JPH0371777A - Videotape recorder integrated with camera - Google Patents

Videotape recorder integrated with camera

Info

Publication number
JPH0371777A
JPH0371777A JP1208424A JP20842489A JPH0371777A JP H0371777 A JPH0371777 A JP H0371777A JP 1208424 A JP1208424 A JP 1208424A JP 20842489 A JP20842489 A JP 20842489A JP H0371777 A JPH0371777 A JP H0371777A
Authority
JP
Japan
Prior art keywords
layer
porous
specific gravity
sound
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1208424A
Other languages
Japanese (ja)
Other versions
JPH0722352B2 (en
Inventor
Tadashi Maeda
忠司 前田
Toshiro Tsukahara
塚原 敏郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1208424A priority Critical patent/JPH0722352B2/en
Publication of JPH0371777A publication Critical patent/JPH0371777A/en
Publication of JPH0722352B2 publication Critical patent/JPH0722352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

PURPOSE:To improve the sound absorbing characteristic by constituting a case with a porous layer member whose specific gravity is varied continuously in the broadwise direction or the face direction and a porous structure member comprising a nonporous melting layer member fused to one side of the porous layer member. CONSTITUTION:A porous layer sound absorbing member 17 whose specific gravity is varied continuously in the broadwise direction of the layer and molten layer member 16 comprising a nonporous conductive member 16a molten and integrated with the porous layer sound absorbing member 17 and a nonconductive member 16b constitute a case 1a to be a porous structure. A layer 15 of a multi-layer 14 is a layer having a large specific gravity such as a melting layer which may be either porous or nonporous, and the porous layer 16 with a small specific gravity is normally porous and the porosity is continuously changed in the broadwise direction. Moreover, the layer 17 is a skin layer whose specific gravity is between that of the melting layer 15 and that of the porous layer 16. Thus, the sound absorbing characteristic is improved.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明はカメラ一体型ビデオテープレコーダ(以下、
VTRと略す)、特にその筺体の構造に関するものであ
る。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a camera-integrated videotape recorder (hereinafter referred to as
(abbreviated as VTR), especially the structure of its housing.

[従来の技術] 第19図は従来のカメラ一体型VTRの分解図であり、
第20図は、その機構部の動作を示す詳細図である。第
19図において(1)はカメラ−体型VTRを(イ)、
(つ)、(1)、(オ)方向より覆う意匠構造体である
。(6)はカメラ−体型VTRを機能させるための回路
部である。
[Prior Art] Figure 19 is an exploded view of a conventional camera-integrated VTR.
FIG. 20 is a detailed diagram showing the operation of the mechanism section. In Fig. 19, (1) is a camera-type VTR (a),
It is a design structure that covers from the (1), (1), and (e) directions. (6) is a circuit section for operating the camera-type VTR.

(7)は磁気テープをカセットケースから引き出し、引
き出した磁気テープに信号を記録または磁気テープから
の信号を再生するためのメカ部である。
(7) is a mechanical unit for pulling out the magnetic tape from the cassette case and recording signals on the pulled-out magnetic tape or reproducing signals from the magnetic tape.

(8)は、回路部への静電気障害を防ぐ導電性のシール
ドプレート、 (9)はシールドプレート(8)と回路
部(6)の接触を防ぐために矢印(ア)方向にシールド
プレートを覆うように取り付ける非導電性の絶縁シート
、(10)は音声を収音するためのマイクである。
(8) is a conductive shield plate that prevents electrostatic damage to the circuit section, and (9) is a conductive shield plate that covers the shield plate in the direction of arrow (A) to prevent contact between the shield plate (8) and the circuit section (6). A non-conductive insulating sheet (10) is attached to a microphone for collecting sound.

(11)はドラム、(12)は磁気テープ、(13)は
カセットケース、(11a)はドラム(11)に取り付
けられたヘッドである。
(11) is a drum, (12) is a magnetic tape, (13) is a cassette case, and (11a) is a head attached to the drum (11).

次に動作について説明する。Next, the operation will be explained.

第20図は、機構部の動作を示しており、磁気テープ(
12)がカセットケース(13)より引き出されてドラ
ム(11)に巻き付く。
Figure 20 shows the operation of the mechanism, and shows the operation of the magnetic tape (
12) is pulled out from the cassette case (13) and wrapped around the drum (11).

ドラム(11)は矢印(力)方向に回転し、また磁気テ
ープは矢印(キ)方向に走行する。
The drum (11) rotates in the direction of the arrow (force), and the magnetic tape runs in the direction of the arrow (k).

そして、ヘッド(lla)は磁気テープ(12)に信号
を記録または磁気テープ(12)からの信号を再生する
The head (lla) records signals on the magnetic tape (12) or reproduces signals from the magnetic tape (12).

[発明が解決しようとする課題] 従来のカメラ一体型VTRは以上のように構成されてい
るので、ドラム(11)に取り付けたヘッド(lla)
が磁気テープ(12)に進入または離脱するときに発生
する騒音は通常の射出成形のプラスチック製の筺体で覆
っただけでは低騒音のカメラ一体型VTRが得られにく
く、マイク(10)にその騒音が集音されてしまうとい
う課題があった。
[Problem to be solved by the invention] Since the conventional camera-integrated VTR is configured as described above, the head (lla) attached to the drum (11)
It is difficult to obtain a low-noise camera-integrated VTR by simply covering the noise generated when the magnetic tape (12) enters or leaves the magnetic tape (12). There was a problem that the sound could be picked up.

また、シールドプレート(8)及び絶縁シート(9)を
装着しなければならず、そのためのスペースの確保が困
難であり、部品点数が多くなるため、カメラ一体型VT
Rの小型化及びコストダウンを図れないという問題があ
った。
In addition, it is necessary to install a shield plate (8) and an insulating sheet (9), which makes it difficult to secure space and increases the number of parts.
There was a problem in that it was not possible to reduce the size and cost of R.

この発明は上記のような問題点を解消するためになされ
たもので、比重変化をもたせた多孔質層の吸音部材を用
いることにより吸音特性を良好なものとすると共に、複
雑な材質にも対応できる静電気シールド効果を有する筺
体を用いて小型のカメラ一体型VTRを得ることを目的
とする。
This invention was made to solve the above-mentioned problems, and by using a sound-absorbing member made of a porous layer with varying specific gravity, it has good sound-absorbing properties and is compatible with complex materials. The purpose of the present invention is to obtain a compact camera-integrated VTR using a casing having a static electricity shielding effect.

[課題を解決するための手段] この発明に係るカメラ一体型VTRは、比重を層の厚さ
方向もしくは面方向に連続的に変化させた多孔質層の吸
音部材と、この吸音部材の内側に融着して一体化した多
孔質層よりも空孔率の小さい非通気性の融合層部材とか
らなる多孔質構造体により筺体を構成したものである。
[Means for Solving the Problems] The camera-integrated VTR according to the present invention includes a sound absorbing member made of a porous layer whose specific gravity is continuously changed in the thickness direction or surface direction of the layer, and a sound absorbing member on the inside of the sound absorbing member. The housing is constituted by a porous structure including a non-breathable fused layer member having a lower porosity than the fused and integrated porous layer.

[作用] この発明におけるカメラ一体型VTRは、比重すなわち
空孔率を変化させた多孔質層の部材を装着することによ
り各種特性を向上させる。
[Function] The camera-integrated VTR according to the present invention improves various characteristics by installing a porous layer member having a varied specific gravity or porosity.

例えば、厚み等に応じて空孔率の変化度合を変えて吸音
特性の周波数を制御したり、多孔質層の吸音部材とその
内側に融着された非通気性の融合層部材とを層状にする
と遮音特性が向上する。
For example, the frequency of sound absorption characteristics can be controlled by changing the degree of change in porosity depending on the thickness, etc., or the sound absorption material of a porous layer and the non-breathable fused layer material fused to the inside can be layered. This improves the sound insulation properties.

〔実施例〕〔Example〕

以下、この発明の一実施例について説明する。 An embodiment of the present invention will be described below.

第1図はこの発明によるカメラ一体型VTRの筺体を示
す斜視図であり、図において、(1a)は機構部で発生
する騒音の吸収及び静電気シールド効果を有する多孔質
層の吸音部材と非通気性の融合素材とからなる筺体であ
る。
FIG. 1 is a perspective view showing the housing of the camera-integrated VTR according to the present invention. It is a housing made of materials that combine gender.

(2)はネジ(3)を用いて筺体(Ia)で回路部及び
機構部を覆い密閉するように取り付けるときに回路部(
6)のグランド部又は機構部(7)に接触する導電性の
取付首部である。
(2) is the circuit part (
6) is a conductive mounting neck that comes into contact with the ground section or mechanism section (7).

第2図は、第1図の取付首部(2)付近を示す断面図で
ある。図において、(17)は比重を層の厚さ方向に変
化させた多孔質層の吸音部材、(工6)は多孔質層(1
7)に融着して二律化した非通気性の導電性部材(16
a)及び非導電性部材(16b)からなる融合層部材で
ある。
FIG. 2 is a sectional view showing the vicinity of the attachment neck (2) in FIG. 1. In the figure, (17) is a porous layer sound absorbing member whose specific gravity is changed in the layer thickness direction, and (6) is a porous layer (1
Non-breathable conductive member (16
This is a fused layer member consisting of a) and a non-conductive member (16b).

なお、上記実施例では、(1a)の筺体のみ多孔質構造
体としたが筺体(1b)、(1c)、(ld)(第19
図参照)も同様の構造としても良い。また融合層部材(
16)を非導電性部材のみにより構成し、吸音効果のみ
を得るようにしても良い。
In the above example, only the housing (1a) was made of a porous structure, but the housings (1b), (1c), and (ld) (19th
(see figure) may also have a similar structure. Also, the fusion layer member (
16) may be constructed of only non-conductive members to obtain only the sound absorbing effect.

次に、本発明に用いる吸音材と非通気性の融合層部材と
からなる多孔質構造体(以下多孔質体あるいは層状のも
のは多層材ともいう)の構造、製法、特性について説明
する。なお詳細については平底1年4月28日出願の特
願平01−110996号明細書、名称「多孔質構造体
」に記載しである。
Next, the structure, manufacturing method, and characteristics of a porous structure (hereinafter, a porous structure or a layered structure is also referred to as a multilayer material) made of a sound-absorbing material and a non-breathable fused layer member used in the present invention will be explained. The details are described in Japanese Patent Application No. 110996/1999 filed on April 28, 1999, entitled "Porous Structure."

第3図(A)、(B)は、それぞれ多層材(14)の厚
さ方向に切断した断面を模式的に示す図である。図にお
いて、(15)は比重の大きい層、例えば融合層で、通
気性又は非通気性のいずれでもよい。
FIGS. 3(A) and 3(B) are diagrams each schematically showing a cross section cut in the thickness direction of the multilayer material (14). In the figure, (15) is a layer with a high specific gravity, such as a fusion layer, which may be either air permeable or non-air permeable.

(16)は比重の小さい多孔質層で、通常は通気性であ
り、空孔率は、厚さ方向に連続的に変化している。
(16) is a porous layer with low specific gravity and is usually breathable, and the porosity changes continuously in the thickness direction.

(17)は通常比重が融合層(15)と多孔質層(16
)の中間にあるスキン層で、例えば厚さ100ミクロン
以下の融合層である。
(17) has a normal specific gravity of the fused layer (15) and the porous layer (16).
), for example, a fused layer with a thickness of less than 100 microns.

多層材(14)は、融合層(15)と多孔質層(16)
とが一体化しており、同様に融合層(15)と多孔質層
(16)とスキン層(17)は−体化している。
The multilayer material (14) includes a fusion layer (15) and a porous layer (16).
Similarly, the fusion layer (15), porous layer (16), and skin layer (17) are integrated.

多層材(14)は吸音材として使用するときは、多孔質
層(16)を騒音源側に対面させて、音のエネルギーを
吸収減衰させかつ、融合層(15)で音波が透過するの
を防ぐ。
When the multilayer material (14) is used as a sound absorbing material, the porous layer (16) is placed facing the noise source to absorb and attenuate sound energy, and the fusion layer (15) prevents the transmission of sound waves. prevent.

次に、上記のような多層材(多孔質構造体)(14)を
構成する、層の厚さ方向もしくは層の面方向に比重を連
続的に変化させた多孔質層の製造方法及び特性について
説明する。
Next, we will discuss the manufacturing method and characteristics of the porous layer whose specific gravity is continuously changed in the layer thickness direction or layer plane direction, which constitutes the multilayer material (porous structure) (14) as described above. explain.

まず、製造方法について説明する。First, the manufacturing method will be explained.

第4図は、多層材の製造方法を説明する金型構成断面図
である。図において、(18)は凹側金型で、例えばア
ルミニウム等の熱伝導性の良い材質で構成されており、
(19)は凸側金型で、同様にアルミニウムで構成され
ている。
FIG. 4 is a cross-sectional view of a mold configuration for explaining a method for manufacturing a multilayer material. In the figure, (18) is a concave mold, which is made of a material with good thermal conductivity, such as aluminum.
(19) is a convex mold, which is also made of aluminum.

(20)、(21)は各々金型の温度を上げるヒーター
で、凹側金型(18)の方が凸側金型(19)よりも高
温にされる。
(20) and (21) are heaters that raise the temperature of the mold, and the concave mold (18) is heated to a higher temperature than the convex mold (19).

製法■ 原料として、熱可塑性樹脂の粒状素材を用いて、多孔質
構造体を成形する場合について説明する。
Manufacturing method ■ A case will be described in which a porous structure is molded using a granular thermoplastic resin material as a raw material.

凹側金型(18)の壁部(22)の温度は、凹側金型(
18)と凸側金型(19)によって形成される閉空間(
23)内に入れられる原料である粒状素材の軟化する温
度以上で熱分解温度以下、通常150〜240℃にセッ
トされ、凸側金型(19)の壁部(24)の温度は、凹
側金型(18)の壁部(22)の温度よりも低い温度、
例えば原料となる粒状素材の軟化する温度付近、通常7
0〜180℃にセットされる。
The temperature of the wall (22) of the concave mold (18) is
18) and a closed space formed by the convex mold (19).
23) The temperature of the wall part (24) of the convex side mold (19) is set at a temperature higher than the softening temperature of the granular material, which is the raw material to be placed inside, and lower than the thermal decomposition temperature, usually 150 to 240°C. a temperature lower than the temperature of the wall (22) of the mold (18);
For example, around the temperature at which the granular material used as the raw material softens, usually 7
Set at 0-180°C.

すると、凹側金型(18)の高温壁部(22)に接触し
た粒状素材は溶融し、最終的には比重の大きい層、すな
わち融合層(15)になり、融合の程度により通気性か
ら非通気性に変化する。
Then, the granular material that came into contact with the high-temperature wall (22) of the concave mold (18) melts and eventually becomes a layer with a high specific gravity, that is, a fused layer (15), and depending on the degree of fusion, the air permeability decreases. Changes to non-breathable.

凸側金型(19)の壁部(24)は高温壁部(22)よ
り低温のため、壁部(24)から上記融合層(15)ま
での粒状素材は、完全流動までには至らないが、半流動
状態で、粒状素材各々が接触部分で溶着し、最終的には
上記融合層(15)に溶着した多孔質層(16)が形成
される。
Since the wall (24) of the convex mold (19) is at a lower temperature than the high-temperature wall (22), the granular material from the wall (24) to the fusion layer (15) does not reach complete fluidity. However, in a semi-fluid state, each particulate material is welded at the contact portion, and finally a porous layer (16) welded to the fused layer (15) is formed.

この多孔質層(16)は通常は通気性であるが、バイン
ダーなどの素材の混合材によっては非通気性になる。
This porous layer (16) is normally breathable, but depending on the mixture of materials such as binder, it becomes non-breathable.

このようにして比重の大きい層と比重の小さい多孔質層
を一体的に同時に成形することができる。
In this way, a layer with a high specific gravity and a porous layer with a low specific gravity can be integrally molded at the same time.

粒状素材の直径が0.2mm以下になると、空孔径が小
さくなって、多層材の機能、例えば吸音特性が低下する
When the diameter of the granular material is 0.2 mm or less, the pore diameter becomes small and the function of the multilayer material, such as sound absorption properties, deteriorates.

また、空孔径を大きくしようとすると、粒子間の融着度
合が少なくなり、機械的強度が低下する。
Furthermore, when attempting to increase the pore diameter, the degree of fusion between particles decreases, resulting in a decrease in mechanical strength.

更に、直径が31以上になると、吸音特性が低下する。Furthermore, when the diameter becomes 31 mm or more, the sound absorption properties deteriorate.

なお、熱可塑性樹脂の粒状素材原料としては、代表的な
ものとして、PP(ポリプロピレン)、AS(アクリル
スチロール)、スチロールなどを用いることができる。
Note that typical examples of the granular material raw material for the thermoplastic resin include PP (polypropylene), AS (acrylic styrene), and styrene.

又、熱可塑性樹脂の粒状素材にバインダーとして、メチ
ルエチルケトン(MEK)セルロース、ワニス、アセト
ンを吹付けたり、混ぜたりすると、多層材の粒状素材各
々の固着力が増し、機械的強度が向上して、取扱い性が
良くなる。
In addition, when methyl ethyl ketone (MEK) cellulose, varnish, or acetone is sprayed or mixed as a binder into the thermoplastic resin granular material, the adhesion strength of each granular material of the multilayer material increases, and the mechanical strength improves. Improves handling.

製法■ 原料として、熱硬化性樹脂の粒状素材を用いて多層材を
成形する場合について説明する。
Manufacturing method ■ The case of molding a multilayer material using a thermosetting resin granular material as a raw material will be explained.

製法■と同様にして、凹側金型(18)の壁部(22)
の温度は、粒状素材の軟化する温度以上で熱分解以下に
セットされ、凸側金型(19)の壁部(24)の温度は
、凹側金型(18)の壁部(22)の温度よりも低い粒
状素材の軟化する温度付近にセットされる。
In the same manner as manufacturing method ■, the wall (22) of the concave side mold (18)
The temperature of the wall (24) of the convex mold (19) is set to be higher than the softening temperature of the granular material and lower than the thermal decomposition temperature, and the temperature of the wall (22) of the concave mold (18) is set to It is set near the temperature at which the granular material softens, which is lower than the temperature.

ここにおいて金型(18)、(19)内に熱硬化性樹脂
、例えばフェノール、PBT (ポリブチレンテレフタ
レート) 、PET (ポリエチレンテレフタレート)
などの粒状素材で直径0.2〜3mm程度の粒子を、バ
インダーとなる例えばセルロース、ワニス、各種接着剤
などと混合して投入し、金型(18)、(19)を加圧
しながら閉じ、数分〜数時間加熱する。
Here, the molds (18) and (19) are filled with thermosetting resin such as phenol, PBT (polybutylene terephthalate), PET (polyethylene terephthalate).
Particles of a granular material with a diameter of about 0.2 to 3 mm are mixed with a binder such as cellulose, varnish, various adhesives, etc., and the molds (18) and (19) are closed under pressure. Heat for several minutes to several hours.

この加熱は上述した金型(18)、(19)のセット温
度で行われ、加圧力は加熱状態で1 kg/Cll12
〜数ton /cm2である。
This heating is performed at the set temperature of the molds (18) and (19) mentioned above, and the pressing force is 1 kg/Cll12 in the heated state.
~ several tons/cm2.

このようにすると、凹側金型(18)の高温壁部(22
)に接触した粒状素材は軟化し、バインダーで接着され
て比重の大きい層となり、軟化の程度により、通気性か
ら非通気性に変化する。
In this way, the high temperature wall part (22) of the concave mold (18)
) The granular material that comes into contact with the material softens and is bonded with a binder to form a layer with a high specific gravity, which changes from breathable to non-breathable depending on the degree of softening.

凸側金型(19)の壁部(24)は高温壁部(22)に
より低温のため、壁部(24)から上記の比重の大きい
層(15)までの粒状素材は、完全流動までには至らな
いが、半流動状態で、粒状素材各々が接触部分でバイン
ダーで接着されて、最終的には、上記の比重の大きい層
(15)に接着した多孔質層(16)が一体向に形成さ
れる。
Since the wall (24) of the convex mold (19) is at a low temperature due to the high temperature wall (22), the granular material from the wall (24) to the layer (15) with high specific gravity is completely fluidized. However, in a semi-fluid state, each particulate material is bonded with a binder at the contact portion, and finally the porous layer (16) bonded to the layer (15) with a high specific gravity is oriented in one direction. It is formed.

この多孔質層(16)は通常は通気性であるが、バイン
ダーの混合量が多くなると、非通気性になる。
This porous layer (16) is normally breathable, but when the amount of binder mixed becomes large, it becomes non-breathable.

さらに、多層材の多孔質層の比重を、多孔質層の層面方
向に変化させようとするには、低温側の金型の温度を上
記層面方向に沿って変化すればよい。
Furthermore, in order to change the specific gravity of the porous layer of the multilayer material in the layer plane direction of the porous layer, the temperature of the mold on the low temperature side may be changed along the layer plane direction.

すると低温側の金型の中でも、より高温部に対向する多
孔質層部分は、比重が大きくなり、より低温部に対向す
る多孔質層部分は比重が小さくなる。
Then, among the molds on the low temperature side, the porous layer portion facing the higher temperature portion has a higher specific gravity, and the porous layer portion facing the lower temperature portion has a lower specific gravity.

一方、上述の製法においては、多層材が一体的に成形で
きるので、金型を変えることにより、種々の形状、特に
複雑な形状の多層材にも容易に対応できる。
On the other hand, in the above manufacturing method, since the multilayer material can be integrally molded, by changing the mold, it is possible to easily produce multilayer materials of various shapes, especially complex shapes.

次に、このようにして製造された、層の厚さ方向もしく
は層の面方向に比重を連続的に変化させた多孔質層の各
種特性及び応用等について説明する。
Next, various characteristics and applications of the porous layer manufactured in this way, in which the specific gravity is continuously changed in the thickness direction or in the plane direction of the layer, will be explained.

(i)吸音特性 第5図は、製広■て成形された厚さ10+n+aの多孔
質構造体(はとんど全域多孔質層)における厚さ方向の
空孔率(比重)分布例を示す図である。
(i) Sound absorption characteristics Figure 5 shows an example of the porosity (specific gravity) distribution in the thickness direction of a porous structure with a thickness of 10+n+a (mostly a porous layer throughout the entire area) that has been widely molded. It is a diagram.

第5図中、曲線A、Cは、空孔率が厚さ方向にほぼ−様
な特性を示し、それぞれ約25(%)、約10(%)の
ものであり、曲線Bは、空孔率が厚さ方向に分布を有し
、10〜20(%)の範囲で連続的に変化しているもの
である。
In FIG. 5, curves A and C show characteristics in which the porosity is approximately -like in the thickness direction, about 25 (%) and about 10 (%), respectively, and curve B shows the porosity of about 25 (%) and about 10 (%), respectively. The ratio has a distribution in the thickness direction and continuously changes in the range of 10 to 20 (%).

この種の多孔質構造体を吸音材として利用する場合には
、その吸音特性が問題になる。
When using this type of porous structure as a sound absorbing material, its sound absorbing properties become an issue.

第6図は第5図に示す三種類の空孔率分布を有するサン
プルにおける垂直入射吸音率をJISA1405 r管
内法による建築材料の垂直入射吸音率の測定法」により
測定した結果を示す。
FIG. 6 shows the results of measuring the normal incidence sound absorption coefficients of the samples having the three types of porosity distributions shown in FIG.

なお、曲線Bの厚さ方向に空孔率分布を有するサンプル
では、空孔率が10(%)の方を音波を入射する面とし
た。
In addition, in the sample having a porosity distribution in the thickness direction of curve B, the side with a porosity of 10 (%) was set as the surface on which the sound waves were incident.

図から判るように、空孔率分布を有するサンプル(曲線
B)が最も吸音率特性が良いことを確認した。
As can be seen from the figure, it was confirmed that the sample having a porosity distribution (curve B) had the best sound absorption coefficient characteristics.

以上説明した多孔質層を形成する樹脂粒は形状が球状の
ほか、円筒状、円柱状、立方体などでもよい。ひげ付き
の熱可塑性樹脂粒はひげの部分が溶融しやすいので、原
料として好適である。
The resin particles forming the porous layer described above may be cylindrical, columnar, cubic, etc. in addition to being spherical in shape. Thermoplastic resin particles with whiskers are suitable as raw materials because the whiskers are easily melted.

又、多層材の軽量化を図る目的で、例えば発泡した中空
粒状素材や発泡性素材を原料として利用することもでき
る。
Furthermore, for the purpose of reducing the weight of the multilayer material, for example, foamed hollow granular materials or foamable materials can be used as raw materials.

更に、補強用として原料に短繊維を混入させてもよいし
、バインダーとして糸状の熱可塑性樹脂を原料に混入さ
せてもよい。
Furthermore, short fibers may be mixed into the raw material for reinforcement, and thread-like thermoplastic resin may be mixed into the raw material as a binder.

なお、多孔質体としての特性、特に吸音特性に対し、粒
状素材の形状や長径には、より優れた特性を有する範囲
があることを確認した。以下に説明する。
In addition, it was confirmed that there is a range in the shape and major axis of the granular material that has better characteristics as a porous body, especially sound absorption characteristics. This will be explained below.

第7図には、粒状素材の形状を変えた場合の素材入射吸
音率の特性バラツキ(サンプル数5個での特性のバラツ
キ)を示す図である。曲線Aは粒状素材が直径0.8 
(mn+) 、長さ1 (n+m)の円筒形状のもの、
曲線Bは直径1 (m+u)の球体状のものである。
FIG. 7 is a diagram showing characteristic variations in material incident sound absorption coefficient (variations in characteristics among five samples) when the shape of the granular material is changed. Curve A has a granular material with a diameter of 0.8
(mn+), cylindrical shape with length 1 (n+m),
Curve B is spherical with a diameter of 1 (m+u).

なお、いずれも多孔質層の厚さは10 (nun)であ
り、吸音率を測定した周波数は2 (KHz)である。
In each case, the thickness of the porous layer was 10 (nun), and the frequency at which the sound absorption coefficient was measured was 2 (KHz).

同図より、球体状のもの(曲線B)は、サンプルの違い
による特性の差が少なく、極めて安定していることが判
る。
From the figure, it can be seen that the spherical one (curve B) has little difference in characteristics due to differences in samples and is extremely stable.

この理由は、球体状の場合、粒状素材どうしの接触点が
一個所となるので、成形時に粒状素材の層状態が安定し
て均一になるためである。
The reason for this is that in the case of a spherical shape, there is only one point of contact between the granular materials, so that the layer state of the granular materials becomes stable and uniform during molding.

このように、特にサンプル間で特性の安定性を要する場
合などには球体状(球体もしくは楕円体)にする方が、
より好ましい多孔質構造体を得ることができる。
In this way, it is better to use a spherical shape (sphere or ellipsoid), especially when stability of properties is required between samples.
A more preferable porous structure can be obtained.

また、吸音特性は、粒状素材の長径によっても異なるこ
とを確認した。第8図に、粒状素材の長径と吸音率の関
係を示す。
It was also confirmed that the sound absorption properties differ depending on the major axis of the granular material. FIG. 8 shows the relationship between the long axis of the granular material and the sound absorption coefficient.

サンプルの厚さは10 (IIIn)で、測定周波数は
2 (KHz)である。粒状素材を径を小さく過ぎたり
、大きくし過ぎたりすると、音波が多孔質体内に侵入し
にくくなったり、多孔質体の固有音響インピーダンスが
空気側の固有音響インピーダンスと整合しなくなったり
して吸音率か低下する。
The thickness of the sample is 10 (IIIn) and the measurement frequency is 2 (KHz). If the diameter of the granular material is made too small or too large, it will be difficult for sound waves to penetrate into the porous body, and the specific acoustic impedance of the porous body will not match the specific acoustic impedance of the air side, resulting in a decrease in sound absorption coefficient. or decrease.

第8図より、粒状素材の長径は、実用的な範囲では0.
2〜3.0 (mm) 、好ましくは1,0〜2.0(
n+m)の範囲とすることにより、吸音特性を良好にで
きることを確認した。
From FIG. 8, the major axis of the granular material is 0.
2 to 3.0 (mm), preferably 1.0 to 2.0 (
It was confirmed that the sound absorbing properties can be improved by adjusting the range of n+m).

次に、本発明に用いる多孔質構造の他の実施例について
説明する。
Next, other examples of porous structures used in the present invention will be described.

多孔質構造体は、層の厚さ方向もしくは層の面方向に比
重を連続的に変化させた多孔質層と、この多孔質よりも
空孔率が小さく比重の大きい中実層とを層状にしたもの
である。
A porous structure consists of a porous layer with a specific gravity that changes continuously in the thickness direction or in the plane direction of the layer, and a solid layer with a smaller porosity and a higher specific gravity than the porous layer. This is what I did.

この中実層は、粒状素材が熱可塑性樹脂の場合は、融合
層になり、融合の程度により通気性から非通気性まで変
化する。
This solid layer becomes a fused layer when the granular material is a thermoplastic resin, and changes from breathable to non-breathable depending on the degree of fusion.

また、粒状素材が熱硬化性樹脂の場合には、粒状素材が
軟化しバインダーで接着されて比重の大きい層となり、
軟化の程度により通気性から非通気性まで変化する。
In addition, when the granular material is a thermosetting resin, the granular material softens and is bonded with a binder to form a layer with a high specific gravity.
Depending on the degree of softening, it varies from breathable to non-breathable.

次に、このような多孔質構造体の代表的な製造方法につ
いて説明する。
Next, a typical method for manufacturing such a porous structure will be described.

製法例■−■ 製法■において、凹側金型(18)の壁部(22)の温
度を150℃にセットし、凸側金型(19)の壁部(2
4)の温度を100℃にセットし、ABS樹脂として、
電気化学工業株式会社製GTR−40(グレード)、軟
化する温度86℃の熱可塑性樹脂の粒状素材、直径ll
l1mの球状粒子を金型に入れ、金型(18)、(19
)を閉じた。この時、壁面(22)、(24)間の距離
は10mn+であった。
Manufacturing method example ■-■ In manufacturing method ■, the temperature of the wall (22) of the concave mold (18) is set to 150°C, and the temperature of the wall (22) of the convex mold (19) is set to 150°C.
Set the temperature of 4) to 100℃, and as ABS resin,
GTR-40 (grade) manufactured by Denki Kagaku Kogyo Co., Ltd., thermoplastic resin granular material with a softening temperature of 86°C, diameter 1
Put 11m spherical particles into a mold, molds (18) and (19)
) closed. At this time, the distance between the wall surfaces (22) and (24) was 10 mn+.

この状態で20分間経過(つまり加熱状態を持続)させ
て金型(18)、(19)を開放した。
After 20 minutes in this state (that is, the heating state was maintained), the molds (18) and (19) were opened.

なお、加熱状態のときの加圧力は100 kg/ cm
2であった。
In addition, the pressurizing force in the heated state is 100 kg/cm
It was 2.

このようにして成形した多層材(14)を第9図に示す
。この多層材(14)は厚さが10vnでその中の融合
層(15)の厚さは約1 mra、多孔質層(16)の
厚さは約9間であった。
The multilayer material (14) thus formed is shown in FIG. This multilayer material (14) had a thickness of 10 mra, in which the thickness of the fused layer (15) was about 1 mra, and the thickness of the porous layer (16) was about 9 mra.

製法例の−3 製法■において、凹側金型(18)の壁部(22)の温
度を180℃にセットし、凸側金型(19)の壁部(2
4)の温度を130℃にセットし、ABS樹脂として、
電気化学工業株式会社製GTR−40(グレード)、軟
化する温度86℃の熱可塑性樹脂の粒状素材、直径1n
onの球状粒子を金型に入れ、金型(18)、(19)
を閉じた。この際、壁面(22)、(24)間の距離は
10vnmであった。
Manufacturing method example -3 In manufacturing method ■, the temperature of the wall (22) of the concave mold (18) is set to 180°C, and the temperature of the wall (22) of the convex mold (19) is set to 180°C.
Set the temperature of 4) to 130℃, and as ABS resin,
GTR-40 (grade) manufactured by Denki Kagaku Kogyo Co., Ltd., thermoplastic resin granular material with a softening temperature of 86°C, diameter 1n
Put the on spherical particles into the mold, mold (18), (19)
closed. At this time, the distance between the wall surfaces (22) and (24) was 10 vnm.

この状態で15分間経過させて金型(18)、(19)
を開放した。なお加熱状態のときの加圧力は100 k
g/c+n2であった。
Leave the molds (18) and (19) in this state for 15 minutes.
was released. The pressure in the heated state is 100 k.
g/c+n2.

このとき成形した多層材(14)は厚さが101、その
中の融合層(15)の厚さは約1non、多孔層(16
)の厚さは約9+n+nであったが、製法例■−2の成
形多層材(14)に比べ、多孔層(16)の表面部の融
合化が一部分進み、30μm程度のスキン層が形成され
た。
The multilayer material (14) formed at this time has a thickness of 101 mm, the thickness of the fusion layer (15) therein is approximately 1 non, and the thickness of the porous layer (16 mm).
) was approximately 9 + n + n, but compared to the molded multilayer material (14) of manufacturing method example ■-2, the surface portion of the porous layer (16) was partially fused, and a skin layer of approximately 30 μm was formed. Ta.

製法例■−2 製法■において、凹側金型(18)の壁(22)の温度
を200℃にセットし、凸側金型(19)の壁部(24
)の温度を150℃にセットし、熱硬化性樹脂として、
フェノール樹脂(明和化成株式会社製、MW−752(
グレード)、軟化する温度190℃)で直径1mmの粒
状素材を、パインダーとなる粉末状セルロース15重量
%と共に金型に入れ、金型(18)、(19)を閉じた
Manufacturing method example ■-2 In manufacturing method ■, the temperature of the wall (22) of the concave side mold (18) is set to 200°C, and the temperature of the wall (22) of the convex side mold (19) is set to 200°C.
) was set at 150°C, and as a thermosetting resin,
Phenol resin (manufactured by Meiwa Kasei Co., Ltd., MW-752 (
A granular material with a diameter of 1 mm was placed in a mold together with 15% by weight of powdered cellulose as a binder, and the molds (18) and (19) were closed.

壁面(22)、(24)間の距離は10mmであった。The distance between the wall surfaces (22) and (24) was 10 mm.

この状態で25分間経過(つまり加熱状態を持続)させ
て金型(18)、(19)を開放した。
After 25 minutes in this state (that is, the heating state was maintained), the molds (18) and (19) were opened.

なお加熱状態のときの加圧力は150 kg’/ cm
2であった。このように成形した多層材(14)は厚さ
が10vnで、その中の比重の大きい層(15)の厚さ
は約1m+n、多孔質層(16)の厚さは約9manで
あった。
The pressing force in the heated state is 150 kg'/cm
It was 2. The thus formed multilayer material (14) had a thickness of 10 mn, of which the layer (15) with high specific gravity had a thickness of about 1 m+n, and the porous layer (16) had a thickness of about 9 mn.

なお熱硬化性樹脂を熱可塑性樹脂でコートした粒状素材
を原料として用いてもよい。
Note that a granular material obtained by coating a thermosetting resin with a thermoplastic resin may be used as the raw material.

次に、上記のようにして成形された多層材(層状の多孔
質構造体)の特性等について説明する。
Next, the characteristics of the multilayer material (layered porous structure) formed as described above will be explained.

(i)空孔率 第10図は成形された多層材の空孔率を示す曲線図で曲
線実■−2、実■−3はそれぞれ製法例の−2、製法例
■−3によって製造された多層材の厚さ(nun)に対
する空孔率(%)を示す。
(i) Porosity Figure 10 is a curve diagram showing the porosity of the molded multilayer material. Curves ■-2 and ■-3 are manufactured by manufacturing method example -2 and manufacturing method example ■-3, respectively. The porosity (%) is shown with respect to the thickness (nun) of the multilayer material.

融合層(15)はいずれも非通気性で、実■−2の多孔
質層(16)は厚さ方向に空孔率が連続的に変化し、表
面(低温側)で空孔率が最大となる。実■−3の多孔質
層(16)は厚さ方向に空孔率が連続的に変化するが、
多孔質層(16)の中央で空孔率が最大になり表面部(
低温側)で空孔率が低下する。
All of the fusion layers (15) are non-porous, and the porosity of the porous layer (16) of Actual ■-2 changes continuously in the thickness direction, with the porosity being the highest at the surface (low temperature side). becomes. The porosity of the porous layer (16) of Example II-3 changes continuously in the thickness direction,
The porosity reaches its maximum in the center of the porous layer (16), and the surface area (
(lower temperature side), the porosity decreases.

すなわち、表面部の空孔率は、多孔質層(16)の最大
の空孔率と融合層(15)の空孔率の中間であり、部分
的に融合したスキン層(17)が形成されていることを
示している。
That is, the porosity of the surface area is between the maximum porosity of the porous layer (16) and the porosity of the fused layer (15), and a partially fused skin layer (17) is formed. It shows that

なお比重は材質が同じであれば、当然ながら空孔率が小
さいほど大きい。
Note that, as long as the materials are the same, the smaller the porosity, the higher the specific gravity.

(ii)層状多孔質構造体の特性 多層材を吸音材として使用する場合にはその吸音特性が
問題になる。
(ii) Characteristics of layered porous structure When a multilayer material is used as a sound absorbing material, its sound absorbing properties become an issue.

第11図は垂直入射吸音率を比較する曲線図で、垂直入
射吸音率を前述のJIS  A  1405により測定
した結果を示す。
FIG. 11 is a curve diagram for comparing the normal incidence sound absorption coefficients, and shows the results of measuring the normal incidence sound absorption coefficients according to the above-mentioned JIS A 1405.

曲線実の−2は製法■−2で製造した多層材で厚さ10
mmのもの、曲線「従」は従来の吸音材であるウレタン
フオームで厚さ10mmのものの特性をそれぞれ示す。
-2 of the curved line is a multilayer material manufactured by manufacturing method ■-2 and has a thickness of 10
The curve "minor" indicates the characteristics of a conventional sound absorbing material, urethane foam, with a thickness of 10 mm.

図からも判るように、多層材の垂直入射吸音率は従来の
吸音材(ウレタンフオーム)のそれと同等以上の特性を
有することを確認した。
As can be seen from the figure, it was confirmed that the normal incidence sound absorption coefficient of the multilayer material is equal to or higher than that of the conventional sound absorbing material (urethane foam).

第12図は同様な垂直入射吸音率の特性曲線図で、いず
れの曲線も前述の方法で製造した多層材の特性で、実■
−2、実■−3はそれぞれ製法例■−2、製法例■−3
で製造した厚さ110l1l1の多層材の特性を示す。
Figure 12 is a similar characteristic curve diagram of the normal incidence sound absorption coefficient.
-2 and actual ■-3 are manufacturing method example ■-2 and manufacturing method example ■-3, respectively.
The characteristics of a multilayer material with a thickness of 110l1l1 manufactured by

なお、製法例■−3のものの特性が良好な理由は表面部
の空孔率の最適化の影響と思われる。
The reason why the properties of Production Example (1)-3 are good is thought to be due to the optimization of the porosity of the surface area.

(iii)スキン層の効果 次に、スキン層により吸音特性が向上する現象の解明及
びその最適厚さについて説明する。
(iii) Effect of the skin layer Next, we will explain the phenomenon in which the sound absorption properties are improved by the skin layer and its optimum thickness.

まず、多孔質構造体としてABS樹脂を用いて、厚さ1
0n+mのサンプルを前述の製法■により製作した。
First, ABS resin is used as the porous structure, and the thickness is 1
A sample of 0n+m was manufactured using the manufacturing method (2) described above.

このサンプルの空孔率分布の実測結果を第13図に、空
孔率の小さい方を音波入射面なしでその垂直入射吸音率
特性を第14図に示す。
Fig. 13 shows the actual measurement results of the porosity distribution of this sample, and Fig. 14 shows the normal incidence sound absorption coefficient characteristics of the sample with the smaller porosity without a sound wave incidence surface.

図から明らかなように、このサンプルでは、400(H
z)という低周波で吸音率が最大となり、しかもその値
が90(%)を越える良好な吸音特性が得られた。
As is clear from the figure, in this sample, 400 (H
The sound absorption coefficient was maximum at a low frequency of z), and good sound absorption characteristics were obtained with the value exceeding 90(%).

このとき、このサンプルの音波入射面側の低空孔率部を
顕微鏡で破断観察した結果、その表面が厚さ30ミクロ
ン程度の、はぼ非通気性のスキン層になっていることが
見出された。
At this time, as a result of fracture observation of the low porosity part on the sound wave incidence side of this sample using a microscope, it was found that the surface had become a nearly impermeable skin layer with a thickness of about 30 microns. Ta.

さらに、スキン層の厚さを種々変更して吸音特性の試験
を行った結果、スキン層の厚さが100ミクロンを越え
ると、スキン層が質量としてではなく、弾性膜(バネ系
)として働くようになり、最高吸音率の周波数は、逆に
上がってしまい、所要の効果は得られなかった。
Furthermore, as a result of testing the sound absorption properties by varying the thickness of the skin layer, we found that when the thickness of the skin layer exceeds 100 microns, the skin layer acts not as a mass but as an elastic membrane (spring system). Therefore, the frequency of the highest sound absorption coefficient rose, and the desired effect could not be obtained.

従って、スキン層の厚さは100ミクロン以下が妥当で
あることを確認した。
Therefore, it was confirmed that the appropriate thickness of the skin layer is 100 microns or less.

上記の層状の多孔質構造体は、主として二層の場合で説
明してきたが、三層あるいは任意層・任意材質の多孔質
構造体とすることもできる。
The above-mentioned layered porous structure has mainly been explained in the case of two layers, but it can also be a three-layered porous structure or a porous structure with arbitrary layers and arbitrary materials.

第15図は、スキン層(17) 、多孔質層(16)及
び非通気性の中実層(15)よりなる三重層の多孔質構
造体(14a)の断面図を示す。
FIG. 15 shows a cross-sectional view of a triple-layer porous structure (14a) consisting of a skin layer (17), a porous layer (16) and an impermeable solid layer (15).

これを、吸音材として用いる場合には、前述したように
、スキン層(17)及び多孔質層(16)により優れた
吸音特性を有し、かつ非通気性の中実層(15)が遮音
体となるので、吸音と遮音の両機能を効果的に発揮する
構造体とすることができる。
When using this as a sound absorbing material, as described above, the skin layer (17) and the porous layer (16) have excellent sound absorbing properties, and the non-breathable solid layer (15) is a sound insulating material. Since it becomes a body, it is possible to create a structure that effectively exhibits both sound absorption and sound insulation functions.

なお、上記例に限らず、各分野でその用途に応じて、任
意層・任意材質の多孔質構造体として応用できることは
いうまでもない。
It goes without saying that the present invention is not limited to the above example, and can be applied as a porous structure with any layer and any material depending on the application in each field.

さらに、粒状素材に樹脂粒以外の粒を含む素材を用いる
ことにより、多孔質構造体の機能を拡大させることがで
きる。以下、その一実施例を説明する。
Furthermore, by using a material containing particles other than resin particles as the granular material, the function of the porous structure can be expanded. An example of this will be described below.

まず、製造方法について説明する。First, the manufacturing method will be explained.

製広例■−1 第16図は金型(18)、(19)の空間(23)に2
種類の粒を含む素材を入れ金型(18)、(19)を閉
じたところを示す断面図である。
Manufacturing example ■-1 Figure 16 shows 2 parts in the space (23) of the molds (18) and (19).
FIG. 3 is a sectional view showing the molds (18) and (19) filled with a material containing different kinds of grains and closed.

凹側金型(18)内に、最初に長径が約0.2+nmの
鉄粒(25)を積み厚さが約11になるように充填し、
その後、長径が約1mll1のABS樹脂粒(26)(
製法例■−2に使用したものと同じもの)を閉空間(2
3)の高さ(lhm)より約2111mはど高くなるよ
うに充填する。
In the concave mold (18), iron particles (25) having a major axis of about 0.2+nm are first stacked and filled to a thickness of about 11.
After that, ABS resin particles (26) with a major diameter of about 1ml1 (
Manufacturing method example ■-2) in a closed space (2
Fill the area so that it is approximately 2111 m higher than the height (lhm) of 3).

充填後、凸側金型(19)(第16図では板状金型)を
凹側金型(18)に密着接合させることにより、上記鉄
粒(25)とABS樹脂粒(26)の充填層を圧縮し、
閉空間(23)内に異種粒の充填層を形成する。
After filling, the iron particles (25) and ABS resin particles (26) are filled by closely joining the convex mold (19) (plate-shaped mold in FIG. 16) to the concave mold (18). compress the layers,
A packed layer of different types of grains is formed in the closed space (23).

以上の条件で、ABS樹脂粒の軟化する温度86℃より
高い温度、つまり凹側金型温度を150℃、凸側金型温
度を100℃に昇温し、約20分加熱する。鉄粒(25
)の融点は約1500℃であることから、その鉄粒の粒
形状は保持された状態となる。
Under the above conditions, the temperature is raised to a temperature higher than the softening temperature of the ABS resin particles, 86°C, that is, the concave mold temperature is 150°C and the convex mold temperature is 100°C, and heated for about 20 minutes. Iron grains (25
) has a melting point of about 1500°C, so the shape of the iron particles is maintained.

一方ABS樹脂粒は、特に凹側金型(18)の壁部(2
2)は高温であることから、それに接触する鉄粒も高温
となり、鉄粒(25)と接触するABS樹脂粒(26)
は溶融し、溶融したABS樹脂粒が鉄粒(25)を取り
巻くように流動する。
On the other hand, the ABS resin particles are particularly suitable for the wall (2) of the concave mold (18).
Since 2) is at a high temperature, the iron particles in contact with it also become high temperature, and the ABS resin particles (26) in contact with the iron particles (25)
is melted, and the melted ABS resin particles flow to surround the iron particles (25).

加熱後、冷却されて成形された多層体(14)は、厚さ
が10mmでその中鉄粒(25)が混入された融合層(
15)は厚さが約111II111多孔質層(16)は
厚さが約91の一体化した積層体となった。融合層(1
5)の比重は、鉄粒を含まない場合は、ABS樹脂の比
重そのものとなり、1.05gr/ccであるが、鉄粒
を入れた場合は融合層のみを切断し、その比重を測定し
た結果、4.4gr/eeであった。
After heating, the multilayer body (14) is formed by cooling and forming a fused layer (14) with a thickness of 10 mm, in which iron particles (25) are mixed.
15) had a thickness of approximately 111 II 111, and the porous layer (16) had a thickness of approximately 91 mm. Fusion layer (1
The specific gravity in 5) is the same as the specific gravity of ABS resin when iron particles are not included, which is 1.05gr/cc, but when iron particles are included, only the fusion layer is cut and the specific gravity is measured. , 4.4gr/ee.

多層材の多孔質層を吸音材とし、融合層を遮音材として
利用する場合、遮音材としてはその比重が大きいほど遮
音特性が向上するので、この多層材は遮音特性に優れる
When the porous layer of a multilayer material is used as a sound absorbing material and the fused layer is used as a sound insulating material, the higher the specific gravity of the sound insulating material, the better the sound insulating properties, so this multilayer material has excellent sound insulating properties.

従来は、ABS樹脂のような比重の軽い材料の遮音度を
上げるには、その材料の厚さを厚くするか、鉄板などの
金属を貼りつけることが必要であったが、この製造方性
では溶融する部分に比重の大きい材料を混入させること
により、多孔質層と比重のさらに大きい融合層を持つ多
層材を容易に実現できる。
Previously, in order to increase the sound insulation of materials with light specific gravity such as ABS resin, it was necessary to increase the thickness of the material or attach metal such as iron plates, but with this manufacturing method, By mixing a material with a high specific gravity into the melted portion, a multilayer material having a porous layer and a fused layer with a higher specific gravity can be easily realized.

次に、特性例(遮音特性)について説明する。Next, a characteristic example (sound insulation characteristic) will be explained.

第18図はこの多層材の遮音度特性を示す曲線図である
FIG. 18 is a curve diagram showing the sound insulation characteristics of this multilayer material.

曲線実■−2、曲線実■−1はそれぞれ製法例■−2で
製造した多層材(鉄粒なし)の厚さ10ilIllのも
の、製法例■−1で製造した多層材(鉄粒入り)の厚さ
10111+1のものの遮音特性を示す。
Curve sample ■-2 and curve sample ■-1 are the multilayer material (without iron grains) manufactured by manufacturing method example ■-2 with a thickness of 10 ilIll, and the multilayer material manufactured by manufacturing method example ■-1 (with iron grains), respectively. This shows the sound insulation properties of a material with a thickness of 10111+1.

この遮音特性は第17図の特性測定器を用いて)II定
した。パイプ(27)(100IImφ)の中に、測定
する多層材(14)を挿入し、その前後にマイクロホン
No、1、No、2(30)、(31)を設置する。
This sound insulation characteristic was determined using the characteristic measuring device shown in FIG. The multilayer material (14) to be measured is inserted into the pipe (27) (100 II mφ), and microphones No. 1, No. 2 (30), and (31) are installed before and after it.

パイプ(27)の−万端よりスピーカ(28)で音を入
射させる。パイプ(27)の他端は閉じており、その閉
端には、長さ約100100Oのグラスウール(29)
を充填しており、閉端で音が反射しないように処理され
ている。スピーカ(28)で放射され、多層材(14)
に入射する入射波の音圧レベルはマイクロホンNo、1
(30)でJjlJ定し、多層材を透過する透過波の音
圧レベルは、マイクロホンNo、2(31)で測定され
る。
Sound is made to enter through the speaker (28) from the end of the pipe (27). The other end of the pipe (27) is closed, and at the closed end is a glass wool (29) with a length of about 100,100 O.
The closed end is filled with so that no sound is reflected. radiated by a speaker (28), multilayered material (14)
The sound pressure level of the incident wave entering microphone No. 1 is
JjlJ is determined by (30), and the sound pressure level of the transmitted wave transmitted through the multilayer material is measured by microphone No. 2 (31).

なお、多層材の遮音度(d B)は、入射波の音圧レベ
ルから透過波の音圧レベルを差引いた値で評価した。
The sound insulation degree (dB) of the multilayer material was evaluated by subtracting the sound pressure level of the transmitted wave from the sound pressure level of the incident wave.

第18図に示すように、鉄粒入りのもの(実■−1)が
、鉄粒なしのもの(実■−2)より約10dB遮音度が
向上している。
As shown in FIG. 18, the sound insulation degree of the one with iron particles (Example 2-1) is improved by about 10 dB than the one without iron particles (Example 2-2).

上述実施例においては、樹脂粒に混合する粒を鉄粒とし
たが、他の金属、ガラスや比重の大きい材料でも同様の
効果を発揮する。
In the above-mentioned embodiment, the particles mixed with the resin particles were iron particles, but other metals, glass, and other materials with high specific gravity can also exhibit similar effects.

又、上述実施例においては、遮音特性の向上のみ説明し
たが、電磁シールドにアルミニウムなど電磁シールドに
効果のある材料を混入させてもよく、更に融合層や多孔
質層の強度向上にグラスフィアバなどを、樹脂粒に混入
して成形してもよい。
In addition, in the above embodiments, only the improvement of sound insulation properties was explained, but materials effective for electromagnetic shielding such as aluminum may be mixed into the electromagnetic shield, and glass fiber etc. may be added to improve the strength of the fusion layer and porous layer. , it may be mixed into resin particles and molded.

[発明の効果] 以上のように、この発明によれば、カメラ一体型VTR
を覆う筺体を、比重を層の厚さ方向に連続的に変化させ
た多孔質層の吸音部材と、その内側に融着して一体化し
た非通気性の融合層部材とにより構成したので、吸音特
性を向上できる。
[Effects of the Invention] As described above, according to the present invention, the camera-integrated VTR
The casing that covers the is composed of a porous layer sound absorbing member whose specific gravity varies continuously in the thickness direction of the layer, and a non-breathable fusion layer member fused and integrated inside the porous sound absorbing member. Sound absorption properties can be improved.

また、融合層を厚さ100ミクロン以下のスキン層とす
ると、さらに吸音特性を向上させることができる。
Furthermore, when the fusion layer is a skin layer with a thickness of 100 microns or less, the sound absorption properties can be further improved.

また、比重を変化させた多孔質層の一側面に、この多孔
質よりも空孔率が小さい中実層を他側面に厚さ100ミ
クロン以下のスキン層を設けると、相乗的に特性の向上
が図れる。
In addition, if a solid layer with a lower porosity than the porous layer is provided on one side of a porous layer with a changed specific gravity, and a skin layer with a thickness of 100 microns or less is provided on the other side, the characteristics will be synergistically improved. can be achieved.

史に、多孔質構造体を構成する粒子素材を導電性材料を
用いたことにより静電気シールド性能の向上も図れ、装
置の小型化及びコストダウンを図ることができる。
Historically, by using a conductive material as the particle material constituting the porous structure, it is possible to improve the electrostatic shielding performance, and it is possible to reduce the size and cost of the device.

また、精度の高いものが得られる効果がある。Moreover, there is an effect that highly accurate products can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるカメラ一体型VTR
を覆う筺体の一部を示す。第2図は第1図の一部断面図
を示す。第3図は本発明に用いる多層材(多孔質構造体
)の模式的断面図、第4図は多孔質構造体を製造する金
型構成断面図、第5図は本発明に用いる多孔質構造体の
第1の実施例であり、多孔質構造体の厚さに対する空孔
率を示す曲線図、第6図は第5図に空孔率曲線を示した
多孔質構造体の垂直入射吸音率の特性曲線図、第7図は
多孔質層を形成する粒状素材の形状を変えた場合の垂直
入射吸音率の特性のバラツキを示す特性図、第8図は粒
状素材の直径と吸音率の関係を示す特性図、第9図は層
状の多孔質構造体を一部断面で示す図、第10図は本発
明に用いる第3の実施例の多孔質構造体の厚さに対する
空孔率を示す曲線図、第11図及び第12図は従来のも
のと第10図に空孔率曲線を示した多孔質構造体との垂
直入射吸音率の特性を比較する曲線図、第13図は本発
明に用いるスキン層を有する多孔質構造体の空孔率を示
す曲線図、第14図は第13図に空孔率曲線を示したス
キン層を有する多孔質構造体の垂直入射吸音率の特性曲
線図、第15図は本発明に用いる任意層状の多孔質構造
体を示す断面図、第16図は鉄粒入り多孔質構造体を製
造するための金型構成断面図、第17図は遮音特性を測
定する特性測定器の説明図、第18図は本発明に用いる
二種類の多孔質構造体の遮音度特性曲線図、第19図は
従来のカメラ一体型VTRの構成を示す分解図、第20
図は第19図の機構部を詳細に示す模式図である。 図において、(1)は筺体、(15)は多層材(多孔質
構造体)、(16)は融合層(比重の大きい層、中実層
)、(17)は多孔質層である。 なお、図中、同一符号は同−又は相当部分を示す。
FIG. 1 shows a camera-integrated VTR according to an embodiment of the present invention.
Shows part of the housing that covers the. FIG. 2 shows a partial sectional view of FIG. 1. Fig. 3 is a schematic cross-sectional view of the multilayer material (porous structure) used in the present invention, Fig. 4 is a cross-sectional view of the mold configuration for manufacturing the porous structure, and Fig. 5 is the porous structure used in the present invention. Fig. 6 is a curve diagram showing the porosity versus the thickness of the porous structure, and Fig. 6 shows the normal incidence sound absorption coefficient of the porous structure whose porosity curve is shown in Fig. 5. Figure 7 is a characteristic diagram showing the variation in the characteristics of the normal incidence sound absorption coefficient when the shape of the granular material forming the porous layer is changed, and Figure 8 is the relationship between the diameter of the granular material and the sound absorption coefficient. FIG. 9 is a partial cross-sectional view of the layered porous structure, and FIG. 10 is a graph showing the porosity relative to the thickness of the porous structure of the third embodiment used in the present invention. Curve diagrams, Figures 11 and 12 are curve diagrams comparing the normal incidence sound absorption coefficient characteristics of the conventional porous structure and the porous structure whose porosity curve is shown in Figure 10, and Figure 13 is a curve diagram of the present invention. Figure 14 is a curve diagram showing the porosity of a porous structure having a skin layer used in Figure 13; Fig. 15 is a cross-sectional view showing an arbitrarily layered porous structure used in the present invention, Fig. 16 is a cross-sectional view of a mold configuration for manufacturing a porous structure containing iron particles, and Fig. 17 is a sectional view showing sound insulation properties. 18 is a sound insulation characteristic curve diagram of two types of porous structures used in the present invention. FIG. 19 is an exploded view showing the configuration of a conventional camera-integrated VTR. 20
The figure is a schematic diagram showing in detail the mechanism section of FIG. 19. In the figure, (1) is a housing, (15) is a multilayer material (porous structure), (16) is a fused layer (layer with high specific gravity, solid layer), and (17) is a porous layer. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  内部装置を覆う筺体を備えてなるカメラ一体型ビデオ
テープレコーダにおいて、比重を厚さ方向もしくは面方
向に連続的に変化させた多孔質層部材と、多孔質層部材
の一側に融着した非通気性の融合層部材とからなる多孔
質構造体により筺体を構成したことを特徴とするカメラ
一体型ビデオテープレコーダ。
In a camera-integrated videotape recorder equipped with a housing that covers the internal device, a porous layer member whose specific gravity is continuously varied in the thickness direction or surface direction, and a non-porous layer member fused to one side of the porous layer member are used. 1. A camera-integrated videotape recorder, characterized in that a housing is made of a porous structure made of a breathable fusion layer member.
JP1208424A 1989-08-11 1989-08-11 Video tape recorder with integrated camera Expired - Fee Related JPH0722352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1208424A JPH0722352B2 (en) 1989-08-11 1989-08-11 Video tape recorder with integrated camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1208424A JPH0722352B2 (en) 1989-08-11 1989-08-11 Video tape recorder with integrated camera

Publications (2)

Publication Number Publication Date
JPH0371777A true JPH0371777A (en) 1991-03-27
JPH0722352B2 JPH0722352B2 (en) 1995-03-08

Family

ID=16555992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1208424A Expired - Fee Related JPH0722352B2 (en) 1989-08-11 1989-08-11 Video tape recorder with integrated camera

Country Status (1)

Country Link
JP (1) JPH0722352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006722A (en) * 2005-06-28 2007-01-18 Meitec Corp Flying insect-trapping net

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006722A (en) * 2005-06-28 2007-01-18 Meitec Corp Flying insect-trapping net

Also Published As

Publication number Publication date
JPH0722352B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US5143664A (en) Method of preparing a porous structural unit
US4523122A (en) Piezoelectric ultrasonic transducers having acoustic impedance-matching layers
US6144753A (en) Damper for a speaker apparatus
US4420707A (en) Backing for ultrasonic transducer crystal
JP2009079650A (en) Vacuum heat insulating material
JP2648702B2 (en) Manufacturing method of millimeter wave radio wave absorber
JPH0371777A (en) Videotape recorder integrated with camera
JPH0818376B2 (en) Porous structure
WO2015045650A1 (en) Sound absorbing cover, sound absorbing assembly, and magnetic induction foam molding device
EP3531415A1 (en) Soundproof structure and method for manufacturing soundproof structure
WO2019004153A1 (en) Soundproof covering material and engine unit
JPH0371463A (en) Magnetic recording and reproducing device
JPH0371795A (en) Television receiver
JPH0371797A (en) Speaker unit
JP2001036282A (en) Acoustic and electromagnetic wave shielding material and manufacture thereof
JP2700349B2 (en) Sound absorbing lighting device
JP2019168001A (en) Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JPH0371873A (en) Printing apparatus
JPH0370395A (en) Speaker unit
JPH0371794A (en) Speaker system
JPH0370398A (en) Speaker unit
JPH0370394A (en) Speaker system
WO2024084881A1 (en) Ventilation-type silencer
CN115426586A (en) Sound production device and electronic equipment
JPH0379642A (en) Production of multilayered material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees