JPS63101859A - Manufacture of electrostatically charged image developing toner - Google Patents

Manufacture of electrostatically charged image developing toner

Info

Publication number
JPS63101859A
JPS63101859A JP61246611A JP24661186A JPS63101859A JP S63101859 A JPS63101859 A JP S63101859A JP 61246611 A JP61246611 A JP 61246611A JP 24661186 A JP24661186 A JP 24661186A JP S63101859 A JPS63101859 A JP S63101859A
Authority
JP
Japan
Prior art keywords
particles
powder
particle size
classification
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61246611A
Other languages
Japanese (ja)
Inventor
Masakichi Kato
政吉 加藤
Hitoshi Kanda
仁志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61246611A priority Critical patent/JPS63101859A/en
Publication of JPS63101859A publication Critical patent/JPS63101859A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0817Separation; Classifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/086Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream
    • B07B7/0865Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream using the coanda effect of the moving gas stream

Abstract

PURPOSE:To efficiently manufacture a toner small in grain size by leading a powder raw material into a multi-division classifying area, catching it by dividing it into two of coarse power of a prescribed grain size or above, and other fie powder than said powder, crushing the coarse powder and leading it into said classifying area once again. CONSTITUTION:A powder raw material is supplied from a raw material supply nozzle 16 of a multi-division classifying area, and moved along a curved line 30 by the action of a Coanda block 26, and the action of gas from air intake ports 14, 15. Subsequently, coarse powder whose main component is a grain group of a prescribed grain size or above, and fine powder whose main component is a fine grain are classified into one partial area of a classifying edge 17, and the other partial area of the edge 17, respectively. The coarse powder is discharged from a discharge port 12 and caught, passes through a crushing process and fed to the multi-division classifying area together with the powder raw material. Also, the fine powder is discharged from a discharge port 11 and caught, classified by the second classifying means as necessary, and the fine powder of a prescribed grain size or below is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、効率よく結着樹脂を有する固体粒子の粉砕・
分級を行なって所定の粒度を有する静電荷像現像用トナ
ーを得るための製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention efficiently crushes and crushes solid particles having a binder resin.
The present invention relates to a manufacturing method for obtaining an electrostatic image developing toner having a predetermined particle size by performing classification.

〔従来の技術〕[Conventional technology]

電子写真法、静電写真法、静電印刷法の如き画像形成方
法では静電荷像を現像するためにトナーが使用される。
In image forming methods such as electrophotography, electrostatography, and electrostatic printing, toners are used to develop electrostatic images.

最終製品が微細粒子であることが要求される静電荷像現
像用トナーの製造に於ける原料固体粒子を粉砕、分級し
て最終製品を得る工程については、従来、第1O図のフ
ローチャートにより示される方法が一般に採用されてい
る。その方法は、例えば結着樹脂、着色剤、染料、顔料
または磁性体等の如き所定材料を溶融混練し、冷却して
固化させた後粉砕し、粉砕された固体粒子群を原料の粉
砕物としている。粉砕物は、第1分級手段に連続的又は
逐次供給されて分級され、分級された規定粒度以上の粗
粒子群を主成分とする粗粉体は粉砕手段に送って粉砕さ
れた後、再度第1分級手段に循環される。他の規定粒径
範囲内の粒子及び規定粒径以下の粒子を主成分とする粉
体は第2分級手段に送られ、規定粒度を有する粒子群を
主成分とする粉体と規定粒度以下の粒子群を主成分とす
る微粉体とに分級される。例えば重全平均粒径が10〜
15μm以下であり且つ5μm以下の粒子が1%重量%
以下である粒子群を得るについては、粗粉域を除去する
ための分級機構を備、えた衝撃式粉砕機或いはジェット
粉砕機等で所定の平均粒径まで粉砕して分級し、粗粉体
を除去した後の粉砕物を別の分級機にかけ、微粉体を除
去して所望の粉体を得ている。
The process of pulverizing and classifying raw material solid particles to obtain the final product in the production of electrostatic image developing toner, in which the final product is required to be fine particles, has conventionally been shown in the flowchart of Figure 1O. method is commonly adopted. The method involves melting and kneading predetermined materials such as binder resins, colorants, dyes, pigments, or magnetic materials, cooling and solidifying them, and then pulverizing them.The pulverized solid particles are used as the crushed material. There is. The pulverized material is continuously or sequentially supplied to the first classification means and classified, and the classified coarse powder mainly composed of coarse particles having a specified particle size or more is sent to the pulverization means and pulverized again. 1 is circulated to the classification means. Other powders whose main components are particles within the specified particle size range and particles below the specified particle size are sent to the second classification means, and powders whose main components are particles with the specified particle size and those whose main components are particles below the specified particle size are sent to the second classification means. It is classified into fine powder whose main components are particles. For example, the total average particle size is 10~
Particles of 15 μm or less and 1% by weight of particles of 5 μm or less
In order to obtain the following particle groups, the coarse powder is pulverized to a predetermined average particle size using an impact pulverizer or jet pulverizer equipped with a classification mechanism to remove the coarse powder region, and then classified. After removal, the pulverized material is passed through another classifier to remove fine powder and obtain the desired powder.

重量平均粒子径は例えばコールタエレクトロニクス社(
米国)製のコールタカウンターによる測定結果の表現方
法であって、重量平均粒子径で表現される。以下これを
単に「平均粒径」という。
The weight average particle diameter is determined by, for example, Coulter Electronics (
This is a method of expressing the measurement results using a Coulter Counter (manufactured in the United States), and is expressed as a weight-average particle diameter. Hereinafter, this will be simply referred to as the "average particle size."

このような方法において、粗粉体を除去する目的の(第
1)分級手段は、ある粒度以上の粒子群だけを粉砕手段
に送ることが目的である。従来の遠心力を利用した気流
分級機は、粉体の滞留時間が数分間と非常に長いため、
粗粉域を除去後に粒子群の一部が相互に凝集したり、あ
るいは粗粒子に微粒子が付着して、粗粒として再度粉砕
手段に戻されるために過粉砕が生じる傾向がある。
In such a method, the purpose of the (first) classification means for removing coarse powder is to send only particles of a certain particle size or more to the crushing means. Conventional airflow classifiers that use centrifugal force have a very long residence time of powder, several minutes.
After the coarse powder region is removed, part of the particle group may coagulate with each other, or fine particles may adhere to the coarse particles and be returned to the crushing means as coarse particles, resulting in over-grinding.

そのため粉砕効率の低下、次工程の微粉域を除去するた
めの(第2)分級手段においての収率低下の如き現象を
引きおこすという問題点がある。特に、この傾向は所定
の粒度が小さくなればなる程顕著になり、現像した際の
画像品質の低下をも起こしている。
This causes problems such as a decrease in pulverization efficiency and a decrease in yield in the (second) classification means for removing the fine powder region in the next step. In particular, this tendency becomes more pronounced as the predetermined particle size becomes smaller, and it also causes a decrease in image quality upon development.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来の静電荷像現像用トナーの製造方法に於
ける前述の各種問題点を解決してなるものであって、そ
の目的は、精緻な粒度分布を有する静電荷像現像用トナ
ーを効率良く生成する製造方法を提供することにある。
The present invention solves the various problems described above in the conventional method for producing toner for developing electrostatic images, and its purpose is to produce toner for developing electrostatic images having a precise particle size distribution. The purpose is to provide a manufacturing method that produces the product efficiently.

特に、小粒径(例えば2〜8μm)の品質の良いトナー
を効率良く製造する方法を提供することにある。
In particular, it is an object of the present invention to provide a method for efficiently producing toner of good quality and having a small particle size (for example, 2 to 8 μm).

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、粉砕により生成した結着樹脂を有す
る固体着色粒子群から所定粒径範囲の粒子群をトナーと
すべく分級採取する静電荷像現像用トナーの製造方法に
おいて、気流中における粒子の慣性力及びコアンダ効果
による湾曲気流の遠心力によって少な(とも2つに分画
されてなる多分割分級域に前記固体着色粒子群を導入し
て第1分画域に微細粒子を主成分とする細粉体を分割捕
集し、第2分画域に所定粒径以下上の粗粒子群を主成分
とする粗粉体を分割捕集し、粗粉体は粉砕工程に供給し
た後、該多分割分級域に導入することを特徴とする静電
荷像現像用トナーの製造方法を提供することにある。
That is, the present invention provides a method for producing a toner for developing an electrostatic image, in which a group of particles in a predetermined particle size range is classified and collected from a group of solid colored particles having a binder resin produced by pulverization in order to form a toner. The solid colored particles are introduced into the multi-division classification zone which is divided into two by the centrifugal force of the curved airflow due to the inertial force and the Coanda effect, and the first fractionation zone is made up of fine particles as the main component. The fine powder is divided and collected, and the coarse powder mainly composed of coarse particles with a predetermined particle size or less is collected in the second fractionation area, and the coarse powder is supplied to the pulverization process. It is an object of the present invention to provide a method for producing a toner for developing an electrostatic image, which is characterized in that the toner is introduced into a multi-divided classification zone.

本発明の方法は、粉砕物を原料とするものであって、第
1図はその方法の概要を示すフローチャートである。即
ち、本発明の方法は、原料をコアンダ効果を応用した多
分割分級域に送って少なくとも2種の粒径区分即ち、小
粒径区分(微細粒子を主成分とする細粉体)、そして大
粒径区分(規定粒径以上の粒子を主成分とする粗粉体)
に分級し、大粒径区分の粒子群は適宜の粉砕手段により
粉砕し、新たに導入される原料と共に前記多分割分級域
に再循環せしめて前記と同様の分級処理にかける。小粒
径区分の粒子群は、前記多分割分級域から適宜の取り出
し手段により取り出す。そして、必要に応じて第2の分
級手段により、所定粒径以下の粒子群を主成分とする微
粉体を分割除去し、所定内粒径の粒度分布をもつ粒子群
とする。この粒子群がトナーとして使用可能である。
The method of the present invention uses pulverized material as a raw material, and FIG. 1 is a flow chart showing an overview of the method. That is, in the method of the present invention, the raw material is sent to a multi-division classification zone that applies the Coanda effect, and is classified into at least two particle size categories, namely, the small particle size category (fine powder mainly composed of fine particles) and the large particle size category. Particle size classification (coarse powder whose main component is particles larger than the specified particle size)
The particles in the large particle size category are pulverized by an appropriate pulverizing means, and are recycled together with the newly introduced raw material to the multi-division classification zone where they are subjected to the same classification process as described above. The particles in the small particle size category are taken out from the multi-division classification zone by an appropriate taking out means. Then, if necessary, the second classification means divides and removes the fine powder whose main component is a particle group having a predetermined particle size or less, to form a particle group having a particle size distribution of a predetermined inner particle size. This particle group can be used as a toner.

分級される粉体の真比重は約0.5〜2、好ましくは0
.6〜1.7であることが分級効率の上で好ましい。
The true specific gravity of the powder to be classified is about 0.5 to 2, preferably 0.
.. 6 to 1.7 is preferable from the viewpoint of classification efficiency.

前記コアンダ効果を応用した多分割分級域を提供する手
段として、例えば、第2図(断面図)及び第3図(立体
図)に示す方式の多分割分級機を具体例の1つとして例
示し得る。第2図及び第3図において、側壁は22.2
4で示される形状を有し、下部壁は25で示される形状
を有し、下部壁25にはナイフエッチ型の分級エッヂ1
7を具備し、この分級エッヂ17により、分級ゾーンは
2分画されている。側壁22下の部分に分級室に開口す
る原料供給ノズル16を設け、該ノズルの底部接線の延
長方向に対して下方に折り曲げて長楕円弧を描いたコア
ンダブロック26を設ける。分級室上部壁27は、分扱
室下部方向にナイフエッチ型の人気エッヂ19を具備し
、更に分級室上部には分級室に開口する人気管14. 
15を設けである。また、人気管14. 15にはダン
パの如き第1.第2気体導入調節手段20゜21及び静
圧計28. 2’!を設けである。分級エッヂ17及び
入気エッヂ19の位置は、被分級処理原料の種類により
、又所望の粒径により異なる。また、分級室底面にはそ
れぞれの分画域に対応させて、室内に開口する排出口1
1.12を設けである。排出口11. 12には、それ
ぞれバルブ手段の如き開閉手段を設けてもよい。
As a means for providing a multi-segment classification area applying the Coanda effect, for example, a multi-segment classifier of the system shown in FIG. 2 (cross-sectional view) and FIG. 3 (3-dimensional view) is illustrated as one specific example. obtain. In Figures 2 and 3, the side wall is 22.2
The lower wall has the shape shown at 25, and the lower wall 25 has a knife-etched classification edge 1.
7, and the classification zone is divided into two by this classification edge 17. A raw material supply nozzle 16 opening into the classification chamber is provided below the side wall 22, and a Coanda block 26 is provided which is bent downward in the direction of extension of the bottom tangent of the nozzle to draw an elongated arc. The upper wall 27 of the classification chamber is provided with a knife-etched edge 19 toward the bottom of the classification chamber, and furthermore, at the top of the classification chamber, there is a tube 14 that opens into the classification chamber.
15 is provided. Also popular tube 14. 15 has the first damper-like structure. Second gas introduction adjustment means 20°21 and static pressure gauge 28. 2'! This is provided. The positions of the classification edge 17 and the air intake edge 19 vary depending on the type of raw material to be classified and the desired particle size. In addition, on the bottom of the classification chamber, there are 1 discharge ports opening into the chamber corresponding to each fractionation area.
1.12 is provided. Discharge port 11. 12 may each be provided with an opening/closing means such as a valve means.

原料供給ノズル16は直角筒部と角錘筒部とから成り直
角筒部の内径と角錘筒部の最も狭まった箇所の内径の比
を20:l乃至1:1.好ましくはlO:1から2:l
に設定すると、良好な導入速度が得られる。
The raw material supply nozzle 16 consists of a right-angled cylinder part and a square cylinder part, and the ratio of the inner diameter of the right-angle cylinder part to the inner diameter of the narrowest part of the square cylinder part is 20:1 to 1:1. Preferably lO:1 to 2:l
Setting it to gives good introduction speed.

以上のように構成してなる多分割分級域での分級操作は
例えば次のようにして行なう。
For example, the classification operation in the multi-division classification area configured as described above is performed as follows.

原料供給ノズル16から粉体原料を供給させると、コア
ンダ効果により粉体はコアンダブロック26の作用と、
その際流入する空気の如き軍律の作用とにより湾曲線3
0を描いて移動し、それぞれの粒径の大小に応じて、大
きい粒子(粗粒子)は気流の外側、すなわち分級エッヂ
17の外側の分画、小さい粒子(規定粒径以下の粒子)
は分級エッヂ17の内側の分画に分割され、大きい粒子
は排出口12より小さい粒子は排出口11よりそれぞれ
排出される。
When powder raw material is supplied from the raw material supply nozzle 16, the powder is affected by the action of the Coanda block 26 due to the Coanda effect.
At that time, due to the action of military law such as the inflowing air, the curved line 3
0, and depending on the size of each particle, large particles (coarse particles) are fractionated outside the airflow, that is, outside the classification edge 17, and small particles (particles with a specified particle size or less)
The particles are divided into fractions inside the classification edge 17, and large particles are discharged from the discharge port 12, and smaller particles are discharged from the discharge port 11, respectively.

上述の方法を実施するには、通常相互の機器をパイプの
如き連通手段等で連結してなる一体装置システムを使用
するのが通常であり、そうした装はの好ましい例を第4
図に示す。第4図に示す一体装置は、2分割分級機2(
第2図又は第3図に示される形式のもの。詳細は先に説
明のとおりである。)、粉砕手段51.捕集サイクロン
4、捕集サイクロン5、定量供給機9、振動フィーダー
3、捕集サイクロン8を連通手段で連結してなるもので
ある。
To carry out the above-mentioned method, it is usual to use an integrated equipment system in which mutual equipment is connected through communication means such as pipes, and a preferred example of such equipment is shown in the fourth example.
As shown in the figure. The integrated device shown in Fig. 4 consists of a two-part classifier 2 (
Those of the type shown in Figure 2 or Figure 3. The details are as explained above. ), crushing means 51. A collection cyclone 4, a collection cyclone 5, a quantitative feeder 9, a vibration feeder 3, and a collection cyclone 8 are connected by a communication means.

この装置において、いわゆる粉砕物原料は、開閉バルブ
7を備えた原料供給導管31を介して捕集サイクロン8
に送られ、ついで定量供給機9に送り込まれ、ついで振
動フィーダー3を介し、原料供給ノズル16により2分
割分級機l内に導入される。
In this device, the so-called pulverized raw material is passed through a collection cyclone 8 through a raw material supply conduit 31 equipped with an on-off valve 7.
The raw material is then fed into the quantitative feeder 9, and then introduced into the two-divided classifier 1 via the vibrating feeder 3 through the raw material feed nozzle 16.

導入に際しては、捕集サイクロン4及び/又は5の吸引
力を利用して粉砕物を2分割分級機1内に吸引導入し得
る。吸引導入の場合は、システムのシール性が加圧式導
入より、も厳密には要求されないので好ましい。吸引導
入に際しては、粒子の比重および粒径によって変動する
が、通常50〜200m/秒の流速で2分割分級機l内
に粉砕物を導入すると、分級精度および分級効率の点で
好ましい。分級機2の分級域を構成する大きさは通常[
10〜50cm]X [10〜50cm]なので、粉砕
物は0.1〜0.01秒以下の瞬時に2種以上の粒子群
に分級し得る。そして、2分割分級機lにより、大きい
粒子(粗粒子)、小さい粒子(規定粒径以下の粒子)に
分割される。
At the time of introduction, the pulverized material can be introduced into the two-part classifier 1 by suction using the suction force of the collection cyclones 4 and/or 5. Suction introduction is preferred because the sealing properties of the system are less stringently required than pressure introduction. Although the suction introduction varies depending on the specific gravity and particle size of the particles, it is preferable to introduce the pulverized material into the two-part classifier 1 at a flow rate of usually 50 to 200 m/sec in terms of classification accuracy and efficiency. The size of the classification area of classifier 2 is usually [
10 to 50 cm] Then, the particles are divided into large particles (coarse particles) and small particles (particles with a specified particle size or less) by a two-part classifier 1.

その後、大きい粒子は、排出導管1乏を通って捕集サイ
クロン5に送られ、ついで粉砕手段51に送られて粉砕
され原料供給導管31を介して新たに導入される粉体原
料と共に捕集サイクロン7に送られ、ついで定量供給機
に送られ前述と同様にして分級処理に付される。
Thereafter, the large particles are sent through the discharge conduit 1 to the collection cyclone 5 and then to the crushing means 51 where they are crushed together with the powder raw material newly introduced via the raw material supply conduit 31. 7, and then to a quantitative feeder where it is subjected to classification processing in the same manner as described above.

小さい粒子は、排出導管11を介して系外に排出され捕
集サイクロン4で捕集され、微細粒子粉41として回収
される。回収された微細粒子粉41は必要に応じて第2
の分級手段により所定粒径以下の微粒子粉を除去される
Small particles are discharged out of the system via the discharge conduit 11, collected by the collection cyclone 4, and recovered as fine particle powder 41. The collected fine particle powder 41 is transferred to the second
Fine particle powder having a predetermined particle size or less is removed by the classification means.

捕集サイクロン4,5は粉砕原料をノズル16を介して
分級域に吸引導入するための吸引減圧手段としての働き
もしている。
The collection cyclones 4 and 5 also function as suction and pressure reduction means for suctioning and introducing the pulverized raw material into the classification zone through the nozzle 16.

粉砕手段51には、衝撃式粉砕機、ジェット粉砕機等が
使用できる。即ち、衝撃式粉砕機としてはターボ工業社
製ターボミルといったものが挙げられ、ジェットを利用
した粉砕機としては日本ニューマチック工業社製超音速
ジェットミルPJM−1,線用ミクロン社製ミクロンジ
ェットといったものが挙げられる。また、本発明の方法
における多分割分級機としては、8鉄鉱業社製エルボー
ジェットの如き手段が挙げられる。
As the crushing means 51, an impact crusher, a jet crusher, etc. can be used. That is, examples of impact-type crushers include Turbo Mill made by Turbo Kogyo Co., Ltd.; examples of crushers using jets include supersonic jet mill PJM-1 made by Nippon Pneumatic Kogyo Co., Ltd., and Micron Jet made by Micron Co., Ltd. for wire use. can be mentioned. Further, as the multi-division classifier in the method of the present invention, means such as Elbow Jet manufactured by 8 Iron Mining Co., Ltd. can be mentioned.

本発明の方法は、分級域での滞留時間がほとんど無いた
め、従来の粗粉域を除去するための分級機で見られたよ
うな凝集物が生じ難(、粉砕機に−はある規定粒度以上
の粗大粒子だけが送られるため、粉砕機の負荷が少なく
、粉砕効率が非常に良好であり、過粉砕を引き起こさな
い。そのため必要に応じて次いで行なわれる微粉域を除
去することも非常に効率よく行、なうことができ、分級
収率を良好に上げることができる。特にこの傾向は所定
の粒度が小さければ小さい程顕著である。
Since the method of the present invention has almost no residence time in the classification zone, it is difficult to produce agglomerates like those seen in conventional classifiers for removing coarse particles (the crusher has a certain specified particle size). Since only the coarse particles above are sent, the load on the crusher is small and the crushing efficiency is very good, and over-grinding does not occur.Therefore, the subsequent removal of the fine powder area as necessary is also very efficient. It can be carried out well and the classification yield can be improved satisfactorily.This tendency is particularly noticeable as the predetermined particle size becomes smaller.

例えば、平均粒径約5μm(粒径2.5μm以下の粒子
を10重1%含有し、粒径10.0μm以上の粒子の含
有率は0.1重量%以下である)の粉体を得ようとする
場合、開閉バルブ7より導入される粉砕原料の粒径を粒
径10.0μm以下の粒子の含有量が50重量%以下の
ものとし、定常運転時の各分画域における単位時間当り
の粒子通過量は第1分画域における単位時間当りの通過
量を1重量部とすると第2分画域における単位時間当り
の通過量を0.05〜50重量部に好ましくは、0.5
〜10重量部なるように分級・粉砕条件を調整すること
が分級効率及び過粉砕を防ぐ上でより好ましい。
For example, a powder with an average particle size of about 5 μm (10% by weight of particles with a particle size of 2.5 μm or less is contained, and the content of particles with a particle size of 10.0 μm or more is 0.1% by weight or less) is obtained. When the particle size of the pulverized raw material introduced through the on-off valve 7 is such that the content of particles with a particle size of 10.0 μm or less is 50% by weight or less, the The amount of particles passing through the first fractionation zone is 1 part by weight per unit time, and the amount passing through the second fractionation zone is 0.05 to 50 parts by weight, preferably 0.5 parts by weight.
It is more preferable to adjust the classification and pulverization conditions so that the amount is 10 parts by weight in terms of classification efficiency and prevention of over-pulverization.

静電荷像現像用トナーは通常スチレン系樹脂、スチレン
−アクリル樹脂、又はポリエステル系樹脂、着色剤(又
は/及び磁性材料)、オフセット防止剤、荷電制御剤等
の原料を溶融混練した後、冷却、粉砕、分級を行なうこ
とにより製造される。この際、混線工程において各原料
を均一分散された溶融物を得ることが困難なため、粉砕
された粉砕物中には、トナー粒子として不適な粒子(例
えば、着色剤または磁性粒子を有していないもの或は各
種素原料単独粒子)が混在しているが、過粉砕によって
生じる極微細粒子では、前記成分の偏析が太き(、従来
の遠心力を利用した気流分級機を用いた方法では、粉砕
分級過程において過粉砕された極微細粒子が生じ易いと
ともに、生じた極微細粒子を完全に除去することが困難
であったためトナーの特性を低下させていた。本発明の
方法は分級域での滞留時間がほとんど無いため精緻な粒
度分布の粒子群に分級が行なわれるので、前記過粉砕さ
れた極微細粒子を生じ難いため、均一成分の粒子であり
、かつ(必要に応じて行なわれる第2分級後)精緻な粒
度分布の製品を効率良く得ることができる。この結果本
発明の方法によって得られるトナーは、トナー粒子間ま
たはトナーとスリーブ、トナーとキャリアの如きトナー
担持体との間の摩擦帯電量が安定である。従って従来、
充分には解決できなかった現像カブリや3、潜像のエッ
チ周辺へのトナーの飛び散りが極めて少ない画像が得ら
れる。さらに極微細粒子がないため、クリーニング性も
良いという特性を本発明の方法で得られたトナーは有し
ている。
Toner for developing electrostatic images is usually prepared by melting and kneading raw materials such as styrene resin, styrene-acrylic resin, or polyester resin, colorant (or magnetic material), anti-offset agent, and charge control agent, and then cooling and kneading the raw materials. Manufactured by crushing and classifying. At this time, it is difficult to obtain a molten material in which each raw material is uniformly dispersed in the crosstalk process, so the pulverized material may contain particles unsuitable as toner particles (for example, containing colorants or magnetic particles). However, in the ultrafine particles produced by over-pulverization, the segregation of the above components is large (in contrast, in the conventional method using an air classifier that uses centrifugal force) However, in the pulverization and classification process, over-pulverized ultrafine particles are likely to be generated, and it is difficult to completely remove the generated ultrafine particles, which deteriorates the characteristics of the toner.The method of the present invention Because there is almost no residence time, classification is performed into particle groups with a precise particle size distribution. (after 2nd classification) A product with a fine particle size distribution can be efficiently obtained.As a result, the toner obtained by the method of the present invention has no particles between toner particles or between a toner and a sleeve or a toner carrier such as a toner and a carrier. The amount of triboelectric charge is stable.Therefore, conventionally,
It is possible to obtain an image in which development fog, which could not be solved satisfactorily, and toner scattering around the etch of the latent image are extremely small. Furthermore, since there are no ultrafine particles, the toner obtained by the method of the present invention has good cleaning properties.

以下、実施例に基づいて本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on Examples.

実施例1 上記処方の混合物よりなるトナー原料を約180℃で約
1.0時間溶融混練後、冷却して固化し、ハンマーミル
で100〜1000μmの粒子に粗粉砕し、次いでホソ
カワミクロン社製ACMパルベライザにより平均粒径3
0μmの粉砕物に粉砕した。得られた粉砕物を毎分0.
4kgの量でコアンダ効果を利用して分級するために第
5図及び第6図に示す多分割分級装置lであるエルボ−
ジェットEJ−5−3型機(8鉄鉱業社製)に導入した
Example 1 A toner raw material consisting of a mixture of the above formulation was melt-kneaded at about 180° C. for about 1.0 hours, cooled and solidified, coarsely ground into particles of 100 to 1000 μm in a hammer mill, and then crushed in an ACM pulverizer manufactured by Hosokawa Micron. The average particle size is 3
It was ground to a powder of 0 μm. The obtained pulverized material is processed at 0.00 m/min.
In order to classify a 4 kg amount using the Coanda effect, an elbow which is a multi-segment classification device shown in Figs. 5 and 6 is used.
It was introduced into a jet EJ-5-3 model (manufactured by 8 Iron Mining Co., Ltd.).

導入に際しては、排出口11. 12. 13に連通し
ている捕集サイクロン4,5及び6の吸引減圧による系
内の減圧から派生する吸引力によって粉砕物を約100
m7秒の流速で供給ノズル16に導入し、人気口14上
部の静圧P1を一28℃m m a q 、人気口15
上部の静圧P2を60 m m a qに調節した。導
入された粉砕物は0.01秒以下の瞬時に分級された。
At the time of introduction, the discharge port 11. 12. Approximately 100 ml of crushed material is collected by the suction force derived from the reduced pressure in the system by the suction reduced pressure of collection cyclones 4, 5, and 6 connected to 13.
It was introduced into the supply nozzle 16 at a flow rate of m7 seconds, and the static pressure P1 above the popular port 14 was -28°C m m aq, the popular port 15
The static pressure P2 at the top was adjusted to 60 m m aq. The introduced pulverized material was instantly classified within 0.01 seconds.

分級された細粉体を捕集する捕集サイクロン4には平均
粒径10.5μm(粒径20.2μm以上の粒子の含有
量は0.1重量%以下であり、実質的に含有していない
とみなしつる)の粒子群が得られ、これを第2分級機(
日本ニューマチツク工業社製気流分縁桟DS−5UR)
に導入し、微細粒子を除外し、平均粒径11.5μm(
粒径5.04μm以下の粒子を0.5重重%含有)の粒
子群とした。得られた粒子群をトナーとして使用し、疎
水性シリカ0.3重量%を混合して現像剤を調製し、複
写機NP−270(キャノン製)に調製した現像剤を供
給して複写試験を行なったところカブリのない細線現像
性の良好な複写画像が得られた。またこのときトナーと
して使用される粉体が分級収率80重量%で得られた。
The collection cyclone 4 that collects the classified fine powder has an average particle size of 10.5 μm (the content of particles with a particle size of 20.2 μm or more is 0.1% by weight or less, and is substantially free of particles. A particle group of particles is obtained, which is passed through the second classifier (
Airflow divider DS-5UR manufactured by Nippon Pneumatics Industry Co., Ltd.)
The average particle size was 11.5 μm (
A particle group containing 0.5% by weight of particles with a particle size of 5.04 μm or less was used. Using the obtained particle group as a toner, a developer was prepared by mixing 0.3% by weight of hydrophobic silica, and the prepared developer was supplied to a copying machine NP-270 (manufactured by Canon) for a copying test. When this was carried out, a copied image with good fine line developability and no fog was obtained. At this time, powder used as a toner was obtained with a classification yield of 80% by weight.

ここでいう分級収率とは供給された粉砕物原料の全1に
対しての第2分級後、最終的に得られたトナーとして使
用される粒体の量との比率をさしている。
The classification yield here refers to the ratio of the amount of granules used as the toner finally obtained after the second classification to the total amount of the supplied pulverized raw material.

また、分級された粗粉体は捕集サイクロン5及び6に捕
集され、粉砕機51及び52(日本ニューマチック工業
社製の超音速ジェットミルPJM−1−5)に導入して
粉砕した。粉砕された粉体は原料供給導管31に供給し
、多分割分級機1に循環させた。
Further, the classified coarse powder was collected by collecting cyclones 5 and 6, and introduced into crushers 51 and 52 (supersonic jet mill PJM-1-5 manufactured by Nippon Pneumatic Industries Co., Ltd.) to be crushed. The pulverized powder was supplied to the raw material supply conduit 31 and circulated to the multi-dividing classifier 1.

このとき、第1分面域11における単位時間当りの通過
量を1重量部とすると第2分面域12.第3分画域13
における単位時間当りの通過量はそれぞれ1.5重量部
、0.1重量部であった。
At this time, if the amount of passage per unit time in the first partial area 11 is 1 part by weight, then the second partial area 12. 3rd fractional area 13
The amounts passed per unit time were 1.5 parts by weight and 0.1 parts by weight, respectively.

比較例1 実施例1と同様にして得た粉砕物を第10図に示す如く
構成された分級システムで分級した。平均粒径30μm
粉砕物を毎分0.4Kgの量で、第1分級機(DS−5
UR)に導入し、分級された粗粉体を粉砕機(PJMI
−5)に導入して粉砕後第1分級機に循環した。第1分
級機で分級された細粉体を第2分級機(DS−5UR)
に導入し分級した。得られた粉体は、体積平均粒径約1
2μmを有し分級収率70重量%で得られた。
Comparative Example 1 A pulverized product obtained in the same manner as in Example 1 was classified using a classification system configured as shown in FIG. Average particle size 30μm
The pulverized material is passed through the first classifier (DS-5) at a rate of 0.4 kg per minute.
UR) and the classified coarse powder is transferred to a pulverizer (PJMI).
-5), and after pulverization, it was circulated to the first classifier. The fine powder classified by the first classifier is transferred to the second classifier (DS-5UR).
It was introduced and classified. The obtained powder has a volume average particle size of approximately 1
2 μm and a classification yield of 70% by weight.

得られた粉体をトナーとして使用し、疎水性シリカ0.
3重量%を混合して現像剤を調製し、複写機NP−27
0(キャノン製)に調製した現像剤を供給して複写試験
をおこなったところ実施例1で得られた複写画像よりも
カブリが多(、またクリーニング性も悪かった。
The obtained powder was used as a toner, and hydrophobic silica 0.
A developer was prepared by mixing 3% by weight, and a developer was prepared using a copying machine NP-27.
When a copying test was carried out by supplying a developer prepared at 0.0 (manufactured by Canon), there was more fog (and cleaning performance was poorer) than in the copied image obtained in Example 1.

実施例2 実施例1と同様にして平均粒径15μmの粉体物を調製
し、実施例1と同様に第5図及び第6図に示す多分割分
級装置1であるエルボ−ジェットEJ−5−3型機に導
入した。このときエルボ−ジェットEJ−5−3型機は
分級エツジ18を側壁24に密着させ、排出口13を閉
じ、第2図、第3図及び第4図に示した2分割分級装置
の如く使用した。その結果、平均粒径7μm(粒径40
0μm以下の粒子を1.0ffiffi%含有し、粒径
12.7μm以上の粒子の含有量は0.1重量%以下で
ある)の粉体を分級収率78重量%で得られた。
Example 2 A powder material having an average particle size of 15 μm was prepared in the same manner as in Example 1, and was used in the same manner as in Example 1 using Elbow-Jet EJ-5, which is the multi-division classification device 1 shown in FIGS. 5 and 6. -Introduced on the 3rd model aircraft. At this time, the Elbow Jet EJ-5-3 type machine brings the classification edge 18 into close contact with the side wall 24, closes the discharge port 13, and uses it as a two-part classification device shown in Figs. 2, 3, and 4. did. As a result, the average particle size was 7 μm (particle size 40
A powder containing 1.0 ffiffi% of particles with a diameter of 0 μm or less and a content of particles with a particle size of 12.7 μm or more was 0.1% by weight or less was obtained at a classification yield of 78% by weight.

このとき、第1分画域における単位時間当りの通過1を
1重量部とすると第2分画域における単位時間当りの通
過1は1.5重量部であった。
At this time, if the passage 1 per unit time in the first fractionation zone was 1 part by weight, the passage 1 per unit time in the second fractionation zone was 1.5 parts by weight.

実施例3 実施例1と同様にして平均粒径10μmの粉砕物を調製
し、実施例2と同様にして粉砕物の分級粉砕を行なった
(但し、第2分級は行なわず、多分割分級機で得た細粉
体をトナーとした)。その結果、平均粒径5μm(粒径
2.52μm以下の粒子を10重1%含有し、粒径10
.0μm以上の粒子の含有率は0.1重量%以下である
)の粉体を分級収率75重量%で得られた。
Example 3 A pulverized product with an average particle size of 10 μm was prepared in the same manner as in Example 1, and the pulverized material was classified and pulverized in the same manner as in Example 2 (however, the second classification was not performed, and a multi-division classifier was used. The fine powder obtained was used as a toner). As a result, the average particle size was 5 μm (containing 1% by weight of particles with a particle size of 2.52 μm or less,
.. The content of particles of 0 μm or more was 0.1% by weight or less) with a classification yield of 75% by weight.

比較例2 実施例3と同様にして平均粒径lOμmに粉砕物を調製
し、比較例1と同様(但し、第2分級を除く)にして平
均粒通約5μmの粉体を生成したところ分級収率が50
%であった。また粒径2.52μm以下の粒子の含有率
は15重量%と多くなった。
Comparative Example 2 A pulverized product was prepared in the same manner as in Example 3 to have an average particle diameter of 10 μm, and a powder with an average particle diameter of approximately 5 μm was produced in the same manner as in Comparative Example 1 (excluding the second classification). Yield is 50
%Met. Furthermore, the content of particles with a particle size of 2.52 μm or less increased to 15% by weight.

このように、所定の粒径が小さくなる程、分級収率にお
いて本発明の実施例と比較例とに差が大きくなる傾向が
あった。
As described above, the smaller the predetermined particle size, the larger the difference in classification yield between the Examples of the present invention and the Comparative Examples tended to be.

尚、本実施例では3つに分画するコアンダ効果を利用し
た分級機を用いたが、請求の範囲に記したように少なく
とも2つ以上に分画するコアンダ効果を利用した多分割
分級機でも良い。
In this example, a classifier using the Coanda effect that divides into three parts was used, but as stated in the claims, a multi-part classifier that uses the Coanda effect to divide into at least two parts may also be used. good.

また、本方法で用いるコアンダ効果を利用した多分割分
級機への粉砕品の導入方法としては第7図及び第8図、
第9図に示したような方法でも良いが第7図に示した導
入方法は高圧下のフィード方法であり定量供給機9及び
振動フィーダー3は、大気圧よりも0.5〜2気圧加圧
された筒中に内包されておリ、エアー配管102より加
圧エアー101を定量供給機9、振動フィーダー3から
送り込む構成になっており、加圧エアーとともに粉砕品
を多分割分級機lへ導入する方法である。
Additionally, Figures 7 and 8 show how to introduce the pulverized product into the multi-division classifier using the Coanda effect used in this method.
Although the method shown in Fig. 9 may be used, the introduction method shown in Fig. 7 is a feeding method under high pressure, and the quantitative feeder 9 and the vibration feeder 3 are pressurized by 0.5 to 2 atm above atmospheric pressure. It is configured such that pressurized air 101 is sent from an air piping 102 to a quantitative feeder 9 and a vibration feeder 3, and the crushed product is introduced into a multi-division classifier 1 together with the pressurized air. It's a method.

第8図及び第9図に示した導入方法はエアーインジェク
ション手段を用いる方法であり、エアーインジェクショ
ン手段111により粉砕品はエアー101と混合されか
つ良好に分散されて粉体捕集手段112に導かれた後、
送り込まれた加圧エアーの一部とともに多分割分級機1
へ導入される。
The introduction method shown in FIGS. 8 and 9 is a method using an air injection means, in which the pulverized product is mixed with the air 101 by the air injection means 111, well dispersed, and guided to the powder collection means 112. After
Multi-division classifier 1 along with a part of the pressurized air sent in
will be introduced to

分散性の良好な本実施例で示した方法または第8図、第
9図に示したような方法がより好ましい。
The method shown in this example or the method shown in FIGS. 8 and 9 is more preferable since it provides good dispersibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法のフローチャートであり、第2図
及び第3図は本発明の固体粒子多分割分級方法を実施す
るための1具体例である装置の断面図を示す。第4図は
本発明の方法を実施するための分級装置システムを示す
概略図である。 第5図及び第6図は実施例で用いた装置の断面図及び分
級装置システムを示す概略図である。第7図及び第8図
及び第9図は粉砕品の導入方法の変形例を示す概略図で
ある。第1O図は従来方式のフローチャート図である。 l・・・固体粒子多分割分級装置、 3・・・振動フィーダー、 4.5,6.8・・・捕集サイクロン、9・・・定量供
給機、    11,12.13・・・排出口、14.
15・・・人気口、   16・・・原料供給ノズル、
17、 18・・・分級エッヂ、19・・・入気エッヂ
、26・・・コアンダブロック、 22,23.24・
・・側壁、25・・・下部壁、     27・・・上
部壁、20・・・第1気体導入調節手段、 21・・・第2気体導入調節手段、 28、 29・・・静圧計、   30・・・固体粒子
飛散方向、31・・・原料供給導管、  51.52・
・・粉砕手段。
FIG. 1 is a flow chart of the method of the present invention, and FIGS. 2 and 3 are cross-sectional views of an apparatus that is a specific example for carrying out the method of multiple division classification of solid particles of the present invention. FIG. 4 is a schematic diagram showing a classifier system for carrying out the method of the present invention. FIG. 5 and FIG. 6 are a cross-sectional view of the apparatus used in the example and a schematic diagram showing the classifier system. FIG. 7, FIG. 8, and FIG. 9 are schematic diagrams showing modified examples of the method of introducing the pulverized product. FIG. 1O is a flow chart diagram of the conventional method. 1...Solid particle multi-division classification device, 3...Vibration feeder, 4.5, 6.8...Collection cyclone, 9...Quantitative feeder, 11,12.13...Discharge port , 14.
15...Popular port, 16...Raw material supply nozzle,
17, 18... Classification edge, 19... Inlet edge, 26... Coanda block, 22, 23. 24.
...Side wall, 25...Lower wall, 27...Upper wall, 20...First gas introduction adjustment means, 21...Second gas introduction adjustment means, 28, 29...Static pressure gauge, 30 ... solid particle scattering direction, 31 ... raw material supply conduit, 51.52.
...Crushing means.

Claims (1)

【特許請求の範囲】[Claims] (1)粉砕により生成した結着樹脂を有する固体着色粒
子群から所定粒径範囲の粒子群をトナーとすべく分級採
取する静電荷像現像用トナーの製造方法において、気流
中における粒子の慣性力及びコアンダ効果による湾曲気
流の遠心力によって少なくとも2つに分画されてなる多
分割分級域に前記固体着色粒子群を導入して第1分画域
に微細粒子を主成分とする細粉体を分割捕集し、第2分
画域に所定粒径以上の粗粒子群を主成分とする粗粉体を
分割捕集し、粗粉体は粉砕工程に供給した後、該多分割
分級域に導入することを特徴とする静電荷像現像用トナ
ーの製造方法。
(1) In a method for producing a toner for electrostatic charge image development, in which a group of particles in a predetermined particle size range are classified and collected from a group of solid colored particles having a binder resin produced by pulverization to form a toner, the inertial force of the particles in an air flow Then, the solid colored particles are introduced into a multi-division classification zone which is divided into at least two by the centrifugal force of the curved airflow due to the Coanda effect, and a fine powder mainly composed of fine particles is introduced into the first division zone. The coarse powder mainly composed of coarse particles having a predetermined particle size or more is divided and collected in the second fractionation zone, and the coarse powder is supplied to the pulverization process and then transferred to the multi-division classification zone. 1. A method for producing a toner for developing an electrostatic image, the method comprising: introducing toner for developing an electrostatic image.
JP61246611A 1986-10-17 1986-10-17 Manufacture of electrostatically charged image developing toner Pending JPS63101859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61246611A JPS63101859A (en) 1986-10-17 1986-10-17 Manufacture of electrostatically charged image developing toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61246611A JPS63101859A (en) 1986-10-17 1986-10-17 Manufacture of electrostatically charged image developing toner

Publications (1)

Publication Number Publication Date
JPS63101859A true JPS63101859A (en) 1988-05-06

Family

ID=17150981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246611A Pending JPS63101859A (en) 1986-10-17 1986-10-17 Manufacture of electrostatically charged image developing toner

Country Status (1)

Country Link
JP (1) JPS63101859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284374A (en) * 1988-05-09 1989-11-15 Nisshin Steel Co Ltd Classifying device
JPH01318406A (en) * 1988-06-20 1989-12-22 Nippon Jidosha Denwa Service Kk Non-grounded ultrashort wave antenna
JPH02207877A (en) * 1989-02-07 1990-08-17 Nittetsu Mining Co Ltd Method for classifying air current and air current classifier with this method utilized therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556433A (en) * 1978-06-28 1980-01-17 Nisshin Steel Co Ltd Stainless steel radiator and production thereof
JPS5842057A (en) * 1981-09-08 1983-03-11 Konishiroku Photo Ind Co Ltd Preparation of electrostatic image developing toner
JPS59101654A (en) * 1982-12-03 1984-06-12 Toshiba Corp Manufacture of electrophotographic toner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556433A (en) * 1978-06-28 1980-01-17 Nisshin Steel Co Ltd Stainless steel radiator and production thereof
JPS5842057A (en) * 1981-09-08 1983-03-11 Konishiroku Photo Ind Co Ltd Preparation of electrostatic image developing toner
JPS59101654A (en) * 1982-12-03 1984-06-12 Toshiba Corp Manufacture of electrophotographic toner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284374A (en) * 1988-05-09 1989-11-15 Nisshin Steel Co Ltd Classifying device
JPH01318406A (en) * 1988-06-20 1989-12-22 Nippon Jidosha Denwa Service Kk Non-grounded ultrashort wave antenna
JPH02207877A (en) * 1989-02-07 1990-08-17 Nittetsu Mining Co Ltd Method for classifying air current and air current classifier with this method utilized therefor

Similar Documents

Publication Publication Date Title
JP3054883B2 (en) Manufacturing method of electrostatic image developing toner and apparatus system for the same
JP2791013B2 (en) Method and apparatus for producing triboelectric toner for developing electrostatic images
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
KR900008078B1 (en) Process for producing toner powder
JPS62264065A (en) Production of toner for developing electrostatic charge
US4782001A (en) Process for producing toner for developing electrostatic images and apparatus therefor
JPS63101859A (en) Manufacture of electrostatically charged image developing toner
JPS63101861A (en) Method and device for manufacturing electrostatically charged image developing toner
JPS63112627A (en) Production of toner powder
JP2851872B2 (en) Method for producing toner for developing electrostatic images
JP3347551B2 (en) Airflow classifier and method for producing toner
KR930004694B1 (en) Air current classifier process for preparing toner and apparatus for preparing toner
JP3295793B2 (en) Airflow classifier and toner manufacturing method
JPS63101860A (en) Method and device for manufacturing electrostatically charged image developing toner
JPH0359674A (en) Manufacture of toner for electrostatic charge image development
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP3295794B2 (en) Airflow classifier and toner manufacturing method
JPS63112626A (en) Production of toner powder
JPS62187861A (en) Manufacture of toner for development of electrostatically charged image
JPH01205172A (en) Production of toner for developing electrostatic charge image
JP2715338B2 (en) Airflow classifier and airflow classification method
JPH09187733A (en) Air current-utilizing type classifying apparatus
JPH0448942A (en) Collision type air grinder and grinding method for powdery raw material
JPH03287173A (en) Production of electrostatically charged image developing toner
JPH06313989A (en) Production of toner