending the bottom tangent of the nozzle and bending it downward to draw an elongated arc. is provided protruding on the vertical side wall 32, and the upper part of the classification chamber forms an upright rectangular tube shape, and a knife edge type air intake edge 29 (or 41) is provided in the longitudinal direction at the center of the top wall, and furthermore, a classification chamber is provided on the top wall. Inlet pipes 24, 25 are provided that open into the chamber. The positions of the classification edges 27 (or 39) and 28 (or 40) vary depending on the size of the chamber of the multi-divided classification zone and the type of raw material to be processed. Further, on the bottom surface of the chamber, exhaust pipes 21, 22, and 23 which open into the chamber by means such as valve means, which can be opened and closed, are provided corresponding to the respective fraction areas.

分級エツヂ27(または39),28(または
40)は、エツヂ部を上方にして、室内空間に垂
直に突出するように設け、又入エツヂ29(また
は40)はエツヂ部を下方にして頂壁からじ室内
空間に垂下するうに設けるのが通常であるが、中
粒径区分の粒子群のごく限られた粒径範囲のもの
にしようする場合、分級エツヂ28と入気エツヂ
29を第4図に40,41として示すように、固
定位置はそのままにしておき、前者については立
上がり部、後者については垂下部をそれぞれ気流
の外側に来るように傾けてもよい。原料供給ノズ
ル26には通常加圧または減圧ノズルを使用し、
該ノズルを介する室内への原料の噴出供給は、原
料の種類に応じた検定曲線に従つて行う。
The classification edges 27 (or 39) and 28 (or 40) are installed so as to project vertically into the indoor space with the edge portions facing upwards, and the entry edges 29 (or 40) are installed with the edge portions facing downwards from the top wall. Normally, it is installed so that it hangs down into the indoor space, but if you want to use particles in a very limited particle size range of the medium particle size category, the classification edge 28 and the air intake edge 29 are installed as shown in Figure 4. As shown at 40 and 41, the fixed position may be left as is, and the rising portion for the former and the hanging portion for the latter may be tilted so as to be located outside the airflow. A pressurized or reduced pressure nozzle is usually used as the raw material supply nozzle 26,
The raw material is jetted and supplied into the room through the nozzle in accordance with a verification curve depending on the type of raw material.

以上のように構成してなる多分割分級域での原
料の分級操作は例えば次のようにして行う。即
ち、原料供給ノズル26から粉体原料を噴射供給
させると、コアンダ効果にり粉体はコアンダブロ
ツク30の作用と、その際流入する空気の圧力作
用とにり湾曲線35を描いて落下し、それぞれの
粒径の大小に応じて、大きい粒子(粗粒子)は流
の外側、即ち第2分画域りも遠い分級エツヂ28
の外側の第1分画域、中間の粒子(規定内粒径の
粒子)は第3分画域よりも遠い粒径分級エツヂ2
8と27の間の第2分画域、小さい粒子(規定粒
径以下の粒子)は分級エツヂ27の内側の第3分
画域に分割され、大きい粒子は排出口21より、
中間の粒子は排出口22り、小さい粒子は排出口
23よりそれぞれ排出される。
The raw material classification operation in the multi-division classification zone configured as described above is carried out, for example, as follows. That is, when powder raw material is injected and supplied from the raw material supply nozzle 26, the powder falls in a curved line 35 due to the Coanda effect and the pressure action of the air flowing in at that time. Depending on the size of each particle, large particles (coarse particles) are separated from the outside of the flow, that is, far from the second fractionation area.
The particles in the middle (particles with a specified particle size) are located in the particle size classification edge 2, which is further away from the third fractionation region.
In the second fractionation area between 8 and 27, small particles (particles with a specified particle size or less) are divided into a third fractionation area inside the classification edge 27, and large particles are separated from the discharge port 21.
The intermediate particles are discharged from the discharge port 22, and the small particles are discharged from the discharge port 23.

上の装置システムは、通常相互の機器をパイプ
手段等で連結または連係してなる一体装置システ
ムであり、そうした装置システムの好ましい例を
第5図に示す。第5図に示す一体装置システム
は、3分画分級機2(第3図又は第4図に示され
る形式のもの。詳細は先に説明のとおりであ
る。)、粉砕機3、サイクロン4、サイクロン5、
定量供給機6、振動フイーダー7、サイクロン
8、サイクロン9をパイプ手段で連結してなるも
のである。
The above device system is usually an integrated device system in which mutual devices are connected or linked by pipe means, etc., and a preferred example of such a device system is shown in FIG. The integrated device system shown in FIG. 5 includes a three-fraction classifier 2 (of the type shown in FIG. 3 or 4, the details of which are as explained above), a crusher 3, a cyclone 4, cyclone 5,
It is constructed by connecting a quantitative feeder 6, a vibrating feeder 7, a cyclone 8, and a cyclone 9 through pipe means.

この装置システムにおいて、固体粒子群で形成
されている粉体原料は、原料供給導管31を介し
て捕集サイクロン5に送られ、ついて定量供給機
6に送り込まれ、ついで振動フイーダー7を介
し、原料供給ノズル26により3分割分級機2内
に圧力噴射或いは吸引導入される。吸引導入の場
合は、システムのシール性が密には要求されない
ので好ましい。
In this equipment system, powder raw material formed of solid particles is sent to a collection cyclone 5 via a raw material supply conduit 31, then fed to a quantitative feeder 6, and then passed through a vibrating feeder 7 to a collection cyclone 5. The feed nozzle 26 pressure-injects or suctions into the three-part classifier 2 . Suction introduction is preferred because the system does not require tight sealing.

そして、3分割分級機2にり、コアンダ効果を
利用して大きい粒子(粗粒子)、中間の粒子(規
定内粒子径の粒子)、小さい粒子(規定粒径以下
の粒子)に分割される。
Then, in a three-part classifier 2, the particles are divided into large particles (coarse particles), intermediate particles (particles with a specified particle size), and small particles (particles with a specified particle size or less) using the Coanda effect.

その後、大きい粒子は、排出導管21を通つて
捕集サイクロン4に送られ、ついで衝撃式粉砕ま
たはジエツト粉砕機のごとき粉砕機3に送られて
粉砕され、原料供給導管31を介して新たに導入
される粉体原料と共に捕集サイクロン5に送ら
れ、ついで定量供給機に送られ前述と同様にして
分級処理に付される。粗粉を捕集サイクロン5で
いつたん捕集後に、粉砕機に粗粉を供給するので
粉砕条件を定常状態に維持しやすく、そのため、
過粉砕の抑制及び粉砕不足の防止等に有効であ
る。
Thereafter, the large particles are sent through a discharge conduit 21 to a collection cyclone 4 and then to a crusher 3, such as an impact crusher or a jet crusher, to be crushed and introduced anew via a raw material feed conduit 31. It is sent to the collection cyclone 5 together with the powdered raw material, and then sent to the quantitative feeder and subjected to the classification process in the same manner as described above. After the coarse powder is collected by the collecting cyclone 5, the coarse powder is supplied to the crusher, so it is easy to maintain the crushing conditions in a steady state.
It is effective in suppressing over-grinding and preventing insufficient pulverization.

これに対し、粉体原料が分級手段を経由する前
に粉砕手段により微粉砕さされる場合には、過粉
砕が生起しやすく、また所定粒度の中間の粒子群
の収率が低下しやすい。中間の粒子は、排出導管
22を介して系外に排出され捕集サイクロン9で
捕集され製品91として回収される。小さい粒子
は、排出導管23を介して系外に排出され捕集サ
イクロン8で捕集され、ついで規定外微小粉81
として回収される。
On the other hand, when the powder raw material is finely pulverized by the pulverizing means before passing through the classification means, over-pulverization tends to occur and the yield of particles in the middle of a predetermined particle size tends to decrease. The intermediate particles are discharged out of the system via the discharge conduit 22, collected by the collection cyclone 9, and recovered as a product 91. Small particles are discharged out of the system via the discharge conduit 23 and collected by the collection cyclone 8, and then treated as non-standard fine powder 81.
will be collected as.

粉砕機3には、衝撃式粉砕機又はジエツト粉砕
機が使用できる。即ち、衝撃式粉砕機としてはタ
ーボ工業社製ターボミルといつたものが挙げら
れ、ジエツトを利用した粉砕機としそては日本ニ
ユーマチツク工業社製超速ジエツトミルPJM−
I、細川ミクロン社製ミクロンジエツトといたも
のが挙げられる。また、本発明の方法における多
分割分級機には日鉄工業社製エルボージエツトと
いつたものが挙げられる。
As the crusher 3, an impact crusher or a jet crusher can be used. In other words, an example of an impact type crusher is the Turbo Mill made by Turbo Kogyo Co., Ltd., and an example of a crusher using a jet is the ultra-high speed jet mill PJM- made by Nippon Neumatic Kogyo Co., Ltd.
Examples include Micron Jet manufactured by Hosokawa Micron Co., Ltd. Further, the multi-dividing classifier used in the method of the present invention includes an elbow jet made by Nippon Steel Industries.

以上説明したように、本発明の分級粉砕装置シ
ステムは、特定の分級手段により粗粉粒子群と微
粉粒子群とを同時に除去し、粗粒子群は粉砕して
再循環させることかり、粒径2mm以下の粒子群か
らなる粉粒体から瞬時に所定の粒径範囲内のもの
であつて精緻な粒度分布を持つ粒子群を効率良く
得ることができる。更に、本発明の分級粉砕装置
システムは、工程数が少なくてすむものであるこ
とから製品コストを従来のものに比べかなり下げ
ることができる。
As explained above, the classification and pulverization device system of the present invention simultaneously removes coarse particles and fine particles using a specific classification means, and crushes and recirculates the coarse particles. A particle group having a precise particle size distribution and within a predetermined particle size range can be obtained instantly and efficiently from a granular material consisting of the following particle groups. Furthermore, since the classification and pulverization apparatus system of the present invention requires fewer steps, the product cost can be considerably reduced compared to conventional systems.

また、従来の微粉域を除去する目的の分級方式
では、極微粒子によつて構成される凝集物を除去
することが困難であるが、本発明の分級粉砕装置
システムによるとそれ等を極めて効率的にしかも
瞬時に除去することができる。
In addition, with the conventional classification method for the purpose of removing the fine powder region, it is difficult to remove aggregates made up of ultrafine particles, but the classification and crushing device system of the present invention can remove them extremely efficiently. Moreover, it can be removed instantly.

このように、本発明の分級粉砕装置システム
は、従来方式に比べ卓越した精緻な粒度分布の製
品を得ることを可能にするものであることから、
とりわけ静電荷像現像用トナー製造用に適し、本
発明の分級粉砕装置システムにより得られるトナ
ーは、複写に際してカブリ現象を生起し難く、最
大画像反射濃度が高くなる等の優れた作用効果を
もたらすものである。
As described above, the classification and pulverization system of the present invention makes it possible to obtain products with a finer particle size distribution than conventional methods.
The toner, which is particularly suitable for producing toner for developing electrostatic images, and which is obtained by the classification and pulverization apparatus system of the present invention, is resistant to fogging during copying and provides excellent effects such as a high maximum image reflection density. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置システムのフローチヤー
トであり、第2図は従来方式のフローチヤートで
ある。第3図及び第4図は固体粒子多分割分級方
法を実施するための一具体例である装置の断面図
を示す。第5図は本発明の分級粉砕装置システム
を示す一具体例の概略図である。 図中の符号の説明、1…開閉バルブ、2…固体
粒子多分割分級装置、3…粉砕機、4捕集サイク
ロン、5…捕集サイクロン、6…定量供給機、7
…振動フイーダー、8…捕集サイクロン、9…捕
集サイクロン、21,22,23…排出口、2
4,25…入口、26…原料供給ノズル、27,
28…分級エツヂ、29…入気エツヂ、30…コ
アンダブロツク、31…原料供給導管、51…湾
曲側壁、32…垂直側壁、33,34,36,3
7…入気方向、35,38…固体粒子飛散方向。
FIG. 1 is a flowchart of the apparatus system of the present invention, and FIG. 2 is a flowchart of the conventional system. FIGS. 3 and 4 show cross-sectional views of an apparatus that is a specific example for carrying out the solid particle multi-division classification method. FIG. 5 is a schematic diagram of a specific example of the classification and crushing apparatus system of the present invention. Explanation of symbols in the figure: 1...Opening/closing valve, 2...Solid particle multi-division classification device, 3...Crusher, 4 Collection cyclone, 5...Collection cyclone, 6...Quantitative feeder, 7
...Vibration feeder, 8...Collection cyclone, 9...Collection cyclone, 21, 22, 23...Discharge port, 2
4, 25... Inlet, 26... Raw material supply nozzle, 27,
28... Classifying edge, 29... Inlet edge, 30... Coanda block, 31... Raw material supply conduit, 51... Curved side wall, 32... Vertical side wall, 33, 34, 36, 3
7...Inlet direction, 35, 38...Solid particle scattering direction.

Claims (1)

【特許請求の範囲】[Claims] 1 粉砕により生成した粒径2mm以下の固体粒子
群から所定粒径範囲の粒子群を分級採取して静電
荷像現像用トナーを製造するための分級粉砕装置
システムにおいて、分級フエンスにより少なくと
も3つに分画されてなる多分割分級域に原料供給
ノズルから前記固体粒子群を圧力導入または吸引
導入して湾曲線的にコアンダ効果により降下せし
めて、第1分画域に粗粒子群を分割捕集し、第2
分画域に所定粒径範囲の粒子群を分割捕集し、第
3分画域に所定粒径以下の粒子群を分割捕集する
ための多分割分級手段を具備し、分級された粗粒
子群を捕集するためのサイクロンを具備し、該サ
イクロンからの粗粒子群を粉砕するための衝撃式
粉砕手段またはジエツトを利用した粉砕手段を具
備し、該固粒子群及び粉砕された粗粒子群を該多
分割分級手段に供給するための供給手段を具備し
ていることを特徴とする静電荷像現像用トナーを
製造するための分級粉砕装置システム。
1. In a classification and pulverization device system for producing toner for developing electrostatic images by classifying and collecting particles in a predetermined particle size range from solid particles with a particle size of 2 mm or less generated by pulverization, a classification fence is used to divide the solid particles into at least three particles. The solid particles are introduced under pressure or by suction from the raw material supply nozzle into the multi-division classification zone that has been fractionated, and are caused to descend in a curved manner due to the Coanda effect, and the coarse particles are divided and collected in the first fractionation zone. And the second
It is equipped with multi-division classification means for dividing and collecting particles in a predetermined particle size range in a fractionation area, and dividing and collecting particles in a third fractionation area with a particle size smaller than a predetermined size, and the classified coarse particles are provided. a cyclone for collecting the solid particles, and an impact crushing means or a jet-based crushing means for crushing the coarse particles from the cyclone, the solid particles and the crushed coarse particles 1. A classification and pulverization device system for producing toner for developing electrostatic images, characterized in that the system is equipped with a supply means for supplying toner to the multi-divided classification means.
JP60081266A 1985-04-18 1985-04-18 Method for grinding and classifying solid particle Granted JPS61242674A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60081266A JPS61242674A (en) 1985-04-18 1985-04-18 Method for grinding and classifying solid particle
GB08609394A GB2174621B (en) 1985-04-18 1986-04-17 Process for producing toner for developing electrostatic images and apparatus therefor
FR868605538A FR2580831B1 (en) 1985-04-18 1986-04-17 METHOD AND APPARATUS FOR PRODUCING PIGMENT POWDER FOR THE DEVELOPMENT OF ELECTROSTATIC IMAGES
US07/173,046 US4782001A (en) 1985-04-18 1988-03-28 Process for producing toner for developing electrostatic images and apparatus therefor
SG62/91A SG6291G (en) 1985-04-18 1991-02-07 Process for producing toner for developing electrostatic images and apparatus therefor
HK713/91A HK71391A (en) 1985-04-18 1991-09-05 Process for producing toner for developing electrostatic images and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60081266A JPS61242674A (en) 1985-04-18 1985-04-18 Method for grinding and classifying solid particle

Publications (2)

Publication Number Publication Date
JPS61242674A JPS61242674A (en) 1986-10-28
JPH0376193B2 true JPH0376193B2 (en) 1991-12-04

Family

ID=13741557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60081266A Granted JPS61242674A (en) 1985-04-18 1985-04-18 Method for grinding and classifying solid particle

Country Status (1)

Country Link
JP (1) JPS61242674A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791013B2 (en) * 1986-10-17 1998-08-27 キヤノン株式会社 Method and apparatus for producing triboelectric toner for developing electrostatic images
JPH04271876A (en) * 1991-02-28 1992-09-28 Nittetsu Mining Co Ltd Method for removing coarse particle of pneumatic classifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556433A (en) * 1978-06-28 1980-01-17 Nisshin Steel Co Ltd Stainless steel radiator and production thereof
US4304360A (en) * 1979-12-31 1981-12-08 International Business Machines Corporation Xerograhic toner manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556433A (en) * 1978-06-28 1980-01-17 Nisshin Steel Co Ltd Stainless steel radiator and production thereof
US4304360A (en) * 1979-12-31 1981-12-08 International Business Machines Corporation Xerograhic toner manufacture

Also Published As

Publication number Publication date
JPS61242674A (en) 1986-10-28

Similar Documents

Publication Publication Date Title
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
EP0449323A1 (en) Process for producing toner for developing electrostatic image and apparatus system therefor
EP2090381B1 (en) Air classifier
EP0417561B1 (en) Collision-type gas current pulverizer and method for pulverizing powders
JPH0619586B2 (en) Method for manufacturing toner for developing electrostatic image
JP2007275712A (en) Classifier
JPH0376193B2 (en)
JP2002361179A (en) Classifier for glass powder
US4824030A (en) Jet air flow crusher
JP2000042494A (en) Air-current classification
JP2004057843A (en) Classifier and production method of toner using the same
JPS63112627A (en) Production of toner powder
JPH01502802A (en) Method and device for improving the crushing efficiency of pressure chamber crushers
JPS63101861A (en) Method and device for manufacturing electrostatically charged image developing toner
JP3313922B2 (en) Crusher
JPH01205172A (en) Production of toner for developing electrostatic charge image
KR930004694B1 (en) Air current classifier process for preparing toner and apparatus for preparing toner
JP2704777B2 (en) Collision type air flow crusher and crushing method
JPS63101859A (en) Manufacture of electrostatically charged image developing toner
US3173620A (en) Impact mill
JPH08131870A (en) Toner pulverizing device
JPH07185383A (en) Circulation type pulverizing and classifying machine
JPH0531392A (en) Impact-type air current pulverizer and pulverization of raw material for powder
JPH09290218A (en) Dispersion mixing and air flow type classifying device
GB2221631A (en) Gravity classifier for loose material