JPS63101861A - Method and device for manufacturing electrostatically charged image developing toner - Google Patents

Method and device for manufacturing electrostatically charged image developing toner

Info

Publication number
JPS63101861A
JPS63101861A JP61246613A JP24661386A JPS63101861A JP S63101861 A JPS63101861 A JP S63101861A JP 61246613 A JP61246613 A JP 61246613A JP 24661386 A JP24661386 A JP 24661386A JP S63101861 A JPS63101861 A JP S63101861A
Authority
JP
Japan
Prior art keywords
powder
particles
classified
particle size
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61246613A
Other languages
Japanese (ja)
Inventor
Hitoshi Kanda
仁志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61246613A priority Critical patent/JPS63101861A/en
Publication of JPS63101861A publication Critical patent/JPS63101861A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0817Separation; Classifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/086Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream
    • B07B7/0865Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream using the coanda effect of the moving gas stream

Abstract

PURPOSE:To efficiently manufacture a toner having a minute grain size distribution by leading a powder raw material into a multi-division classifying area, and classifying it into coarse powder, medium powder of a prescribed grain size, and fine powder of a prescribed grain size or below. CONSTITUTION:A powder raw material is supplied from a raw material supply nozzle 26 of a multi-division classifying machine 2, and the powder is moved so as to draw a curved line 35, and classified by an action of a Coanda block 30, and an action of gas which flows in from air intake tubes 24, 25. As a result, a coarse powder with large grain is classified into a first partial section of the left side of a classifying edge 28, discharged from a discharge port 21, and thereafter, crushed and classified together with a powder raw material which is led in newly. A medium powder of a prescribed grain size range is classified into a second partial section between the classifying edges 28, 27, discharged from a discharge port 22, and thereafter, caught, and it is used as a toner product. Next, fine powder of the prescribed grain size range or below is classified into a third partial section of the right side of the edge 27, discharged from a discharge port 23 and collected, but it call also be allowed to circulate to a melting process.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は効率よ(結着樹脂を有する固体粒子を粉砕・分
級を行って所定の粒度を有する静電荷像現像用トナーを
得るための製造方法及びその装置に関する。
[Detailed Description of the Invention] [Technical Field] The present invention provides a manufacturing method for obtaining toner for developing electrostatic images having a predetermined particle size by efficiently pulverizing and classifying solid particles having a binder resin, and the production method thereof. Regarding equipment.

〔背景技術〕[Background technology]

電子写真法、静電写真法、静電印刷法の如き画像形成方
法では静電荷像を現像するためにトナーが使用される。
In image forming methods such as electrophotography, electrostatography, and electrostatic printing, toners are used to develop electrostatic images.

最終製品が微細粒子であることが要求される静電荷像現
像用トナーの製造に於る原料固体粒子を粉砕・分級して
最終製品を得る工程については、従来、第7図のフロー
チャートにより示される方法が一般に採用されている。
The process of obtaining the final product by crushing and classifying raw material solid particles in the production of toner for electrostatic image development, where the final product is required to be fine particles, has conventionally been shown in the flowchart of Figure 7. method is commonly adopted.

その方法は、結着樹脂・着色剤(染料、顔料又は磁性体
等)の如き所定材料を溶融混練し、冷却して固化させた
後粉砕し、粉砕された固体粒子群を原料の粉砕物として
いる。
The method involves melting and kneading specified materials such as binder resins and coloring agents (dyes, pigments, magnetic substances, etc.), cooling and solidifying them, and then crushing them.The crushed solid particles are used as the crushed raw material. There is.

粉砕物は、第1分級手段に連続的又は逐次供給されて分
級され、分級された規定粒度以上の粗粒子群を主成分と
する粗粉体は粉砕手段に送って粉砕された後、再度第1
分級手段に循環される。他の規定粒径範囲内の粒子及び
規定粒径以下の粒子を主成分とする粉体は第2分級手段
に送られ、規定粒度を有する粒子群を主成分とする中粉
体と規定粒度以下の粒子群を主成分とする細粉体とに分
級される。
The pulverized material is continuously or sequentially supplied to the first classification means and classified, and the classified coarse powder mainly composed of coarse particles having a specified particle size or more is sent to the pulverization means and pulverized again. 1
It is circulated to the classification means. Other powders whose main components are particles within the specified particle size range and particles whose particle size is less than the specified particle size are sent to the second classification means, which separates medium powder whose main component is particles having the specified particle size and particles whose particle size is less than the specified particle size. It is classified into a fine powder whose main component is a group of particles.

例えば重量平均粒径が10〜15μmであり且つ5μm
以下の粒子が1%以下である粒子群を得る場合は、粗粉
域を除去するための分級機構を備えた衝撃式粉砕機或い
はジェット粉砕機の如き粉砕手段で所定の平均粒径まで
原料を粉砕して分級し、粗粉体を除去した後の粉砕物を
別の分級機にかけ、微粉体を除去して所望の中粉体を得
ている。
For example, the weight average particle size is 10 to 15 μm and 5 μm.
To obtain a particle group containing 1% or less of the following particles, grind the raw material to a predetermined average particle size using a crushing means such as an impact crusher or jet crusher equipped with a classification mechanism to remove coarse particles. After pulverization and classification, the pulverized product after removing the coarse powder is passed through another classifier to remove the fine powder to obtain the desired medium powder.

重量平均、粒子径は、例えばコールタエレクトロニクス
社(米国)製のコールタカウンターによる測定結果の表
現方法である。
Weight average and particle size are methods of expressing measurement results using, for example, a Coulter Counter manufactured by Coulter Electronics (USA).

以下、重量平均粒子径を単に「平均粒径」という。Hereinafter, the weight average particle diameter will be simply referred to as "average particle diameter."

このような従来の方法については、問題点として、粗粉
体を除去する分級機構を備えた粉砕機による処理と、微
粉体を除去する分級機による処理とが別工程で行われる
ことから工程の数が多くなり、操作が複雑であること、
長時間運転の場合は発熱を伴なったり、粉体に避けがた
い付着及び凝集物が多く生じてしまうことがある。
The problem with such conventional methods is that the process using a pulverizer equipped with a classification mechanism to remove coarse powder and the process using a classifier to remove fine powder are performed in separate steps. The number is large and the operation is complicated,
In the case of long-term operation, heat may be generated, and a large amount of unavoidable adhesion and agglomeration of powder may occur.

粗粉体を除去する目的の分級手段は、ある粒度以上の粒
子群だけを粉砕機に送ることが目的である。従来の分級
機は粉体の滞留時間が数分間と非常に長いため、粗粉域
を除去後に粒子群の一部が相互に凝集したり、あるいは
粗粒子に微粒子が付着して再度、粉砕機に戻されるため
に過粉砕が生じる傾向がある。そのため粉砕効率の低下
、次工程の微粉域を除去するための分級機においての収
率低下の如き現像を引きおこすという問題点がある。
The purpose of the classification means for removing coarse powder is to send only particles of a certain particle size or more to the crusher. In conventional classifiers, the residence time of the powder is very long, several minutes, so after removing the coarse powder area, some of the particles may aggregate with each other, or fine particles may adhere to the coarse particles, causing the powder to be forced into the crusher again. There is a tendency for over-grinding to occur. This causes problems such as a decrease in pulverization efficiency and a decrease in yield in the classifier for removing the fine powder region in the next step.

微粉体を除去する目的の第2分級手段については、極微
粒子で構成される凝集物が生じることがあり、凝集物を
微粉体として除去することは困難である。
Regarding the second classification means for the purpose of removing fine powder, aggregates composed of extremely fine particles may be generated, and it is difficult to remove the aggregates as fine powder.

その場合、凝集物は最終製品に混入し、その結果精緻な
粒度分布の製品を得ることが難しくなるとともに凝集物
はトナー中で解壊して極微粒子となって画像品質を低下
させる原因となる。従来方式の下で精緻な粒度分布を有
する所望の製品を得ることができたとしても工程が繁雑
になり、分級収率の低下を引きおこし、生産効率が悪く
、コスト高のものになることが避けられない。この傾向
は、所定の粒度が小さくなればなる程顕著になる。
In that case, the aggregates are mixed into the final product, making it difficult to obtain a product with a precise particle size distribution, and the aggregates break down in the toner to become ultrafine particles, causing a reduction in image quality. Even if it is possible to obtain a desired product with a precise particle size distribution using the conventional method, the process becomes complicated, causing a decrease in classification yield, resulting in poor production efficiency and high costs. Inevitable. This tendency becomes more pronounced as the predetermined particle size becomes smaller.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の静電荷像現像用トナーの製造方法に於
る前述の各種問題点を解決した製造方法を提供すること
を目的とする。本発明の目的は、精緻な粒度分布を有す
る静電荷像現像用トナーを効率良く生成する製造方法を
提供することにある。本発明の他の目的は小粒径(例え
ば2〜8μm)の品質の良いトナーを効率良く製造する
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method that solves the various problems described above in conventional methods of manufacturing toner for developing electrostatic images. An object of the present invention is to provide a manufacturing method for efficiently producing an electrostatic image developing toner having a precise particle size distribution. Another object of the present invention is to provide a method for efficiently producing a high quality toner having a small particle size (for example, 2 to 8 μm).

本発明の目的は、結着樹脂、着色剤および各種添加剤か
らなる混合物を溶融混練し、溶融混合物を冷却後、粉砕
により生成した固体粒子群から精緻な所定の粒度分布を
有する微細粒子製品(トナーとして使用される)を効率
的に収率良く製造する方法を提供することにある。
The purpose of the present invention is to melt-knead a mixture consisting of a binder resin, a coloring agent, and various additives, cool the molten mixture, and then pulverize the resulting solid particles. An object of the present invention is to provide a method for efficiently producing toner (used as a toner) with a high yield.

本発明の目的は、分画手段により少な(とも3つに分画
されてなる多分割分級域に結着樹脂を含有する固体着色
粒子群を導入して湾曲線的に降下せしめ;第1分画域に
S粒子群を主成分とする粗粉体を分割補集し;゛第2分
画域に所定粒径範囲の粒子群を主成分とする中粉体を分
割補集し;第3分画域に所定粒径以下の粒子群を主成分
とする細粉体を分割補集し;前記分級された粗粉体は粉
砕工程に供給;及び粉砕された粉体を該多分割分級域に
導入することを特徴とする静電荷像現像用トナーの製造
方法を提供することにある。
An object of the present invention is to introduce a group of solid colored particles containing a binder resin into a multi-division classification area formed by a small number of fractions (each divided into three) by a fractionating means and to cause the solid colored particles to descend in a curved line; Divide and collect coarse powder mainly composed of S particles in the fractional area; Divide and collect medium powder mainly composed of particles in a predetermined particle size range in the second fractional area; Fine powder mainly composed of particles with a predetermined particle size or less is divided and collected in a fractionation zone; the classified coarse powder is supplied to a pulverization process; and the pulverized powder is transferred to the multi-division classification zone. It is an object of the present invention to provide a method for producing a toner for developing an electrostatic image, characterized in that the toner is introduced into a toner for developing an electrostatic image.

本発明の目的は、導入される結着樹脂を含有する固体着
色粒子群を分級するための少なくとも3つに分画されて
てなる多分割分級手段;該多分割分級手段によって分級
された粗粉を粉砕するための粉砕手段;及び該粉砕手段
で粉砕された粉砕粉を該多分割分級手段へ循環するため
の連通手段を有することを特徴とする静電荷像現像用ト
ナーの製造装置を提供することにある。
The object of the present invention is to provide a multi-division classification means for classifying solid colored particles containing a binder resin to be introduced, which are divided into at least three parts; a coarse powder classified by the multi-division classification means; To provide an apparatus for producing a toner for developing an electrostatic image, characterized by having a pulverizing means for pulverizing the pulverizing means; and a communication means for circulating the pulverized powder pulverized by the pulverizing means to the multi-division classification means. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明の方法は、粉砕物を原料とするものであって、第
1図はその方法の概要を示すフローチャートである。本
発明の方法は、原料を多分割分級域に送って少なくとも
大粒径区分(粗粒子を主成分とする粗粉体)、中粒径区
分(規定内粒径の粒子を主成分とする中粉体)、そして
小粒径区分(規定粒径以下の粒子を主成分とする細粉体
)の3種の粒径区分に分級し、大粒径区分の粒子群は適
宜の粉砕手段により粉砕し、新たに導入される原料と共
に前記多分割分級域に再循環せしめて前記と同様の分級
処理にかける。中粒径区分の規定内粒径の粒子群と小粒
径区分の規定粒径以下の粒子群は、前記多分割分級域か
ら適宜の取り出し手段によりそれぞれ取り出す。中粒径
区分からの粒子群は好適な粒度分布のものであって、そ
のままトナーとして使用可能である。他方、小粒径区分
の粒子群は溶融工程に循環して再利用してもよい。分級
される粉体の真比重は約0.5〜2.好ましくは0.6
〜1.7であることが分級効率の上で好ましい。
The method of the present invention uses pulverized material as a raw material, and FIG. 1 is a flow chart showing an overview of the method. In the method of the present invention, raw materials are sent to a multi-division classification zone, and at least large particle size classification (coarse powder mainly composed of coarse particles), medium particle size classification (medium particle size mainly composed of particles with a specified particle size), The particles in the large particle size category are pulverized using an appropriate crushing method. Then, together with the newly introduced raw material, it is recycled to the multi-division classification zone and subjected to the same classification process as described above. The particle group having a particle size within the specified range in the medium particle size category and the particle group having a particle size below the specified particle size in the small particle size category are each taken out from the multi-divided classification area by appropriate removal means. The particles from the medium particle size category have a suitable particle size distribution and can be used as is as a toner. On the other hand, the particles in the small particle size category may be recycled to the melting process and reused. The true specific gravity of the powder to be classified is approximately 0.5 to 2. Preferably 0.6
-1.7 is preferable from the viewpoint of classification efficiency.

前記多分割分級域を提供する手段としては、USPat
ent  No、4,132,634に記載されている
装置及び手段がある。例えば第2図、第3図又は第4図
に示す形式の多分割分級機を具体例の1つとして例示し
得る。第2図、第3図及び第4図において、側壁断面は
32.51で示される形状を成し、底面は、はぼ長方形
であって、長手方向に底部を底面に所定間隔で平行に固
着又は嵌着したナイフエッヂ型の分級エッヂ27(また
は39)、28(または40)の如き分級フェンスによ
り3分画されている。湾曲壁5−1のほぼ直立始点に対
向する垂直壁32の部分に分級室に開口する原料供給ノ
ズル26を設け、該ノズルの底部接線の延長方向に対し
て下方に折り曲げて長楕円弧を描いた形のコアンダブロ
ック30を垂直側壁32に突設し、分級室上部は直立角
筒形状を成し、頂壁中央に長手方向にナイフエッヂ型の
入気エッヂ29(または41)を設け、更に前記頂壁に
は分級室に開口する人気管24.25を設ける。分級エ
ッヂ27(または39)、28(または40)の位置は
、多分割分級域の室の規模により異なり、又、被処理原
料の種類により異なる。室底面には、それぞれの分画域
に対応させて室内に開口する排出管21.22.23を
設ける。排出管21.22.23はそれぞれバルブ手段
の如き開閉手段を具備していても良い。
As a means for providing the multi-divided classification area, US Pat
ENT No. 4,132,634. For example, a multi-division classifier of the type shown in FIG. 2, FIG. 3, or FIG. 4 may be exemplified as one specific example. In Figures 2, 3, and 4, the cross section of the side wall has a shape shown by 32.51, and the bottom is approximately rectangular, and the bottom is fixed parallel to the bottom at predetermined intervals in the longitudinal direction. Alternatively, it is divided into three sections by fitted classification fences such as knife edge type classification edges 27 (or 39) and 28 (or 40). A raw material supply nozzle 26 that opens into the classification chamber is provided in a portion of the vertical wall 32 that faces the substantially upright starting point of the curved wall 5-1, and is bent downward in the direction of extension of the bottom tangent of the nozzle to draw a long elliptical arc. A shaped Coanda block 30 is provided protruding from the vertical side wall 32, the upper part of the classification chamber forms an upright rectangular tube shape, and a knife edge type air inlet edge 29 (or 41) is provided in the longitudinal direction at the center of the top wall. The top wall is provided with a popular tube 24, 25 that opens into the classification chamber. The positions of the classification edges 27 (or 39), 28 (or 40) vary depending on the size of the chamber of the multi-divided classification zone and also vary depending on the type of raw material to be processed. Discharge pipes 21, 22, and 23 opening into the chamber are provided at the bottom of the chamber in correspondence with the respective fractionation areas. The discharge pipes 21, 22, 23 may each be provided with opening/closing means such as valve means.

分級エッヂ27(または39)、28(または40)は
、エッチ部を上方にして室内空間に突出するように設け
る。人気エッヂ29(または40)はエッチ部を下方に
して頂壁から室内空間に設けるのが通常である。中粒径
区分の粒子群をごく限られた粒径範囲のものにしようと
する場合、分級エッヂ28と人気エッヂ29を第4図に
40. 41として示すように、各エッチの固定位置は
そのままにしておき、前者については立上り部、後者に
ついては垂下部をそれぞれ図示する如く傾けてもよい。
The classification edges 27 (or 39), 28 (or 40) are provided so as to project into the indoor space with the etched portions upward. The popular edge 29 (or 40) is usually installed in the indoor space from the top wall with the etched portion facing downward. When trying to make the particle group of the medium particle size category into a very limited particle size range, the classification edge 28 and the popular edge 29 are shown in FIG. 4 as 40. 41, the fixed position of each etch may be left as is, and the rising portion for the former and the hanging portion for the latter may be tilted as shown.

原料供給ノズル26を介しての分級室内への原料の供給
は、原料の種類に応じた検定曲線に従って行う。
The raw material is supplied into the classification chamber via the raw material supply nozzle 26 according to a verification curve depending on the type of raw material.

以上のように構成してなる多分割分級域での原料の分級
操作は例えば次のようにして行う。
The raw material classification operation in the multi-division classification zone configured as described above is carried out, for example, as follows.

原料供給ノズル26から粉体原料を供給させると、コア
ンダ効果により粉体はコアンダブロック30の作用と、
その際流入する空気の如き気体の作用とにより湾曲線3
5又は38を描いて移動し、それぞれの粒径の大小及び
重量の大小に応じて分級される。粒子の比重が同一であ
るとすると、大きい粒子(粗粒子)は気流の外側、すな
わち分級エッヂ28の左側の第1分画に分級され、中間
の粒子(規定内の粒径の粒子)は分級エッヂ28と27
の間の第2分画に分級され、小さい粒子(規定粒径以下
の粒子)は分級エッヂ27の右側の第3分画に分級され
る。分級された大きい粒子は排出口21より、排出され
、中間の粒子は排出口22より排出され、小さい粒子は
排出口23よりそれぞれ排出される。第2分画域に分級
される粒子の平均粒径は約1〜15μとなるように分級
条件を調整するのが好ましい。
When powder raw material is supplied from the raw material supply nozzle 26, the powder is affected by the action of the Coanda block 30 due to the Coanda effect.
At that time, due to the action of gas such as air flowing in, the curved line 3
5 or 38, and are classified according to their respective particle sizes and weights. Assuming that the specific gravity of the particles is the same, large particles (coarse particles) are classified into the first fraction outside the airflow, that is, on the left side of the classification edge 28, and intermediate particles (particles with a particle size within the specified range) are classified. edge 28 and 27
Small particles (particles with a specified particle size or less) are classified into a third fraction on the right side of the classification edge 27. The classified large particles are discharged from the discharge port 21, the intermediate particles are discharged from the discharge port 22, and the small particles are discharged from the discharge port 23. It is preferable to adjust the classification conditions so that the average particle size of the particles classified into the second fractionation area is about 1 to 15 μm.

上述の方法を実施するには、通常相互の機器をパイプの
如き連通手段等で連結してなる一体装置システムを使用
するのが通常であり、好ましい例を第5図に示す。第5
図に示す一体装置システムは、3分割分級機2(第2図
、第3図又は第4図に示される形式のもの)、粉砕機3
、捕集サイクロン4、捕集サイクロン5、定量供給機6
、振動フィーダー7、捕集サイクロン8、捕集サイクロ
ン9を連通手段で連結してなるものである。
To carry out the above-mentioned method, it is usual to use an integrated device system in which mutual devices are connected by communication means such as pipes, and a preferred example is shown in FIG. Fifth
The integrated equipment system shown in the figure includes a three-part classifier 2 (of the type shown in Figures 2, 3, or 4), a crusher 3
, collection cyclone 4, collection cyclone 5, quantitative feeder 6
, a vibrating feeder 7, a collection cyclone 8, and a collection cyclone 9 are connected by a communication means.

この装置において、いわゆる粉砕物原料100は、開閉
バルブ1を備えた原料供給導管31を介して捕集サイク
ロン5に送られ、ついで定量供給機6に送り込まれ、つ
いで振動フィーダー7を介し、原料供給ノズル26を介
して3分割分級機2内に導入される。導入に際しては、
捕集サイクロン4,8及び/又は9の吸引力を利用して
粉砕物を3分割分級機2内に吸引導入し得る。吸引導入
の場合は、装置システムのシール性が加圧式導入よりも
厳密には要求されないので好ましい。吸引導入にし際し
ては、粒子の比重および粒径によって変動するが、通常
50〜200 m 7秒の、流速で3分割分級機2内に
粉砕物を導入すると、分級精度および分級効率の点で好
ましい。分級機2の分級域を構成する大きさは通常〔1
0〜50cm) X (10〜5 Q (m ]なので
、粉砕物は0.1〜0.01秒以下の瞬時に3種以上の
粒子群に分級し得る。3分割分級機2により、大きい粒
子(粗粒子)、中間の粒子(規定内の粒子径の粒子)、
小さい粒子(規定粒径以下の粒子)に分割される。
In this device, a so-called pulverized raw material 100 is sent to a collection cyclone 5 through a raw material supply conduit 31 equipped with an on-off valve 1, then fed into a quantitative feeder 6, and then passed through a vibrating feeder 7 to a raw material supply conduit 31 with an on-off valve 1. It is introduced into the three-part classifier 2 via the nozzle 26. When introducing
The pulverized material can be introduced into the three-part classifier 2 by suction using the suction force of the collection cyclones 4, 8, and/or 9. Suction introduction is preferred because the sealing properties of the device system are less stringently required than pressurized introduction. Although the suction introduction varies depending on the specific gravity and particle size of the particles, if the pulverized material is introduced into the three-part classifier 2 at a flow rate of usually 50 to 200 m for 7 seconds, the classification accuracy and efficiency will be improved. It is preferable. The size of the classification area of classifier 2 is usually [1
0 to 50 cm) (coarse particles), intermediate particles (particles with a particle size within regulations),
Divided into small particles (particles with a specified particle size or less).

その後、大きい粒子は、排出導管21を通って捕集サイ
クロン4に送られ、ついで粉砕機3に送られて粉砕され
原料供給導管31を介して新たに導入される粉体原料1
00と共に補集サイクロン5に送られ、ついで定量供給
機に送られ前述と同様にして分級処理される。中間の粒
子は、排出導管22を介して系外に排出され捕集サイク
ロン9で捕集されトナー製品91となるべく回収される
。小さい粒子は、排出導管23を介して系外に排出され
捕集サイクロン8で捕集され、ついで規定外微小粉81
として回収される。捕集サイクロン4,8.及び9は、
粉砕原料をノズル26を介して分級域に吸引導入するた
めの吸引減圧手段としての働きもしている。
Thereafter, the large particles are sent through the discharge conduit 21 to the collection cyclone 4 and then to the crusher 3 where they are crushed and newly introduced into the powder raw material 1 via the raw material supply conduit 31.
00 is sent to the collection cyclone 5, then sent to the quantitative feeder and classified in the same manner as described above. The intermediate particles are discharged out of the system via the discharge conduit 22 and collected by the collection cyclone 9 to be recovered as a toner product 91. Small particles are discharged out of the system via the discharge conduit 23 and collected by the collection cyclone 8, and then treated as non-standard fine powder 81.
will be collected as. Collection cyclone 4,8. and 9 are
It also functions as a suction pressure reducing means for suctioning and introducing the pulverized raw material into the classification area through the nozzle 26.

粉砕機3には、衝撃式粉砕機、ジェット粉砕機の如き粉
砕手段が使用できる。衝撃式粉砕機としてはターボ工業
社製ターボミルが挙げられ、ジェットを利用した粉砕機
としては日本ニューマチック工業社製超音速ジェットミ
ルPJM−1,紙用ミクロン社製ミクロンジェットが挙
げられる。第1分画域から送られてくる粗粉体は中粉体
の平均粒径乃至中粉体の平均粒径+20μに粉砕して循
環するのが収率的に好ましい。本発明の方法における多
分割分級機としては、8鉄鉱業社製エルボージェットの
如きコアンダブロックを有し、コアンダ効果を利用した
分級手段が挙げられる。
As the crusher 3, crushing means such as an impact crusher or a jet crusher can be used. Examples of impact type crushers include Turbo Mill manufactured by Turbo Kogyo Co., Ltd.; examples of crushers using jets include Supersonic Jet Mill PJM-1 manufactured by Japan Pneumatic Industries Co., Ltd. and Micron Jet manufactured by Micron Corporation for Paper Use. In terms of yield, it is preferable that the coarse powder sent from the first fractionation area be pulverized to an average particle size of medium powder to an average particle size of medium powder + 20 μm and then circulated. Examples of the multi-division classifier used in the method of the present invention include a classifier having a Coanda block and utilizing the Coanda effect, such as Elbow Jet manufactured by 8 Iron Mining Co., Ltd.

第6図に、ノズル26に開閉バルブlを介して加圧気体
101を導入する場合の例を示す。加圧気体101とし
ては、圧縮空気が使用できる。加圧気体101を付加し
て、振動フィーダー7を介して粉体を3分割分級機2内
に導入する場合には、各工程の気密性及び各工程を連結
する連結手段の気密性が必要となる。粉砕機および3分
割分級機が定常的に稼動されている場合、単位時間当り
に第2分画域を通過する中粉体を1重量部とすると、第
1分画域を通過する粗粉体を0.01〜100重量部、
好ましくは0.1〜20重量部に調整し、第3分画域を
通過する細粉体を0.001〜0.2重量部、好ましく
は0.001〜0.1重量部になるように調整すること
が収率を良くする上で好ましい。
FIG. 6 shows an example in which the pressurized gas 101 is introduced into the nozzle 26 via the on-off valve l. Compressed air can be used as the pressurized gas 101. When pressurized gas 101 is added and powder is introduced into the three-part classifier 2 through the vibrating feeder 7, airtightness of each process and a connecting means connecting each process are required. Become. When the crusher and 3-part classifier are operated regularly, if the medium powder passing through the second fractionation zone per unit time is 1 part by weight, the coarse powder passing through the first fractionation zone is 1 part by weight. 0.01 to 100 parts by weight,
Preferably, it is adjusted to 0.1 to 20 parts by weight, and the fine powder passing through the third fractionation area is adjusted to 0.001 to 0.2 parts by weight, preferably 0.001 to 0.1 parts by weight. Adjustment is preferable in order to improve the yield.

以上説明したように、本発明の方法は、特定の分級手段
により粗粉粒子群と微粉粒子群とを同時に除去し、粗粒
子群は粉砕して再循環させるので、粉砕物から迅速に所
定の粒径範囲内のものであって精緻な粒度分布を有する
粒子群を得ることが効率良(できる。更に、本発明の方
法は、工程数が少な(てすむものであることから製品コ
ストを従来のものに比べ下げることができる。
As explained above, the method of the present invention simultaneously removes coarse particles and fine particles using a specific classification means, and crushes and recirculates the coarse particles, so that a predetermined amount can be quickly extracted from the crushed material. It is possible to efficiently obtain particle groups within the particle size range and with a precise particle size distribution.Furthermore, the method of the present invention requires fewer steps, so the product cost can be reduced compared to conventional methods. can be lowered compared to

さらに、本発明の方法は、分級域での滞留時間がほとん
ど無いため、従来の粗粉域を除去するための分級機で見
られたような凝集物が生じ難く、粉砕機にはある規定粒
度以上の粗大粒子だけが送られるため、粉砕機の負荷が
少な(、粉砕効率が非常に良好であり、過粉砕を引き起
こす傾向が少ない。そのため微粉域を除去することも非
常に効率よ(行うことができ、分級収率を良好に向上さ
せることができる。従来の中粉域と微粉域とを分級する
目的の分級方式では、現像画像のカブリの原因となる微
粒子の凝集物を生じ易い。凝集物が生じた場合、中粉域
から除去することが困難であったが本発明の方法による
と凝集物が粉砕物に混入したとしてもコアンダ効果およ
び/又は高速移動に伴なう衝撃により凝集物が解壊され
て細粉体として除去されるとともに、解壊を免れた凝集
物があったとしても粗粉域へ同時に除去できるため、凝
集物を効率よく取り除くことが可能である。通常、静電
荷像現像用トナーはスチレン系樹脂、スチレン−アクリ
ル酸ニスチル樹脂、スチレン−メタクリル酸エステル樹
脂、ポリエステル系樹脂の如き結着樹脂、着色剤(又は
/及び磁性材料)、オフセット防止剤、荷電制御剤の如
き原料を溶融混練した後、冷却、粉砕、分級を行うこと
により製造される。この際、混練工程において各原料を
均一に分散した溶融物を得ることが困難なため、粉砕さ
れた粉砕物中には、トナー粒子として不法な粒子(例え
ば、着色剤または磁性粒子を有していないもの或は各種
素原料単独粒子)が混在している。従来の粉砕分級方法
では粉砕分級過程において粒子の滞流時間が長く、この
ため不適当な粒子が凝集しやす(なるとともに、生じた
凝集物を除去することが困難であった。そのため、トナ
ーの特性が低下していた。
Furthermore, since the method of the present invention has almost no residence time in the classification zone, it is difficult to form agglomerates as seen in conventional classifiers for removing coarse particles, and the crusher has a specified particle size. Since only the coarse particles above are sent, the load on the crusher is small (and the crushing efficiency is very good and there is little tendency to cause over-grinding. Therefore, the removal of the fine powder area is also very efficient). This makes it possible to satisfactorily improve the classification yield.The conventional classification method aimed at classifying the medium-powder region and the fine-powder region tends to produce agglomerates of fine particles that cause fogging of developed images. However, according to the method of the present invention, even if aggregates are mixed into the pulverized material, they can be removed by the Coanda effect and/or the impact caused by high-speed movement. is broken down and removed as fine powder, and even if there are aggregates that have escaped disintegration, they can be simultaneously removed to the coarse powder area, making it possible to remove aggregates efficiently.Usually, static The toner for developing a charge image contains a binder resin such as a styrene resin, a styrene-nystyl acrylate resin, a styrene-methacrylate resin, or a polyester resin, a coloring agent (or magnetic material), an anti-offset agent, and a charge control agent. After melting and kneading raw materials such as Some of the toner particles are illegal as toner particles (for example, particles that do not have colorants or magnetic particles, or individual particles of various raw materials).In the conventional pulverization and classification method, particles are separated in the pulverization and classification process. The residence time was long, and unsuitable particles were likely to aggregate (and it was difficult to remove the resulting aggregates), resulting in poor toner properties.

本発明の方法は粉砕後に瞬時に三分画以上に分級を行う
ため、前記凝集物を生じ難(、また生じたとしても凝集
物を粗粉域へ除去することが可能なため、均一成分の粒
子であり、かつ精緻な粒度分布のトナー製品を得ること
ができる。
Since the method of the present invention instantly classifies into three or more fractions after pulverization, it is difficult to produce the above-mentioned aggregates (and even if they occur, it is possible to remove the aggregates to the coarse powder region, so that the homogeneous components are It is possible to obtain toner products that are particles and have a precise particle size distribution.

本発明の方法によって得られるトナーは、トナー粒子間
またはトナーとスリーブ、トナーとキャリアの如きトナ
ー担持体との間の摩擦帯電量が安定である。従って、現
像カブリや、潜像のエッヂ周辺へのトナーの飛び散りが
極めて少なく、高い画像濃度が得られ、ハーフトーンの
再現性が良くなる。さらに、現像剤を長期にわたり連続
使用した際も初期の特性を維持し、高品質な画像を長期
間にわたり提供することができる。さらに、高温高湿度
の環境条件での使用においても、極微粒子及びその凝集
物の存在が少ないので現像剤摩擦帯電量が安定で、常温
常湿度と比較してほとんど変化しないため、カブリや画
像濃度の低下が少なく、潜像に忠実な現像を行える。さ
らには得られたトナー像は紙の如き転写材への転写効率
もすぐれている。
The toner obtained by the method of the present invention has a stable amount of triboelectric charge between toner particles or between a toner and a toner carrier such as a sleeve or a toner and a carrier. Therefore, development fog and toner scattering around the edges of the latent image are extremely reduced, high image density is obtained, and halftone reproducibility is improved. Furthermore, even when the developer is used continuously for a long period of time, the initial characteristics can be maintained and high quality images can be provided for a long period of time. Furthermore, even when used in high-temperature, high-humidity environments, there are few ultrafine particles and their aggregates, so the developer triboelectric charge is stable and hardly changes compared to normal temperature and humidity, reducing fogging and image density. There is little deterioration in image quality, and development can be performed that is faithful to the latent image. Furthermore, the obtained toner image has excellent transfer efficiency to a transfer material such as paper.

低温低温下条件の使用においても、摩擦帯電量分布は常
温湿度のそれとほとんど変化がなく、帯電量のきわめて
大きいトナーの極微粒子成分が除去されているため、画
像濃度の低下やカブリもな(、ガサツキや転写の際の飛
び散りもほとんどないという特性を本発明の方法で得ら
れたトナーは有している。
Even when used under low-temperature conditions, the triboelectric charge distribution hardly changes from that at room temperature and humidity, and since the ultrafine particle components of the toner, which have an extremely large charge amount, are removed, there is no decrease in image density or fog (, The toner obtained by the method of the present invention has the characteristic that there is almost no roughness or scattering during transfer.

粒径の小さな中粉体(例えば平均粒径3〜7μ)を製造
する際には、従来の方法よりも効率よく本発明は実施し
得る。
When producing a medium powder with a small particle size (for example, an average particle size of 3 to 7 microns), the present invention can be carried out more efficiently than conventional methods.

以下、実施例に基づいて本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on Examples.

実施例1 上記処方の混合物よりなるトナー原料を約180℃で約
1.0時間溶融混線後、冷却して固化し、ハンマーミル
で100〜1000μの粒子に粗粉砕し、次いでホンカ
ワミクロン社製ACMパルベライザにより重量平均粒径
100μの粉砕物に粉砕した。粉砕物の真比重は約1.
4であった。得られた粉砕物を開閉バルブlを介し原料
供給導管31に導入し、捕集サイクロン5.定量供給機
6及び振動フィーダー7を介して毎分1 、 OK g
の量でコアンダ効果を利用して粗粉体、中粉体、及び細
粉体の3種に分級するために第2図に示す多分割分級装
置2に導入した。
Example 1 A toner raw material consisting of a mixture of the above formulation was melted and mixed at about 180° C. for about 1.0 hours, cooled and solidified, coarsely ground into particles of 100 to 1000 μm using a hammer mill, and then powdered by Honkawa Micron Co., Ltd. The mixture was pulverized using an ACM pulverizer to obtain a pulverized product having a weight average particle size of 100 μm. The true specific gravity of the pulverized material is approximately 1.
It was 4. The obtained pulverized material is introduced into the raw material supply conduit 31 through the opening/closing valve l, and is introduced into the collection cyclone 5. 1 OK g per minute via quantitative feeder 6 and vibration feeder 7
was introduced into the multi-division classifier 2 shown in FIG. 2 in order to classify the powder into three types: coarse powder, medium powder, and fine powder using the Coanda effect.

多分割分級装置としてエルボ−ジェットEJ−45−3
型機(8鉄鉱業社製)を使用した。導入に際しては、排
出口21.22.及び23のそれぞれに連通している捕
集サイクロン8,9及び4の吸引減圧による系内の減圧
から派生する吸引力によって粉砕物を約100 m /
 s e cの流速で供給ノズル26に導入した。導入
された粉砕物は0.01秒以下の瞬時に分級された。分
級された中粉体を捕集する捕集サイクロン9には重量平
均粒径的12μ(粒径5°、04μ以下の粒子を0.5
重量%含有し、粒径20.2μ以上の粒子の含有量は0
,1重量%以下であり、実質的に含有していないとみな
し得る)のトナーとして好ましい中粉体が分級収率85
重量%で得られた。
Elbow jet EJ-45-3 as a multi-division classification device
A model machine (manufactured by 8 Iron Mining Co., Ltd.) was used. Upon introduction, the discharge ports 21, 22. The pulverized material is collected at a rate of about 100 m /
It was introduced into the supply nozzle 26 at a flow rate of sec. The introduced pulverized material was instantly classified within 0.01 seconds. The collection cyclone 9 that collects the classified medium powder has a weight average particle diameter of 12μ (particle size of 5°, particles of 0.4μ or less are collected by 0.5μ).
% by weight, and the content of particles with a particle size of 20.2μ or more is 0.
, 1% by weight or less, and can be considered as substantially free), which is preferable as a toner with a classification yield of 85
Obtained in % by weight.

ここでいう分級収率とは、供給された粉砕物原料の全1
に対しての最終的に得られた中粉体(トナー粉)の量と
の比率をさしている。得られた中粉体を電子顕微鏡で見
たところ、極微細粒子が凝集した約5μ以上の凝集物は
実質的に見出されなかった。
The classification yield here refers to the total 1 of the supplied pulverized raw material.
It refers to the ratio of the amount of medium powder (toner powder) finally obtained to the amount of toner powder. When the obtained medium powder was observed under an electron microscope, substantially no aggregates of about 5 μm or more, which were ultrafine particles aggregated, were found.

分級された粗粉体は捕集サイクロン4に捕集され、粉砕
機3(日本ニューマチック工業社製の超長音速ジェット
ミルPJM−1−10)に導入して重量平均粒径的20
μとなるように粉砕した。粉砕された粉体は多分割分級
装置で分級するために、供給導管31に供給した。定常
運転時の各分画域における単位時間当りの粒子の通過量
は第2分画域における単位時間当りの粒子の通過量を1
重量部とすると、第1分画域における粒子の通過量は約
8〜9重量部であり、第3分画域における粒子の通過量
は約0.05重量分であった。
The classified coarse powder is collected by a collection cyclone 4 and introduced into a crusher 3 (ultra-long sonic jet mill PJM-1-10 manufactured by Nippon Pneumatic Industries Co., Ltd.) with a weight average particle size of 20
It was ground to μ. The pulverized powder was supplied to a supply conduit 31 for classification in a multi-division classifier. The amount of particles passing per unit time in each fractionation zone during steady operation is calculated by multiplying the amount of particles passing per unit time in the second fractionation zone by 1.
In terms of parts by weight, the amount of particles passing through the first fractionation zone was about 8 to 9 parts by weight, and the amount of particles passing through the third fractionation zone was about 0.05 parts by weight.

得られた中粉体をトナーとして使用し、疎水性シリカ0
.3重量%を該トナーと混合して現像剤を調整し、複写
機NP−270(キャノン製)に調整した現像剤を供給
して複写試験をおこなったところカブリのない細線現像
性の良好な複写画像が得られた。
The obtained medium powder was used as a toner, and hydrophobic silica 0
.. A developer was prepared by mixing 3% by weight with the toner, and a copying test was conducted by supplying the prepared developer to a copying machine NP-270 (manufactured by Canon). As a result, copies with no fog and good fine line developability were obtained. Image obtained.

比較例1 実施例1と同様にして得た粉砕物を第7図に示す如く構
成された分級システムで分級した。重量平均粒径100
μ粉砕物を毎分1.0 K gの量で、第1分級機(日
本ニューマチック工業社製気流分級機DS−IOUR)
に導入し、分級された粗粉体を粉砕機(日本ニューマチ
ック工業社製超音速ジェットミルPJM−1−10)に
導入して粉砕後、第1分級機に循環した。第1分級機で
分級された中粉体及び細粉体を第2分級機(DS−10
UR)に導入し、中粉体と細粉体に分級した。得られた
中粉体は、重量平均粒径的12μを有し分級収率70重
1%で得られたが電子顕微鏡で見たところ極微粒子が凝
集した約5μ以上の凝集物が点在しているのが見出され
た。
Comparative Example 1 A pulverized product obtained in the same manner as in Example 1 was classified using a classification system configured as shown in FIG. Weight average particle size 100
The μ-pulverized material was passed through the first classifier (air classifier DS-IOUR manufactured by Nippon Pneumatic Industries Co., Ltd.) at a rate of 1.0 Kg per minute.
The classified coarse powder was introduced into a pulverizer (supersonic jet mill PJM-1-10 manufactured by Nippon Pneumatic Kogyo Co., Ltd.), pulverized, and then circulated to the first classifier. The medium and fine powders classified by the first classifier are transferred to the second classifier (DS-10
UR) and classified into medium powder and fine powder. The obtained medium powder had a weight average particle size of 12μ and was obtained with a classification yield of 70% by weight, but when viewed under an electron microscope, it was found that aggregates of about 5μ or more, which were extremely fine particles agglomerated, were scattered. It was found that

得られた中粉体をトナーとして使用し、疎水性シリカ0
.3重量%を該トナーと混合して現像剤を調製し、複写
機NP−270(キャノン製)に調製した現像剤を供給
して複写試験をおこなったところ実施例1で得られた複
写画像よりもカブリが多かった。
The obtained medium powder was used as a toner, and hydrophobic silica 0
.. A developer was prepared by mixing 3% by weight with the toner, and a copying test was conducted by supplying the prepared developer to a copying machine NP-270 (manufactured by Canon). There was also a lot of fog.

〔実施例2〜4〕 実施例1と同様にして重量平均粒径50μ・30μおよ
び20μの粉砕物をそれぞれ調製し、実施例1と同様に
して粉砕物の分級及び粉砕をおこなった。
[Examples 2 to 4] Pulverized products having weight average particle diameters of 50μ, 30μ and 20μ were prepared in the same manner as in Example 1, and the crushed products were classified and pulverized in the same manner as in Example 1.

結果を下記表に示す。The results are shown in the table below.

〔比較例2〕 実施例1と同様にして体積平均粒視的20μの粉砕物を
調製し、比較例1と同様にして体積平均粒径5μの中粉
体を生成したところ分級収率が50重1%であり、実施
例4と比較して収率の点で劣っていた。中粉体の粒径が
小さくなる捏、分級収率において本発明の実施例と比較
例とに差が太き(なる傾向があった。
[Comparative Example 2] A pulverized product with a volume average particle diameter of 20 μm was prepared in the same manner as in Example 1, and a medium powder with a volume average particle diameter of 5 μm was produced in the same manner as in Comparative Example 1. The classification yield was 50 μm. The weight was 1%, which was inferior to Example 4 in terms of yield. There was a large difference (tendency) between the examples of the present invention and the comparative examples in the kneading and classification yields in which the particle size of the medium powder became smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法のフローチャートであり、第2図
、第3図及び第4図は本発明における粉体粒子多分割分
級手段を実施するための1具体例である装置の断面図を
示す。第5図及び第6図は本発明の方法を実施するため
の分級装置システムを示す概略図である。第7図は従来
方式のフローチャート図を示す。
FIG. 1 is a flowchart of the method of the present invention, and FIGS. 2, 3, and 4 are cross-sectional views of an apparatus that is a specific example for implementing the powder particle multi-division classification means of the present invention. show. 5 and 6 are schematic diagrams showing a classifier system for carrying out the method of the present invention. FIG. 7 shows a flowchart of the conventional method.

Claims (2)

【特許請求の範囲】[Claims] (1)分画手段により少なくとも3つに分画されてなる
多分割分級域に結着樹脂を含有する固体着色粒子群を導
入し;粒子群を湾曲線的に降下せしめ;第1分画域に粗
粒子群を主成分とする粗粉体を分割捕集し、第2分画域
に所定粒径範囲の粒子群を主成分とする中粉体を分割捕
集し;第3分画域に所定粒径以下の粒子群を主成分とす
る細粉体を分割捕集し;前記分級された粗粉体は粉砕工
程に供給し;及び粉砕された粉体を該多分割分級域に導
入することを特徴とする静電荷像現像用トナーの製造方
法。
(1) Introducing a group of solid colored particles containing a binder resin into a multi-division classification zone that is divided into at least three by a fractionating means; causing the particle group to descend in a curved line; the first fractionation zone A coarse powder mainly composed of coarse particles is divided and collected in a second fractionation area, a medium powder mainly composed of a particle group in a predetermined particle size range is divided and collected in a third fractionation area; The fine powder mainly composed of particles with a predetermined particle size or less is divided and collected; the classified coarse powder is supplied to a pulverization process; and the pulverized powder is introduced into the multi-division classification zone. A method for producing a toner for developing an electrostatic image, characterized by:
(2)導入される結着樹脂を含有する固体着色粒子群を
分級するためのすくなくとも3つに分画されててなる多
分割分級手段;該多分割分級手段によって分級された粗
粉を粉砕するための粉砕手段;及び該粉砕手段で粉砕さ
れた粉砕粉を該多分割分級手段へ循環するための連通手
段を有することを特徴とする静電荷像現像用トナーの製
造装置。
(2) Multi-division classification means for classifying the solid colored particles containing the introduced binder resin, which are divided into at least three parts; pulverizing the coarse powder classified by the multi-division classification means; 1. An apparatus for producing a toner for developing an electrostatic image, comprising a pulverizing means for pulverizing the pulverizing means; and a communicating means for circulating the pulverized powder pulverized by the pulverizing means to the multi-division classifying means.
JP61246613A 1986-10-17 1986-10-17 Method and device for manufacturing electrostatically charged image developing toner Pending JPS63101861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61246613A JPS63101861A (en) 1986-10-17 1986-10-17 Method and device for manufacturing electrostatically charged image developing toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61246613A JPS63101861A (en) 1986-10-17 1986-10-17 Method and device for manufacturing electrostatically charged image developing toner

Publications (1)

Publication Number Publication Date
JPS63101861A true JPS63101861A (en) 1988-05-06

Family

ID=17151007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61246613A Pending JPS63101861A (en) 1986-10-17 1986-10-17 Method and device for manufacturing electrostatically charged image developing toner

Country Status (1)

Country Link
JP (1) JPS63101861A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271876A (en) * 1991-02-28 1992-09-28 Nittetsu Mining Co Ltd Method for removing coarse particle of pneumatic classifier
JPH0938583A (en) * 1995-07-25 1997-02-10 Canon Inc Air current type classifier and preparation of toner
JPH0938582A (en) * 1995-07-25 1997-02-10 Canon Inc Air current type classifier and preparation of toner
US6586151B1 (en) * 1999-10-06 2003-07-01 Canon Kabushiki Kaisha Toner, process for producing toner image forming method and apparatus unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271876A (en) * 1991-02-28 1992-09-28 Nittetsu Mining Co Ltd Method for removing coarse particle of pneumatic classifier
JPH0938583A (en) * 1995-07-25 1997-02-10 Canon Inc Air current type classifier and preparation of toner
JPH0938582A (en) * 1995-07-25 1997-02-10 Canon Inc Air current type classifier and preparation of toner
US6586151B1 (en) * 1999-10-06 2003-07-01 Canon Kabushiki Kaisha Toner, process for producing toner image forming method and apparatus unit
US6703176B2 (en) * 1999-10-06 2004-03-09 Canon Kabushiki Kaisha Toner, process for producing toner image forming method and apparatus unit

Similar Documents

Publication Publication Date Title
JP2791013B2 (en) Method and apparatus for producing triboelectric toner for developing electrostatic images
JP3054883B2 (en) Manufacturing method of electrostatic image developing toner and apparatus system for the same
US5016823A (en) Air current classifier, process for preparing toner, and apparatus for preparing toner
US4784333A (en) Process for producing toner powder
JPH0619586B2 (en) Method for manufacturing toner for developing electrostatic image
EP0417561B1 (en) Collision-type gas current pulverizer and method for pulverizing powders
US4782001A (en) Process for producing toner for developing electrostatic images and apparatus therefor
JPS63101861A (en) Method and device for manufacturing electrostatically charged image developing toner
JPS63101859A (en) Manufacture of electrostatically charged image developing toner
JP2851872B2 (en) Method for producing toner for developing electrostatic images
JPS63101860A (en) Method and device for manufacturing electrostatically charged image developing toner
JPS62187861A (en) Manufacture of toner for development of electrostatically charged image
JPH0359674A (en) Manufacture of toner for electrostatic charge image development
KR930004694B1 (en) Air current classifier process for preparing toner and apparatus for preparing toner
JP3606710B2 (en) Airflow type DS classifier
JP2704777B2 (en) Collision type air flow crusher and crushing method
JP3295794B2 (en) Airflow classifier and toner manufacturing method
JPH0666033B2 (en) Toner powder manufacturing method and apparatus system for manufacturing toner powder
JPH03287173A (en) Production of electrostatically charged image developing toner
JPH01205172A (en) Production of toner for developing electrostatic charge image
JPH078916A (en) Air classifier
JPH03206466A (en) Production of toner for developing electrostatic charge image
JPH07148467A (en) Air classifier and production of toner using the same
JPH0938582A (en) Air current type classifier and preparation of toner
JPH0359676A (en) Manufacture of toner for electrostatic charge image development