JP2700349B2 - Sound absorbing lighting device - Google Patents

Sound absorbing lighting device

Info

Publication number
JP2700349B2
JP2700349B2 JP2096339A JP9633990A JP2700349B2 JP 2700349 B2 JP2700349 B2 JP 2700349B2 JP 2096339 A JP2096339 A JP 2096339A JP 9633990 A JP9633990 A JP 9633990A JP 2700349 B2 JP2700349 B2 JP 2700349B2
Authority
JP
Japan
Prior art keywords
porous structure
lighting device
sound
temperature
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2096339A
Other languages
Japanese (ja)
Other versions
JPH03295105A (en
Inventor
伸治 中島
修 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2096339A priority Critical patent/JP2700349B2/en
Publication of JPH03295105A publication Critical patent/JPH03295105A/en
Application granted granted Critical
Publication of JP2700349B2 publication Critical patent/JP2700349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、吸音効果をあわせもつ照明装置に関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lighting device having a sound absorbing effect.

[従来の技術] 従来の吸音効果を持つ照明装置について説明する。例
えば第20図は実開昭55−21578号公報に開示された従来
の吸音照明装置である。図において、(213)は照明器
具カバー(以下、照明カバーと略記する)、(25)は蛍
光灯、(214)は***である。この照明器具は照明カバ
ー(213)中の***(214)から漏れる光によって照明効
果を有する。この照明器具に吸音効果が生じる理由は以
下のように説明できる。照明カバー表面に設けられた小
穴中の空気が質量として、照明カバー(213)と蛍光灯
(25)の間の空気がバネとして考えられ、音響インピー
ダンスの絶対値が極小となる周波数が存在する。前記周
波数で、***の部分で粒子速度は最大となり、***の部
分の抵抗によるエネルギー損失も最大となるため、前記
周波数で吸音効果が生じる。
[Prior Art] A conventional lighting device having a sound absorbing effect will be described. For example, FIG. 20 shows a conventional sound absorbing lighting device disclosed in Japanese Utility Model Laid-Open No. 55-21578. In the figure, (213) is a lighting fixture cover (hereinafter abbreviated as a lighting cover), (25) is a fluorescent lamp, and (214) is a small hole. This lighting fixture has a lighting effect by light leaking from a small hole (214) in the lighting cover (213). The reason why the sound absorbing effect occurs in this lighting fixture can be explained as follows. The air in the small hole provided on the surface of the lighting cover is considered as a mass, and the air between the lighting cover (213) and the fluorescent lamp (25) is considered as a spring, and there is a frequency at which the absolute value of the acoustic impedance is minimized. At the frequency, the particle velocity becomes maximum in the small hole portion, and the energy loss due to the resistance in the small hole portion also becomes maximum, so that the sound absorbing effect occurs at the frequency.

[発明が解決しようとする課題] 上記の様な従来の吸音照明装置では、照明カバー(21
3)として***(214)をあけた板を使って、吸音効果を
持たせているので***(214)だけでは吸音効果が低い
欠点や所定の吸音効果をもたせるための背面空気層が10
0mmまたはそれ以上になることが多いために照明装置の
厚みが大きくなる欠点、***が開いている部分と開いて
いない部分の照度分布が異なる欠点、***が開いている
部分からは直接光が漏れる欠点、***が開いているため
に照明装置としての美観を損ねる欠点、***が開いてい
る領域が広いために照明器具(蛍光灯など)が露出し、
前記照明器具を防護する照明カバーとしての機能を失う
欠点を持っていた。
[Problems to be Solved by the Invention] In the conventional sound absorbing lighting apparatus as described above, the lighting cover (21
3) As a sound-absorbing effect is provided by using a plate with a small hole (214), there is a drawback that the small hole (214) alone has a low sound-absorbing effect, and the backside air layer for providing a predetermined sound-absorbing effect is 10%.
The disadvantage is that the thickness of the illuminating device increases because it is often 0 mm or more, the illuminance distribution differs between the part with the small hole and the part without the hole, and the light leaks directly from the part with the small hole The disadvantages are that the small holes cause the appearance of the lighting device to be impaired, and the large areas where the small holes are open expose the lighting equipment (such as fluorescent lamps).
There is a drawback that the function as a lighting cover for protecting the lighting equipment is lost.

本発明は上記のような問題点を解決するためになされ
たもので、多孔質構造体を照明カバーとして用いること
により、十分な吸音性能をもち、背面空気層を相当厚く
することがなく、照度分布が一様であり、直接蛍光灯の
光が漏れることがなく、照明装置としての美観を満足さ
せ、かつ照明器具(蛍光灯など)の防護の機能を失うこ
とのない吸音照明装置を提供することを目的としてい
る。
The present invention has been made in order to solve the above-described problems.By using a porous structure as an illumination cover, it has a sufficient sound absorbing performance, does not considerably increase the thickness of the rear air layer, and has an illuminance. Provided is a sound-absorbing lighting device that has a uniform distribution, does not leak light from a fluorescent lamp directly, satisfies the aesthetics of the lighting device, and does not lose the protective function of a lighting device (such as a fluorescent lamp). It is intended to be.

[課題を解決するための手段] 本発明に係る吸音照明装置は、照明器具と、前記照明
器具前面に配置され、長径が0.2〜3.0mmの樹脂の粒状素
材から形成され、透明または半透明で通気性を有する多
孔質構造体とを備え、前記多孔質構造体によって光を透
過または反射、拡散する照明効果をもたせ、さらに前記
多孔質構造体と前記照明器具との間に形成される背面空
気層とにより吸音部を構成したものである。
Means for Solving the Problems A sound-absorbing lighting device according to the present invention is formed of a lighting device and a granular resin material having a major axis of 0.2 to 3.0 mm, which is disposed on a front surface of the lighting device, and is transparent or translucent. A porous structure having air permeability, having a lighting effect of transmitting or reflecting and diffusing light by the porous structure, and a back air formed between the porous structure and the lighting device. The sound absorbing part is constituted by the layers.

また、照明器具と、前記照明器具背面に配置された透
明または半透明な多孔質構造体とを有し、前記多孔質構
造体によって光を透過または反射、拡散する照明効果を
もたせ、さらに前記多孔質構造体とその多孔質構造体背
面に配置した反射板との間に形成された背面空気層とに
より吸音部を構成したものである。
Further, the lighting device, having a transparent or translucent porous structure disposed on the back of the lighting device, having a lighting effect of transmitting or reflecting or diffusing light by the porous structure, The sound absorbing part is constituted by the back air layer formed between the porous structure and the reflector disposed on the back of the porous structure.

[作用] 本発明においては、照明器具前面にある多孔質構造体
によって、従来の吸音照明装置に比べ大きな吸音力を有
し、背面空気層を厚くする必要がない。また透明または
半透明な材質を用いることによって光の透過または反
射、拡散が多孔質構造体中または表面で行なわれ、室内
照度のばらつきが減り、直接的な光の漏れ量が少なくな
る。さらに多孔質構造体が照明器具(蛍光灯など)を覆
うから照明器具保護の機能を失うことがない。
[Operation] In the present invention, the porous structure on the front surface of the lighting fixture has a larger sound absorbing power than a conventional sound absorbing lighting device, and does not require a thicker back air layer. In addition, by using a transparent or translucent material, light is transmitted, reflected, or diffused in or on the porous structure, thereby reducing variations in room illuminance and reducing the amount of direct light leakage. Further, since the porous structure covers the lighting equipment (such as a fluorescent lamp), the function of protecting the lighting equipment is not lost.

また、この発明の別の発明においては、多孔質構造体
を照明器具(蛍光灯など)の背面に配置し、さらに前記
多孔質構造体背面に配置された反射板を設けることで、
照明装置としての美観、照度分布の一様化が図られる。
In another aspect of the present invention, the porous structure is disposed on the back of a lighting fixture (such as a fluorescent lamp), and a reflector disposed on the back of the porous structure is provided.
The aesthetic appearance of the lighting device and the uniformity of the illuminance distribution are achieved.

[実施例] 第1図は本発明の一実施例を示す側面図である。第1
図において、(1)は多孔質構造体、(22)は目地板、
(23)は止め部材、(24)は天井、(25)は蛍光灯であ
る。基本構成は従来例と同様の構造であるが、吸音カバ
ーの構造が大きく異なる。従来の吸音カバー、即ち照明
カバー(213)は***(214)が多数開いており、その小
穴(214)によって吸音を行なうが、本発明では透明ま
たは半透明な多孔質構造体(1)を吸音カバーに用いて
いる。第6図に直径6mmの***がピッチ22mmで板厚0.5mm
の板に開いている穴開き板で構成した照明カバー(背面
空気層150mm)と空孔率(すなわち比重)が厚さ方向に1
0〜25%の範囲で連続的に変化した多孔質構造体(板厚1
0mm、背面空気層30mm)によって構成された照明カバー
の吸音率の比較を示す。一般に背面空気層が厚くなれば
吸音率は増加する傾向にあるにもかかわらず、この図で
は多孔質構造体のほうが、背面空気層の厚さが薄くて、
かつ吸音性能がよいことがわかる。また室内における照
度の分布を第7図に示す。明らかに穴開き板よりも多孔
質構造体の方が照度分布が一様であり、照明装置として
良好であることを示している。
Embodiment FIG. 1 is a side view showing an embodiment of the present invention. First
In the figure, (1) is a porous structure, (22) is a joint plate,
(23) is a stop member, (24) is a ceiling, and (25) is a fluorescent lamp. The basic structure is the same as that of the conventional example, but the structure of the sound absorbing cover is greatly different. The conventional sound-absorbing cover, that is, the lighting cover (213) has a number of small holes (214), and the small holes (214) absorb sound. In the present invention, the transparent or translucent porous structure (1) absorbs sound. Used for cover. Fig. 6 shows small holes with a diameter of 6mm and a pitch of 22mm and a thickness of 0.5mm
The lighting cover (back air layer 150mm) and the porosity (that is, specific gravity) composed of a perforated
A porous structure (plate thickness 1) that continuously changes in the range of 0 to 25%
2 shows a comparison of the sound absorption coefficient of the lighting cover constituted by 0 mm and the back air layer 30 mm). In general, although the sound absorption coefficient tends to increase as the back air layer becomes thicker, in this figure, the porous structure has a thinner back air layer,
Further, it can be seen that the sound absorbing performance is good. FIG. 7 shows the distribution of illuminance in the room. Obviously, the porous structure has a more uniform illuminance distribution than the perforated plate, indicating that the porous structure is more favorable as a lighting device.

次に、第2図は、面方向に多孔質構造体の比重を変化
させた実施例であり、多孔質構造体(1)自身が照明カ
バーとして構成されている。カバー全体は多孔質構造体
(1)であり、空孔率分布が面方向に分布をもち、止め
金(26)の付近のカバーは多孔質構造体でない強度をも
った部分となって連続的に一体成形されている。こうす
ることによって多孔質構造体の吸音周波数特性を向上で
き、さらに、取り付け上の強度を持たせることができ
る。
Next, FIG. 2 shows an embodiment in which the specific gravity of the porous structure is changed in the plane direction, and the porous structure (1) itself is configured as an illumination cover. The entire cover is a porous structure (1), and the porosity distribution has a distribution in the plane direction, and the cover near the clasp (26) is a portion having strength that is not a porous structure and is continuous. It is integrally molded with. By doing so, the sound absorption frequency characteristics of the porous structure can be improved, and further, the strength in mounting can be provided.

上記第1図及び第2図に示す各実施例に使用する多孔
質構造体(1)は、厚さ方向に連続的に空孔率分布を持
せてるか、面方向にも空孔率分布を持たせて、吸音性能
上最適な空孔率分布になるようにしたもので、出願人等
により平成1年4月28日に出願された特願平1−110996
号の「多孔質構造体」で提案したものである。
The porous structure (1) used in each of the embodiments shown in FIGS. 1 and 2 can have a porosity distribution continuously in the thickness direction or a porosity distribution in the plane direction. To obtain an optimal porosity distribution in terms of sound absorption performance. Japanese Patent Application No. 1-110996 filed on Apr. 28, 2001 by the applicant or the like.
No. "Porous structure".

以下、この多孔質構造体について説明する。 Hereinafter, the porous structure will be described.

第8図(イ),(ロ)はそれぞれ多孔質構造体の一例
を示し、多孔質構造体である多層材(1)を厚さ方向に
切断した断面を模式的に示す図である。第8図(イ)に
おいて、(2)は比重の大きい層、例えば融合層で、通
気性又は非通気性のいずれでもよい。(3)は比重の小
さい多孔質層で、通常は通気性であり、空孔率は、厚さ
方向に連続的に変化している。尚、多層材(1)は、融
合層(2)と多孔質層(3)とが一体化している。
FIGS. 8 (a) and 8 (b) each show an example of a porous structure, and are diagrams schematically showing a cross section of a multilayer material (1), which is a porous structure, cut in a thickness direction. In FIG. 8 (a), (2) is a layer having a large specific gravity, for example, a fusion layer, which may be air-permeable or air-impermeable. (3) is a porous layer having a small specific gravity, which is usually air-permeable, and whose porosity continuously changes in the thickness direction. In the multilayer material (1), the fusion layer (2) and the porous layer (3) are integrated.

第8図(ロ)は多孔質層(3)のみからなる多層材
(1)を示しており、本発明では、この第8図(ロ)に
示す多層材(1)を用いる。
FIG. 8 (b) shows a multilayer material (1) composed of only the porous layer (3). In the present invention, the multilayer material (1) shown in FIG. 8 (b) is used.

これは、融合層(2)は遮音材として作用するものな
ので、融合層(2)を持ったものを、本発明に使用する
と吸音効果がなくなるからであるが、第8図(ロ)のも
のを説明するために必要なので、第8図(イ)に示すも
のについても説明する。
This is because the fusion layer (2) acts as a sound insulating material, and the use of the material having the fusion layer (2) in the present invention eliminates the sound absorbing effect. Therefore, the configuration shown in FIG. 8A will also be described.

次に、上記のような多層材(多孔質構造体)(1)を
構成する。層の厚さ方向もしくは層の面方向に比重を連
続的に変化させた多孔質層の製造方法及び特性について
説明する。
Next, a multilayer material (porous structure) (1) as described above is formed. The production method and characteristics of the porous layer in which the specific gravity is continuously changed in the thickness direction of the layer or in the plane direction of the layer will be described.

まず、製造方法について説明する。尚、製造方法に関
しては、出願人等より別途特許出願されているので、こ
こでは、その代表例を説明する。
First, the manufacturing method will be described. Since the manufacturing method has been separately filed by the applicant or the like, a typical example will be described here.

多層材の製造に使用する金型は、一方の金型である凹
側金型と他方の金型である凸側金型とからなり、これら
の金型は例えばアルミニウム等の熱伝導性の良い材質で
構成されている。また、凹側金型と凸側金型は夫々ヒー
ターが設けられており、凹側金型の方が凸側金型よりも
高温にされる。
The mold used for manufacturing the multilayer material includes a concave mold as one mold and a convex mold as the other mold, and these molds have good heat conductivity such as aluminum. It is made of material. Further, the concave mold and the convex mold are each provided with a heater, and the concave mold has a higher temperature than the convex mold.

所で、上述したように本発明で使用する多層材(1)
は、第8図(ロ)に示すものであるが、説明の都合上、
融合層(2)も形成される製法を説明した後、第8図
(ロ)の多層材(1)の製造方法である製法−1につ
いて説明する。
Here, as described above, the multilayer material used in the present invention (1)
Is shown in FIG. 8 (b), but for convenience of explanation,
After explaining the manufacturing method in which the fusion layer (2) is also formed, the manufacturing method-1 which is the manufacturing method of the multilayer material (1) in FIG. 8 (b) will be described.

製法 原料として、熱可塑性樹脂の粒状素材を用いて、多孔
質構造体を成形する場合について説明する。
Manufacturing Method A case where a porous structure is formed using a granular material of a thermoplastic resin as a raw material will be described.

凹側金型の壁部の温度は、凹側金型の壁部と凸側金型
の壁部によって形成される閉空間内に入れられる原料で
ある粒状素材の軟化する温度以上で熱分解温度以下、通
常150〜240℃にセットされ、凸側金型の壁部の温度は、
凹側金型の壁部の温度よりも低い温度、例えば原料とな
る粒状素材の軟化する温度付近、通常70〜180℃にセッ
トされる。ここにおいて両金型内に例えばABC(acrylo
−nitrile−butadiene−styrene resin)樹脂(軟化す
る温度80〜90℃)等の熱可塑性樹脂の粒状素材(直径0.
2〜3mm程度)を投入し、金型を加圧しながら閉じ、数10
秒〜数時間加熱する。この加熱は上述した両金型のセッ
ト温度で行なわれ、加圧力は加熱状態で1kg/cm2〜数ton
/cm2である。
The temperature of the concave mold wall is equal to or higher than the softening temperature of the granular material that is the raw material put in the closed space formed by the concave mold wall and the convex mold wall. Hereinafter, the temperature is usually set at 150 to 240 ° C., and the temperature of the wall of the convex mold is
The temperature is set lower than the temperature of the wall of the concave side mold, for example, around the temperature at which the granular material as the raw material softens, usually 70 to 180 ° C. Here, for example, ABC (acrylo)
-Nitrile-butadiene-styrene resin) Granular material of thermoplastic resin such as resin (softening temperature 80-90 ° C) (diameter 0.
About 2 to 3 mm) and close while pressing the mold.
Heat for seconds to several hours. This heating is performed at the set temperature of both molds described above, and the pressing force is 1 kg / cm 2 to several tons in the heated state.
/ cm 2 .

すると、凹側金型の高温壁部に接触した粒状素材は溶
融し、最終的には比重の大きい層、換言すれば融合層に
なり、融合の程度により通気性から非通気性に変化す
る。凸側金型の壁部は凹側の高温壁部より低温のため、
凸側の壁部から上記融合層(2)までの粒状素材は、完
全流動までには至らないが、半流動状態で、粒状素材各
々が接触部分で溶着し、最終的には上記融合層(2)に
溶着した多孔質層(3)が形成される。この多孔質層
(3)は通常は通気性であるが、バインダーなどの素材
の混合材料によっては非通気性になる。
Then, the granular material in contact with the high-temperature wall portion of the concave mold melts, and finally becomes a layer having a large specific gravity, in other words, a fusion layer, and changes from air permeability to non-air permeability depending on the degree of fusion. Because the wall of the convex mold is cooler than the hot wall of the concave,
The granular material from the convex side wall to the fusion layer (2) does not reach complete flow, but in a semi-fluid state, each of the granular materials is welded at the contact portion, and finally, the fusion layer ( A porous layer (3) welded to 2) is formed. This porous layer (3) is usually air-permeable, but may be air-impermeable depending on a mixed material of materials such as a binder.

このようにして比重の大きい層と比重の小さい多孔質
層を一体的に同時に形成することができる。
In this way, a layer having a large specific gravity and a porous layer having a small specific gravity can be formed simultaneously and integrally.

以上のように凹側金型の壁部と凸側金型の壁部の温度
を一定温度にセットして、完全溶融、半流動状態を得る
には、実験によれば、10℃以上の温度差が望ましかっ
た。
As described above, to set the temperature of the wall of the concave mold and the wall of the convex mold to a constant temperature, and to obtain a completely molten, semi-fluid state, according to experiments, a temperature of 10 ° C. or more The difference was desirable.

凹側金型の壁部の温度が150℃以下になると、粒状素
材が融合しにくくなり、240℃以上になると、完全溶融
が進み過ぎて多層化が困難となる。凸側金型の壁部の温
度が70℃以下になると、粒状素材各々が接触部分で溶融
が起らず接着しにくくなり、180℃以上になると粒状素
材の溶融が進んで、多孔質層にすることが困難になる。
When the temperature of the wall of the concave mold is 150 ° C. or lower, the granular material is less likely to be fused. When the temperature is 240 ° C. or higher, complete melting proceeds excessively and multilayering becomes difficult. When the temperature of the wall of the convex side mold is 70 ° C or lower, each of the granular materials does not melt at the contact portion and becomes difficult to adhere to each other. It becomes difficult to do.

粒状素材の直径が0.2mm以下になると、空孔径が小さ
くなって、多層材の機能のうち吸音特性が低下する。ま
た、空孔径を大きくしようとすると、粒子間の融着度合
が少なくなり、機械的強度が低下する。直径が3mm以上
になると、断熱特性は良いが吸音特性が低下する。
When the diameter of the granular material is 0.2 mm or less, the pore diameter becomes small, and the sound absorbing characteristics among the functions of the multilayer material deteriorate. In addition, if the pore size is to be increased, the degree of fusion between the particles is reduced, and the mechanical strength is reduced. When the diameter is 3 mm or more, the heat insulating property is good, but the sound absorbing property is reduced.

金型による圧力が1kg/cm2以下になると、粒状素材各
々の融着が不安定になり、圧力が数ton/cm2以上になる
と、温度制御の精度が厳しくなって生産性が低下する。
When the pressure by the mold is 1 kg / cm 2 or less, the fusion of the granular materials becomes unstable, and when the pressure is several ton / cm 2 or more, the precision of temperature control becomes severe and the productivity decreases.

金型による加熱時間は、数10秒以下になると溶着が不
充分になり、数時間以上になると、溶融が進み過ぎて、
融合層と多孔質層の境界が不明瞭となり、特性が悪くな
る。
When the heating time by the mold is less than a few tens of seconds, the welding becomes insufficient, and when it is more than a few hours, the melting proceeds too much,
The boundary between the fusion layer and the porous layer becomes unclear, resulting in poor characteristics.

金型の高温側に形成される比重の大きい融合層は、加
熱温度、加熱時間などを変えると、形成される融合層の
厚さ、通気性の度合(通気性から非通気性まで)が変化
するので、種々変化させて、希望特性の多孔質構造体を
得ることができる。
When the heating temperature, heating time, etc. are changed, the thickness of the formed fusion layer and the degree of air permeability (from air-permeability to non-air-permeability) of the fusion layer with a large specific gravity formed on the high temperature side of the mold change Therefore, it is possible to obtain a porous structure having desired characteristics by making various changes.

なお熱可塑性樹脂の粒状素材原料としては、代表的な
ものとして、PP(ポリプロピレン)、AS(アクリルスチ
ロール)、スチロールなどを用いることができる。又熱
可塑性樹脂の粒状素材にバインダーとして、メチルエチ
ルケトン(MEK)セルロース、ワニス、アセトンを吹付
けたり、混ぜたりすると、多層材の粒状素材各々の固着
力が増し、機械的強度が向上して、取扱い性が良くな
る。
In addition, PP (polypropylene), AS (acrylic styrene), styrene, or the like can be used as a representative material of the granular material of the thermoplastic resin. Spraying or mixing methyl ethyl ketone (MEK) cellulose, varnish, or acetone as a binder to the thermoplastic resin granular material increases the adhesive force of each of the multilayer granular materials, improves the mechanical strength, and handles Becomes better.

製法−1 製法において、凹側金型の壁部の温度を150℃にセ
ットし、凸側金型の壁部の温度を100℃にセットし、ABS
樹脂として、電気化学工業株式会社製GTR−40(グレー
ド)、軟化する温度86℃の熱可塑性樹脂の粒状素材、直
径1mmの球状粒子を金型に入れ、両金型を閉じた。両壁
面間の距離は10mmであった。この状態で10分間弱経過
(つまり加熱状態を持続)させて両金型を開放した。な
お加熱状態のときの加圧力は50kg/cm2であった。このよ
うにして成形した多層材(1)は厚さが10mmで、その中
の融合層(2)はほとんどなく、多孔質(3)のみであ
った。
Production Method-1 In the production method, the temperature of the wall of the concave mold was set to 150 ° C., the temperature of the wall of the convex mold was set to 100 ° C., and ABS
As a resin, GTR-40 (grade) manufactured by Denki Kagaku Kogyo Co., Ltd., a granular material of a thermoplastic resin having a softening temperature of 86 ° C., and spherical particles having a diameter of 1 mm were placed in a mold, and both molds were closed. The distance between the two walls was 10 mm. In this state, both molds were opened for a short time of 10 minutes (that is, the heating state was maintained). The pressing force in the heating state was 50 kg / cm 2 . The multilayer material (1) thus formed had a thickness of 10 mm, contained almost no fused layer (2), and was only porous (3).

次に、原料として、熱硬化性樹脂の粒状素材を用いて
多層材を形成する場合について説明する。この場合も、
融合層(2)も形成される製法、多孔質層(3)のみ
形成される製法−1の順で説明する。
Next, a case in which a multilayer material is formed using a granular material of a thermosetting resin as a raw material will be described. Again,
The production method in which the fusion layer (2) is also formed and the production method-1 in which only the porous layer (3) is formed will be described in this order.

製法 製法と同様にして凹側金型の壁部の温度は、粒状素
材の軟化する温度以上で熱分解以下にセットされ、凸側
金型の壁部の温度は、凹側の壁部の温度よりも低い粒状
素材の軟化する温度付近にセットされる。ここにおいて
両金型内に熱硬化性樹脂、例えばフェノール、PBT(ポ
リブチレンテレフタレート)、PET(ポリエチレンテレ
フタレート)などの粒状素材で直径0.2〜3mm程度の粒子
を、バインダーとなる例えばセルロース、ワニス、各種
接着剤などと混合して投入し、両金型を加圧しながら閉
じ、数分〜数時間加熱する。この加熱は上述した両金型
のセット温度で行なわれ、加圧力は加熱状態で1kg/cm2
〜数ton/cm2である。
Manufacturing method In the same manner as the manufacturing method, the temperature of the wall of the concave mold is set to a temperature equal to or higher than the temperature at which the granular material softens and equal to or lower than the thermal decomposition, and the temperature of the wall of the convex mold is set to the temperature of the concave wall. Lower than the temperature at which the granular material softens. In this case, particles having a diameter of about 0.2 to 3 mm made of a thermosetting resin such as phenol, PBT (polybutylene terephthalate), or PET (polyethylene terephthalate) are placed in both molds. It is mixed with an adhesive or the like and charged, and both molds are closed while being pressurized, and heated for several minutes to several hours. This heating is performed at the set temperature of both molds described above, and the pressing force is 1 kg / cm 2 in the heated state.
Is ~ number of ton / cm 2.

このようにすると、凹側金型の高温壁部に接触した粒
状素材は、軟化し、バインダーで接着されて比重の大き
い層となり、軟化の程度により、通気性から非通気性に
変化する。凸側金型の壁部は凹側金型壁部より低温のた
め、凸側金型壁部から上記の比重の大きい層(2)まで
の粒状素材は、完全流動までには至らないが、半流動状
態で、粒状素材各々が接触部分でバインダーで接着され
て、最終的には、上記の比重の大きい層(2)に接着し
た多孔質層(3)が一体的に形成される。この多孔質層
(3)は通常は通気性であるが、バインダーの混合量が
多くなると、非通気性になる。
In this case, the granular material in contact with the high-temperature wall portion of the concave mold is softened and bonded with a binder to form a layer having a large specific gravity, and changes from air-permeable to non-air-permeable depending on the degree of softening. Since the wall of the convex mold has a lower temperature than the concave mold wall, the granular material from the convex mold wall to the layer (2) having a large specific gravity does not reach a complete flow, In a semi-fluid state, each of the granular materials is bonded with a binder at a contact portion, and finally, a porous layer (3) bonded to the layer (2) having a large specific gravity is integrally formed. The porous layer (3) is usually air-permeable, but becomes non-permeable when the amount of the binder is increased.

製法−1 製法において、凹側金型の壁部の温度を200℃にセ
ットし、凸側金型の壁部の温度を150℃にセットし、熱
硬化性樹脂として、フェノール樹脂(明和化成株式会社
製、MW−752(グレード)、軟化する温度190℃)で直径
1mmの粒状素材を、バインダーとなる粉末状セルロース1
5重量%と共に金型に入れ、両金型を閉じた。両壁面間
の距離は10mmであった。この状態で10分間程経過(つま
り加熱状態を持続)させて両金型を開放した。なお加熱
状態のときの加圧力は50kg/cm2であった。このようにし
て成形した多層材(1)は厚さが10mmで、その中の比重
の大きい層(2)はほとんどなく、多孔質層(3)のみ
であった。
Production method-1 In the production method, the temperature of the wall of the concave mold was set to 200 ° C, the temperature of the wall of the convex mold was set to 150 ° C, and a phenol resin (Meiwa Kasei Co., Ltd.) was used as the thermosetting resin. Company-made, MW-752 (grade), softening temperature 190 ° C) and diameter
1mm granular material, powdered cellulose 1 as binder
The mold was placed in a mold together with 5% by weight, and both molds were closed. The distance between the two walls was 10 mm. In this state, the molds were opened after a lapse of about 10 minutes (that is, the heating state was maintained). The pressing force in the heating state was 50 kg / cm 2 . The multilayer material (1) formed in this way had a thickness of 10 mm, there was almost no layer (2) having a large specific gravity therein, and only a porous layer (3).

尚、前述の製法,においては、高温側及び低温側
金型の各壁部の温度を一定に保った上で、原料を投入す
る例であるが、例えば、両金型が常温の状態で、原料を
投入し、その後金型温度を所定の温度に向って昇温させ
る過程で成形体を取り出す方法でも、同様の多層材を形
成させ得る。この場合の成形を取り出すときの高温側、
低温側金型の温度差は、実験の結果、極めてわずかな温
度差例えば2℃でも可能であった。この温度差は素材の
材質、大きさ、形状などの性状、金型の昇温速度、加圧
力などによって変わるものである。その他、凹側金型の
壁部と凸側金型の壁部とに温度差を設ける方法として、
凸側金型の壁部を、例えばPBT(ポリブチレンテレフタ
レート)樹脂、FRP(fiber reinforced placties)樹脂
等の熱伝導性の悪い材質で構成してもよい。又、両金型
を同材質で大きさを変えてもよい。要は材質と大きさに
基因する熱容量及びヒーターの発熱量の大きさの組合せ
により両金型に所望の温度差を、過渡的に又定温的に設
定すればよい。
In the above-described manufacturing method, the raw material is charged after keeping the temperature of each wall of the high-temperature side and low-temperature side molds constant. For example, when both molds are at room temperature, A similar multilayer material can also be formed by a method in which the raw material is charged and then the molded body is taken out in the process of raising the mold temperature to a predetermined temperature. The high temperature side when removing the molding in this case,
As a result of the experiment, the temperature difference of the low-temperature side mold was possible even with a very small temperature difference, for example, 2 ° C. This temperature difference varies depending on the properties of the material, such as the material, size, and shape, the rate of temperature rise of the mold, and the pressure. In addition, as a method of providing a temperature difference between the concave mold wall and the convex mold wall,
The wall of the convex mold may be made of a material having poor heat conductivity, such as PBT (polybutylene terephthalate) resin or FRP (fiber reinforced placties) resin. Further, both molds may be made of the same material and have different sizes. In short, a desired temperature difference may be set to both molds transiently or at a constant temperature according to the combination of the heat capacity based on the material and size and the magnitude of the calorific value of the heater.

さらに、多層材の多孔質層の比重を、多孔質層の層の
面方向に変化させようとするには、低温側の金型の温度
を上記層の面方向に沿って変化させればよい。すると低
温側の金型の中でも、より高温部に対向する多孔質層部
分は、比重が大きくなり、より低温部に対向する多孔質
層部分は比重が小さくなる。
Further, in order to change the specific gravity of the porous layer of the multilayer material in the plane direction of the layer of the porous layer, the temperature of the mold on the low temperature side may be changed along the plane direction of the layer. . Then, among the molds on the low temperature side, the specific gravity of the porous layer portion facing the higher temperature portion increases, and the specific gravity of the porous layer portion facing the lower temperature portion decreases.

一方、上述の製法においては、多層材が一体的に成形
できるので、金型を変えることにより、種々の形状、特
に複雑な形状の多層材にも容易に対応できる。
On the other hand, in the above-described manufacturing method, since the multilayer material can be integrally formed, it is possible to easily cope with various shapes, particularly a complicated shape of the multilayer material, by changing the mold.

次に、このようにして製造された、層の厚さ方向もし
くは層の面方向に比重を連続的に変化させた多孔質層の
吸音特性について説明する。
Next, a description will be given of the sound absorbing characteristics of the porous layer manufactured in this manner, in which the specific gravity is continuously changed in the thickness direction of the layer or in the plane direction of the layer.

第9図は、製法−1で成形された厚さ10mmの多孔質
構造体(ほとんど全域多孔質層)における厚さ方向の空
孔率(比重)分布例を示す図である。
FIG. 9 is a diagram showing an example of a porosity (specific gravity) distribution in a thickness direction in a porous structure (almost all porous layer) having a thickness of 10 mm formed by the production method-1.

図中、曲線A,Cは、空孔率が厚さ方向にほぼ一様な特
性を示し、それぞれ約25(%)、約10(%)のものであ
る。曲線Bは、空孔率が厚さ方向に分布を有し、10〜25
(%)の範囲で連続的に変化しているものである。
In the figure, curves A and C show characteristics in which the porosity is almost uniform in the thickness direction, and are about 25 (%) and about 10 (%), respectively. Curve B shows that the porosity has a distribution in the thickness direction,
(%) In a continuous manner.

この種の多孔質構造体を吸音材として利用する場合に
は、その吸音特性が問題になる。第10図は第9図に示す
三種類の空孔率分布を有するサンプルにおける垂直入射
吸音率をJIS A1405「管内法による建築材料の垂直入射
吸音率の測定法」により測定した結果を示す。尚、曲線
Bの厚さ方向に空孔率分布を有するサンプルでは、空孔
率が10(%)の方を音波が入射する面とした。図から判
るように、空孔率分布を有するサンプル(曲線B)が最
も吸音率特性が良いことを確認した。
When this kind of porous structure is used as a sound absorbing material, its sound absorbing properties become a problem. FIG. 10 shows the results obtained by measuring the normal incidence sound absorption coefficient of the samples having the three types of porosity distributions shown in FIG. 9 according to JIS A1405 “Method of measuring the normal incidence sound absorption coefficient of building materials by the in-pipe method”. In the sample having the porosity distribution in the thickness direction of the curve B, the surface having the porosity of 10 (%) was defined as the surface on which the sound wave was incident. As can be seen from the figure, it was confirmed that the sample having the porosity distribution (curve B) had the best sound absorption coefficient characteristics.

この理由は、次のように考えられる。上記のJISに規
定されている測定においては、その構成を第11図に示す
ように被測定体(多孔質体)(1)の背面は剛壁(30)
である。従って、音波(31)が多孔質体(1)内に入射
された場合、その音波(31)の粒子速度は剛壁面(30)
で零となる。粒子速度は、剛壁面(30)から離れ入射面
に近づく程大きくなり、入射面位置(32)が最大であ
る。音波が吸収される原理は、音波が多孔質体(1)内
の細い隙間の中を伝播する行程において、その壁面との
粘性効果によって音響エネルギーが熱エネルギーに変換
され消散されることによる。一方、粘性効果は、粒子速
度が大きくなるほど顕著となるので、多孔質体の入射面
の空孔率が全体の吸音特性に大きく影響する。
The reason is considered as follows. In the measurement specified in the above-mentioned JIS, the back surface of the object to be measured (porous body) (1) is a rigid wall (30) as shown in FIG.
It is. Therefore, when the sound wave (31) is incident on the porous body (1), the particle velocity of the sound wave (31) is increased by the rigid wall surface (30).
And becomes zero. The particle velocity increases as the distance from the rigid wall surface (30) increases and approaches the incident surface, and the position of the incident surface (32) is maximum. The principle of sound wave absorption is that sound energy is converted to heat energy and dissipated by the viscous effect with the wall surface in the process of sound wave propagating through a narrow gap in the porous body (1). On the other hand, since the viscous effect becomes more remarkable as the particle velocity increases, the porosity of the entrance surface of the porous body greatly affects the overall sound absorption characteristics.

以上より、空孔率が小さいほど、多孔質体(1)の隙
間が細くなり粘性効果が大きくなるが、空孔率が小さく
なり過ぎるとかえって音波が多孔質体(1)内に侵入し
にくくなり吸音率は低下してくる。第9図及び第10図に
おいて、曲線Aのサンプルは空孔率が大き過ぎ、また曲
線Cのものは空孔率が小さ過ぎて最適な粘性効果が得ら
れていないと言える。曲線Bのものは、多孔質体(1)
の音波入射面(粒子速度最大位置)が最適な空孔率であ
り、かつ剛壁側へ行くほど空孔率が大きくなっているの
で音波が多孔質体(1)の深部にまで容易に入射でき、
その結果吸音特性が優れていることを示している。
As described above, the smaller the porosity, the narrower the gap of the porous body (1) and the greater the viscous effect. However, if the porosity is too small, it is more difficult for sound waves to enter the porous body (1). The sound absorption coefficient decreases. 9 and 10, it can be said that the sample of the curve A has too large a porosity, and the sample of the curve C has too small a porosity, so that an optimum viscosity effect cannot be obtained. The curve B shows the porous body (1)
The sound wave incidence surface (particle velocity maximum position) has an optimum porosity, and the porosity increases toward the hard wall side, so that sound waves can easily enter the deep portion of the porous body (1). Can,
The results show that the sound absorption characteristics are excellent.

次に、多孔質体の面方向に空孔率(比重)を変化させ
ることによる吸音特性の改善効果について説明する。第
12図は、三種類のサンプルの厚さ方向の空孔率の変化を
示し、曲線A→B→Cの順で空孔率が小さくなってい
る。このときの吸音特性を第13図に示す。この図より、
吸音率のピーク周波数は大きく変わることがわかる。特
に、音波入射面側の空孔率を小さくすれば(曲線Cに相
当)、低周波域の吸音率が向上する。従って、多孔質体
の面方向の空孔率に分布を持たせることにより、様々な
吸音周波数特性を得ることができる。例えば第12図のA,
B,Cのような厚さ方向に空孔率分布をもった領域が面方
向に分布すれば、その吸音周波数特性は0.8〜2.5KHzに
広いピークを持つことになり、広い周波数帯域で良好な
吸音特性を得ることができる。
Next, the effect of improving the sound absorption characteristics by changing the porosity (specific gravity) in the plane direction of the porous body will be described. No.
FIG. 12 shows changes in the porosity of the three types of samples in the thickness direction, and the porosity decreases in the order of the curves A → B → C. FIG. 13 shows the sound absorption characteristics at this time. From this figure,
It can be seen that the peak frequency of the sound absorption coefficient changes greatly. In particular, if the porosity on the sound wave incident surface side is reduced (corresponding to the curve C), the sound absorption coefficient in the low frequency range is improved. Therefore, various sound absorption frequency characteristics can be obtained by giving a distribution to the porosity in the surface direction of the porous body. For example, in FIG. 12, A,
If a region having a porosity distribution in the thickness direction, such as B or C, is distributed in the plane direction, the sound absorption frequency characteristic will have a broad peak at 0.8 to 2.5 KHz, which is good in a wide frequency band. Sound absorption characteristics can be obtained.

上記多孔質体は厚さが10(mm)であったが、厚さを10
0(mm)にした場合の吸音特性について説明する。
Although the porous body had a thickness of 10 (mm),
A description will be given of the sound absorption characteristics when the distance is set to 0 (mm).

第14図に三種類のサンプルの空孔率分布を示し、第15
図にそれらの垂直入射吸音率を示す。これらの図より、
厚さが100(mm)の場合は、厚さが10(mm)の場合とは
逆の特性となっていることが判る。即ち、厚さが100(m
m)の場合は、空孔率が剛壁側に向って小さくなる方
(曲線C)が吸音特性が良くなっている。この理由は、
次のように考えられる。
FIG. 14 shows the porosity distribution of the three types of samples, and FIG.
The figure shows their normal incidence sound absorption coefficients. From these figures,
It can be seen that when the thickness is 100 (mm), the characteristics are opposite to those when the thickness is 10 (mm). That is, the thickness is 100 (m
In the case of m), the smaller the porosity becomes toward the hard wall side (curve C), the better the sound absorption characteristics. The reason for this is
It is considered as follows.

厚さが厚くなると音波が多孔質体内を伝播する距離が
長くなるので、伝播途中で音波が反射される量が多くな
る。吸音特性は反射量が少ない方が良くなるので、この
ためには、音波が入射する空気側の固有音響インピーダ
ンス(空気の密度と音速の積)と多孔質体の音響インピ
ーダンスとの不連続を無くすと効果的である。すなわ
ち、空気側に面する多孔質体の空孔率を大きめにしてそ
の音響インピーダンスを空気の固有音響インピーダンス
に接合させ、剛壁側に向って徐々に空孔率を小さくさせ
ていく方が、多孔質体の厚さが厚い場合には吸音特性が
良好になる。
As the thickness increases, the distance over which the sound wave propagates through the porous body increases, so that the amount of sound wave reflected during the propagation increases. Since the sound absorption characteristic is better when the amount of reflection is smaller, the discontinuity between the inherent acoustic impedance (product of air density and sound speed) on the air side where the sound wave is incident and the acoustic impedance of the porous body is eliminated. And effective. In other words, it is better to increase the porosity of the porous body facing the air side and join its acoustic impedance to the specific acoustic impedance of air, and gradually decrease the porosity toward the hard wall side. When the thickness of the porous body is large, the sound absorption characteristics are good.

以上のように、多孔質体の最適な空孔率分布はその厚
さによって異なってくるが、いずれにせよ連続的な変化
を与えることにより、良好な吸音特性を得ることができ
ることを確認した。
As described above, the optimum porosity distribution of the porous body varies depending on its thickness, but in any case, it was confirmed that good sound absorption characteristics can be obtained by giving a continuous change.

以上説明した多孔質層を形成する樹脂粒は形状が球状
のほか、円筒状、円柱状、立法体などでもよい。ひげ付
きの熱可塑性樹脂粒はひげの部分が溶融しやすいので、
原料として良好である。又多層材の軽量化を図る目的
で、例えば発泡した中空粒状素材や発泡性素材を原料と
して利用することもできる。又補強用として原料に短繊
維を混入させてもよいし、バインダーとして糸状の熱可
塑性樹脂を原料に混入させてもよい。
The resin particles forming the porous layer described above may have a spherical shape, a cylindrical shape, a columnar shape, a cubic body, or the like. Since the bearded thermoplastic resin particles are easy to melt at the beard,
Good as a raw material. For the purpose of reducing the weight of the multilayer material, for example, a foamed hollow granular material or a foamable material can be used as a raw material. Also, short fibers may be mixed into the raw material for reinforcement, or thread-like thermoplastic resin may be mixed into the raw material as a binder.

尚、多孔質体としての特性、特に吸音特性に対し、粒
状素材の形状や長径には、より優れた特性を有する範囲
があることを確認した。以下、説明する。
In addition, it was confirmed that the shape and the major axis of the granular material had a range having more excellent characteristics with respect to the characteristics as a porous body, particularly the sound absorbing characteristics. This will be described below.

第16図は、粒状素材の形状を変えた場合の垂直入射吸
音率の特性のバラツキ(サンプル数5個での特性バラツ
キ)を示す図である。曲線Aは粒状素材が直径0.8(m
m)、長さ(1mm)の円筒形状のもの、曲線Bは直径1
(mm)の球体状のものである。尚、いずれも多孔質層の
厚さは10(mm)であり、吸音率を測定した周波数は2
(KHz)である。同図より、球体状のもの(曲線B)
は、サンプルの違いによる特性の差が少なく、極めて安
定していることが判る。この理由は、球体状の場合粒状
素材どうしの接触点が一個所となるので、成形時に粒状
素材の層状態が安定して均一になるためである。
FIG. 16 is a diagram showing variations in characteristics of the normal incidence sound absorption coefficient when the shape of the granular material is changed (variations in characteristics with five samples). Curve A shows a granular material with a diameter of 0.8 (m
m), cylindrical shape of length (1mm), curve B is 1 diameter
(Mm) spherical shape. In each case, the thickness of the porous layer was 10 (mm), and the frequency at which the sound absorption was measured was 2
(KHz). From the figure, a spherical one (curve B)
Shows that there is little difference in characteristics due to the difference between samples, and it is extremely stable. The reason for this is that, in the case of a spherical shape, the contact point between the granular materials is one point, so that the layer state of the granular material becomes stable and uniform during molding.

このように、特にサンプル間で特性の安定性を要する
場合などには球体状(球体もしくは楕円体)にする方
が、より好ましい多孔質構造体を得ることができる。
As described above, a porous structure can be more preferably obtained in a spherical shape (spherical or elliptical) particularly when stability of characteristics is required between samples.

また、吸音特性は、粒状素材の長径によっても異なる
ことを確認した。第17図に、粒状素材の長径と吸音率の
関係を示す。サンプルの厚さは10(mm)で、測定周波数
は2(KHz)である。粒状素材を径を小さくし過ぎた
り、大きくし過ぎたりすると、音波が多孔質体内に侵入
しにくくなったり、多孔質体の固有音響インピーダンス
が空気側の固有音響インピーダンスと整合しなくなった
りして吸音率が低下する。同図より、粒状素材の長径
は、実用的な範囲では0.2〜3.0(mm)、好ましくは1.0
〜2.0(mm)の範囲とすることにより、吸音特性を良好
にできることを確認した。
In addition, it was confirmed that the sound absorption characteristics also differed depending on the major axis of the granular material. FIG. 17 shows the relationship between the major diameter of the granular material and the sound absorption coefficient. The thickness of the sample is 10 (mm) and the measurement frequency is 2 (KHz). If the diameter of the granular material is too small or too large, sound waves will not easily penetrate into the porous body, or the intrinsic acoustic impedance of the porous body will not match the intrinsic acoustic impedance of the air side, resulting in sound absorption. The rate drops. As shown in the figure, the major diameter of the granular material is 0.2 to 3.0 (mm) in a practical range, preferably 1.0 to 3.0 (mm).
It was confirmed that sound absorption characteristics could be improved by setting the range to 2.0 (mm).

以上により多孔質構造体(1)の説明を終る。 This concludes the description of the porous structure (1).

次に、第1図及び第2図に示す実施例は多孔質層の空
孔率を層の厚さ方向に連続的に変化させて、吸音性能上
最適な比重分布を実現することによって多孔質構造体を
厚くすることなく十分な吸音性能を確保したもの。及び
多孔質体の比重を面方向に連続的に変化させて、吸音特
性上最適な騒音周波数に合わせることによって吸音周波
数特性を向上させたもの、即ち多孔質構造体の空孔率が
厚さ方向もしくは面方向のうち少なくともいずれか一方
に連続的に変化したものを示したが、変化させない均一
な多孔質構造体をもちいても、従来の吸音照明器具より
も吸音性能が向上していることは明らかであり、本発明
においては吸音効果及び照明効果、外観からその密度を
決定できる。
Next, in the embodiment shown in FIGS. 1 and 2, the porosity of the porous layer is continuously changed in the thickness direction of the layer to realize an optimum specific gravity distribution in terms of sound absorption performance. The one that ensures sufficient sound absorption performance without making the structure thick. And, the specific gravity of the porous body is continuously changed in the plane direction, and the sound absorption frequency characteristic is improved by adjusting to the optimum noise frequency in the sound absorption characteristic, that is, the porosity of the porous structure is increased in the thickness direction. Alternatively, it is shown that the surface direction is continuously changed in at least one of the directions, but even if a uniform porous structure that does not change is used, the sound absorbing performance is improved over the conventional sound absorbing lighting apparatus. Obviously, in the present invention, the density can be determined from the sound absorbing effect, the lighting effect, and the appearance.

以上は多孔質構造体背面をすべて天井または壁とした
が、反射板などの照明器具としても明らかに同様な効果
が期待できる。
In the above description, the entire rear surface of the porous structure is a ceiling or a wall. However, a similar effect can be expected as a lighting device such as a reflector.

第1図及び第2図に示す実施例では、照明器具前面に
透明または半透明な硬質の多孔質構造体を配置したもの
であるが、第3図に示す実施例のように、照明器具(蛍
光灯など)(25)の背面に多孔質構造体(1)を配置
し、多孔質構造体(1)の背面に上部反射板(27)を設
け、上部反射板(27)と多孔質構造体(1)との間に背
面空気層を構成する。照明器具(蛍光灯)(25)の前面
には下部反射板(28)を設け、照明器具(25)からの光
は全て多孔質構造体(1)または上部反射板(27)によ
って反射または拡散され、照度分布はより一層一様化さ
れる。
In the embodiment shown in FIG. 1 and FIG. 2, a transparent or translucent hard porous structure is disposed in front of the lighting fixture, but as in the embodiment shown in FIG. The porous structure (1) is arranged on the back of the fluorescent lamp (25), the upper reflector (27) is provided on the back of the porous structure (1), and the upper reflector (27) and the porous structure are provided. A back air layer is formed between the body and the body (1). A lower reflector (28) is provided in front of the lighting fixture (fluorescent lamp) (25), and all light from the lighting fixture (25) is reflected or diffused by the porous structure (1) or the upper reflector (27). Thus, the illuminance distribution is further uniformed.

また他の実施例では、異なる材質の粒状素材を用いる
ことで透過または反射、拡散などの効果を得、吸音効果
を持ちながら美観を向上させることができる。
Further, in another embodiment, by using a granular material of a different material, effects such as transmission, reflection, and diffusion can be obtained, and the aesthetic appearance can be improved while having a sound absorbing effect.

また他の実施例では、蛍光または夜光塗料を含む素材
を用いる。蛍光または夜光塗料の発光、反射によって照
明効果を上げることができる。
In another embodiment, a material containing fluorescent or luminous paint is used. The lighting effect can be enhanced by the emission and reflection of fluorescent or luminous paint.

以上のような多孔質構造体を用いた実施例として、第
4図及び第5図のようにエレベータかご内に、本発明に
よる吸音照明装置を用いた例を示す。第18図にエレベー
タかご稼働時の従来のエレベータかごと本発明による吸
音照明装置を取り付けたかご内の騒音の比較を1オクタ
ーブ分析として示す。図より、明らかに騒音が低減して
いることがわかる。この理由を以下に示す。第19図に従
来のエレベータかご内の平均吸音率と本発明を取り付け
たエレベータかご内の平均吸音率の比較を示す。第18図
より騒音の周波数は125〜500(Hz)であり、この周波数
帯での従来のエレベータかごの平均吸音率は第19図に示
すように、2%程度である。このようにエレベータかご
内には吸音性能をもつ部品はほとんどなく、また狭い空
間であるために残響効果が極めて高い。ここで本発明に
よる吸音照明装置を用いると、125〜500(Hz)での平均
吸音率は20%となり、かご内の吸音能力が増加する。吸
音能力の増加にともないエレベータかご内の残響音場が
減衰し騒音値が減少する。
As an example using the above porous structure, an example in which the sound absorbing lighting device according to the present invention is used in an elevator car as shown in FIGS. 4 and 5 will be described. FIG. 18 shows a comparison of the noise in the car equipped with the sound absorbing lighting device according to the present invention and the conventional elevator car when the elevator car is operating as one octave analysis. It can be seen from the figure that the noise is clearly reduced. The reason will be described below. FIG. 19 shows a comparison between the average sound absorption coefficient in a conventional elevator car and the average sound absorption coefficient in an elevator car equipped with the present invention. From FIG. 18, the frequency of the noise is 125 to 500 (Hz), and the average sound absorption coefficient of the conventional elevator car in this frequency band is about 2% as shown in FIG. As described above, there are few components having sound absorbing performance in the elevator car, and the reverberation effect is extremely high because of the small space. Here, when the sound absorbing lighting device according to the present invention is used, the average sound absorption coefficient in the range of 125 to 500 (Hz) is 20%, and the sound absorbing ability in the car is increased. As the sound absorbing capacity increases, the reverberant sound field in the elevator car is attenuated, and the noise value decreases.

[発明の効果] 本発明は、以上説明したように構成されているので、
以下に記載されるような効果を奏する。
[Effects of the Invention] Since the present invention is configured as described above,
The following effects are obtained.

照明器具と、前記照明器具前面に配置され、長径が0.
2〜3.0mmの樹脂の粒状素材から形成され、透明または半
透明で通気性を有する多孔質構造体とを備え、前記多孔
質構造体によって光を透過または反射、拡散する照明効
果をもたせ、さらに前記多孔質構造体と前記照明器具と
の間に形成される背面空気層とにより吸音部を構成した
ので、室内の吸音力を高め、室内騒音を低減でき、従来
の吸音照明カバーに比べ、照度分布差及び直接的な光の
漏れ量が少ない快適な室内環境をつくり出すことができ
る。
A lighting fixture, which is arranged in front of the lighting fixture and has a major axis of 0.
A porous structure formed of a granular material of 2 to 3.0 mm resin and having transparency or translucency and air permeability, and having a lighting effect of transmitting or reflecting light by the porous structure and diffusing light, Since the sound absorbing portion is formed by the back air layer formed between the porous structure and the lighting device, the sound absorbing power in the room can be increased, the room noise can be reduced, and the illuminance can be reduced as compared with the conventional sound absorbing lighting cover. A comfortable indoor environment with a small distribution difference and a small amount of direct light leakage can be created.

照明器具と、前記照明器具背面に配置された透明また
は半透明な多孔質構造体とを有し、前記多孔質構造体に
よって光を透過または反射、拡散する照明効果をもた
せ、さらに前記多孔質構造体とその多孔質構造体背面に
配置した反射板との間に形成された背面空気層とにより
吸音部を構成したので、室内の吸音力を高め、室内騒音
を低減でき、従来の吸音照明カバーに比べ、照度分布差
及び直接的な光の漏れ量が少ない快適な室内環境をつく
り出すことができる。また多孔質構造体背面に反射板を
配置したことにより照度分布がより一層一様化される。
A lighting device, having a transparent or translucent porous structure disposed on the back of the lighting device, having a lighting effect of transmitting or reflecting or diffusing light by the porous structure; Since the sound absorbing part is composed of the body and the back air layer formed between the body and the reflecting plate arranged on the back of the porous structure, the sound absorbing power in the room can be increased, the indoor noise can be reduced, and the conventional sound absorbing lighting cover Therefore, a comfortable indoor environment with less illuminance distribution difference and less direct light leakage can be created. Further, the illuminance distribution is further uniformed by disposing the reflector on the back surface of the porous structure.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す縦断面図、第2図は本
発明の他の実施例を示し、照明カバーを一部だけ多孔質
構造体で構成し、多孔質構造体でない部分と一体成形し
たものの縦断面図、第3図はさらに実施例を示し、照明
器具背面に多孔質構造体を、前記多孔質構造体の背面に
反射板を設けたことを示した縦断面図、第4図及び第5
図は本発明のまた他の実施例を示し、エレベータかご内
に吸音照明装置を用いた説明図、第6図は均一多孔質構
造体(背面空気層30mm、空孔率25%)と穴開き板(背面
空気層150mm)の垂直入射吸音率を比較した線図、第7
図は第1図において多孔質構造体の位置に穴開き板を置
いたときと多孔質構造体を用いたときの床における照度
分布の違いを示した線図、第8図(イ),(ロ)は夫々
新規な多層材(多孔質構造体)の模式的断面図、第9図
は本発明に使用する多孔質構造体の第1例の厚さに対す
る空孔率を示す曲線図、第10図は第9図に空孔率曲線を
示した多孔質構造体の垂直入射吸音率の特性曲線図、第
11図は垂直入射吸音率を測定するときの構成図、第12図
は本発明に使用する多孔質構造体の第2例の厚さに対す
る空孔率を示す曲線図、第13図は第12図に空孔率曲線を
示した多孔質構造体の垂直入射吸音率の特性曲線図、第
14図は本発明に使用する多孔質構造体の第3例の厚さに
対する空孔率を示す曲線図、第15図は第14図に空孔率曲
線を示した多孔質構造体の垂直入射吸音率の特性曲線
図、第16図は多孔質層を形成する粒状素材の形状を変え
た場合の垂直入射吸音率の特性のバラツキを示す線図、
第17図は粒状素材の直径と吸音率の関係を示す特性図、
第18図は従来のエレベータかご内の騒音と本発明による
吸音照明装置を取り付けたエレベータかご内の騒音を1
オクターブ分析にして比較した線図、第19図は従来エレ
ベータと本発明による吸音照明装置を取り付けたエレベ
ータ内の吸音力を比較した線図、第20図は従来の吸音照
明装置の斜視図である。 図において、(1)は多孔質構造体、(22)は目地板、
(23)は止め部材、(24)は天井、(25)は蛍光灯、
(26)は止め金、(27)は上部反射板、(28)は下部反
射板、(29)はエレベータ天井、(210)はエレベータ
側面、(211)はエレベータ床、(212)はエレベータド
アである。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention, and FIG. 2 shows another embodiment of the present invention, in which a part of a lighting cover is constituted by a porous structure and not a porous structure. FIG. 3 is a longitudinal sectional view showing a further embodiment, wherein a porous structure is provided on the back of the lighting fixture, and a reflector is provided on the back of the porous structure. FIG. 4 and FIG.
The figure shows another embodiment of the present invention, and is an explanatory view using a sound absorbing lighting device in an elevator car. FIG. 6 is a diagram showing a uniform porous structure (backside air layer 30 mm, porosity 25%) and perforations. Diagram comparing the normal incidence sound absorption coefficient of the plate (back air layer 150mm), No. 7
FIG. 8 is a diagram showing the difference in the illuminance distribution on the floor when the perforated plate is placed at the position of the porous structure in FIG. 1 and when the porous structure is used, and FIG. B) is a schematic cross-sectional view of a novel multilayer material (porous structure), respectively. FIG. 9 is a curve diagram showing the porosity with respect to the thickness of the first example of the porous structure used in the present invention. FIG. 10 is a characteristic curve diagram of the normal incidence sound absorption coefficient of the porous structure whose porosity curve is shown in FIG.
FIG. 11 is a configuration diagram when measuring the normal incidence sound absorption coefficient, FIG. 12 is a curve diagram showing the porosity with respect to the thickness of the second example of the porous structure used in the present invention, and FIG. The characteristic curve diagram of the normal incidence sound absorption coefficient of the porous structure showing the porosity curve in the figure, FIG.
FIG. 14 is a curve diagram showing the porosity with respect to the thickness of the third example of the porous structure used in the present invention, and FIG. 15 is the vertical incidence of the porous structure having the porosity curve shown in FIG. Characteristic curve diagram of the sound absorption coefficient, FIG. 16 is a diagram showing the variation of the characteristic of the normal incidence sound absorption coefficient when the shape of the granular material forming the porous layer is changed,
FIG. 17 is a characteristic diagram showing the relationship between the diameter of the granular material and the sound absorption coefficient,
FIG. 18 shows the noise in a conventional elevator car and the noise in an elevator car equipped with the sound absorbing lighting device according to the present invention.
FIG. 19 is a diagram comparing octave analysis, FIG. 19 is a diagram comparing sound absorbing power in a conventional elevator and an elevator equipped with a sound absorbing lighting device according to the present invention, and FIG. 20 is a perspective view of a conventional sound absorbing lighting device. . In the figure, (1) is a porous structure, (22) is a joint plate,
(23) is a stop member, (24) is a ceiling, (25) is a fluorescent lamp,
(26) clasp, (27) upper reflector, (28) lower reflector, (29) elevator ceiling, (210) elevator side, (211) elevator floor, (212) elevator door It is. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】照明器具と、前記照明器具前面に配置さ
れ、長径が0.2〜3.0mmの樹脂の粒状素材から形成され、
透明または半透明で通気性を有する多孔質構造体とを備
え、前記多孔質構造体によって光を透過または反射、拡
散する照明効果をもたせ、さらに前記多孔質構造体と前
記照明器具との間に形成される背面空気層とにより吸音
部を構成したことを特徴とする照明装置。
1. A lighting device, comprising: a resin granular material having a major axis of 0.2 to 3.0 mm, which is disposed on a front surface of the lighting device;
A transparent or translucent air-permeable porous structure, and a light-transmitting or reflecting light is diffused by the porous structure, and a light-emitting effect is provided. A lighting device, wherein a sound absorbing part is constituted by the formed back air layer.
【請求項2】照明器具と、前記照明器具背面に配置され
た透明または半透明な多孔質構造体とを備え、前記多孔
質構造体によって光を透過または反射、拡散する照明効
果をもたせ、さらに前記多孔質構造体とその多孔質構造
体背面に配置した反射板との間に形成された背面空気層
とにより吸音部を構成したことを特徴とする照明装置。
2. A lighting device, comprising: a transparent or translucent porous structure disposed on a back surface of the lighting device; wherein the porous structure has a lighting effect of transmitting, reflecting, and diffusing light. A lighting device, wherein a sound absorbing portion is constituted by a back air layer formed between the porous structure and a reflector disposed on the back of the porous structure.
JP2096339A 1990-04-13 1990-04-13 Sound absorbing lighting device Expired - Lifetime JP2700349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2096339A JP2700349B2 (en) 1990-04-13 1990-04-13 Sound absorbing lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2096339A JP2700349B2 (en) 1990-04-13 1990-04-13 Sound absorbing lighting device

Publications (2)

Publication Number Publication Date
JPH03295105A JPH03295105A (en) 1991-12-26
JP2700349B2 true JP2700349B2 (en) 1998-01-21

Family

ID=14162261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096339A Expired - Lifetime JP2700349B2 (en) 1990-04-13 1990-04-13 Sound absorbing lighting device

Country Status (1)

Country Link
JP (1) JP2700349B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570715B2 (en) * 1999-12-06 2010-10-27 オーチス エレベータ カンパニー Elevator car
US6367581B1 (en) * 2000-05-25 2002-04-09 Otis Elevator Company Sound absorbing light fixture
WO2009072386A1 (en) * 2007-12-06 2009-06-11 Konica Minolta Holkings, Inc. Lighting unit panel
US9194124B2 (en) 2011-12-09 2015-11-24 3M Innovative Properties Company Acoustic light panel
US10087627B2 (en) * 2013-05-23 2018-10-02 Philips Lighting Holding B.V. Light-emitting acoustic panel with duct

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948387U (en) * 1972-07-28 1974-04-27
JPS5145288U (en) * 1974-10-01 1976-04-03
JPH055611Y2 (en) * 1987-11-27 1993-02-15

Also Published As

Publication number Publication date
JPH03295105A (en) 1991-12-26

Similar Documents

Publication Publication Date Title
US5143664A (en) Method of preparing a porous structural unit
US4615411A (en) Sound-insulated flow duct and process for the manufacture thereof
US8770344B2 (en) Acoustic panel
CN200990204Y (en) Hornform cavity underwater sound absorption board
JP2009024323A (en) Multi-density sound attenuating laminate and method of making the same
JP2000509845A (en) Absorbing material for absorbing sound waves and method for producing the same
JP2700349B2 (en) Sound absorbing lighting device
US2001916A (en) Sound absorbing material
JPH0818376B2 (en) Porous structure
JP2001036282A (en) Acoustic and electromagnetic wave shielding material and manufacture thereof
JP2000282981A (en) Air suction duct for vehicle
CN216195609U (en) Sound diffuser that inhales of curved surface shape
CN100565669C (en) Transparent space absorber and preparation method thereof
CN210713611U (en) Sound-absorbing honeycomb material decorative plate
CN207225262U (en) Heat insulating mattress and automobile in lightweight automobile front wall
KR200180669Y1 (en) Foaming insulation board laminated with foaming extruded sheet
JP2508285B2 (en) Magnetic recording / reproducing device
JPH0371795A (en) Television receiver
JPH0371873A (en) Printing apparatus
CN203896493U (en) Hi-fi audio device for automobiles
CN212322628U (en) Multilayer sound-proof housing
US3330377A (en) Sound absorbing material comprising interbonded tubular elements
JP2003316366A (en) Acoustic material and method for manufacturing the same
CN103974166A (en) High fidelity audio device for automobile
CN111499354A (en) Porous brick with efficient sound absorption function for building and preparation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 13